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a b s t r a c t

A smooth quartic curve in the complex projective plane has 36
inequivalent representations as a symmetric determinant of linear
forms and 63 representations as a sum of three squares. These
correspond to Cayley octads and Steiner complexes respectively.
We present exact algorithms for computing these objects from the
28 bitangents. This expresses Vinnikov quartics as spectrahedra
andpositive quartics asGrammatrices.Weexplore the geometry of
Gram spectrahedra and we find equations for the variety of Cayley
octads. Interwoven is an exposition of much of the 19th century
theory of plane quartics.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We consider smooth curves in the projective plane defined by ternary quartics

f (x, y, z) = c400x4 + c310x3y + c301x3z + c220x2y2 + c211x2yz + · · · + c004z4, (1.1)

whose 15 coefficients cijk are parameters over the field Q of rational numbers. Our goal is to devise
exact algorithms for computing the two alternate representations

f (x, y, z) = det

xA + yB + zC


, (1.2)

where A, B, C are symmetric 4 × 4-matrices, and

f (x, y, z) = q1(x, y, z)2 + q2(x, y, z)2 + q3(x, y, z)2, (1.3)

where the qi(x, y, z) are quadratic forms. The representation (1.2) is of most interest when the
real curve VR(f ) consists of two nested ovals. Following Helton and Vinnikov (2007) and Henrion
(2010), one seeks real symmetric matrices A, B, C whose span contains a positive definite matrix. The
representation (1.3) is of most interest when the real curve VR(f ) is empty. Following Hilbert (1888)
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and Powers et al. (2004), one seeks quadrics qi(x, y, z) with real coefficients. We shall explain how to
compute all representations (1.2) and (1.3) over C.

The theory of plane quartic curves is a delightful chapter of 19th century mathematics, with
contributions by Aronhold, Cayley, Frobenius, Hesse, Klein, Schottky, Steiner, Sturm andmany others.
Textbook references include Dolgachev (2010), Miller et al. (1916) and Salmon (1879). It started in
1834 with Plücker’s result (Plücker, 1834) that the complex curve VC(f ) has 28 bitangents. The linear
form ℓ = αx + βy + γ z of a bitangent satisfies the identity

f (x, y, z) = g(x, y, z)2 + ℓ(x, y, z) · h(x, y, z)

for some quadric g and some cubic h. This translates into a system of polynomial equations in
(α : β : γ ), and our algorithms start out by solving these equations.

LetK denote the corresponding splitting field, that is, the smallest field extension ofQ that contains
the coefficients α, β, γ for all 28 bitangents. The Galois group Gal(K , Q) is very far from being the
symmetric group S28. In fact, if the coefficients cijk are general enough, it is theWeyl group of E7 modulo
its center,

Gal(K , Q) ∼= W (E7)/{±1} ∼= Sp6(Z/2Z). (1.4)

This group has order 8! · 36 = 1451 520, and it is not solvable (Harris, 1979, page 18). We will see a
combinatorial representation of this Galois group in Section 3 (Remark 3.13). It is based onMiller et al.
(1916, Section 19) and Dolgachev and Ortland (1988, Theorem 9). The connection with Sp6(Z/2Z)
arises from the theory of theta functions Dolgachev (2010, Section 5). For further information see
Harris (1979, Section II.4).

Naturally, the field extensions needed for (1.2) and (1.3) are much smaller for special quartics. As
our running example we take the smooth quartic given by

E(x, y, z) = 25 · (x4 + y4 + z4) − 34 · (x2y2 + x2z2 + y2z2).

We call this the Edge quartic. It is one of the curves in the family studied by Edge (1938, Section 14),
and it admits a matrix representation (1.2) over Q:

E(x, y, z) = det

 0 x + 2y 2x + z y − 2z
x + 2y 0 y + 2z −2x + z
2x + z y + 2z 0 x − 2y
y − 2z −2x + z x − 2y 0

 . (1.5)

The sum of three squares representation (1.3) is derived from the expression


x2 y2 z2 xy xz yz




25 −55/2 −55/2 0 0 21
−55/2 25 25 0 0 0
−55/2 25 25 0 0 0

0 0 0 21 −21 0
0 0 0 −21 21 0
21 0 0 0 0 −84





x2

y2

z2

xy
xz
yz

 (1.6)

by factoring the above rank-3 matrix as HT
· H where H is a complex 3×6-matrix. The real quartic

curve VR(E) consists of four ovals and is shown in Fig. 1.
Each of the 28 bitangents of the Edge quartic is defined over Q, but the four shown on the right in

Fig. 1 are tangent at complex points of the curve. The following theorem and Table 1 summarize the
possible shapes of real quartics.

Theorem 1.7. There are six possible topological types for a smooth quartic curve VR(f ) in the real
projective plane. They are listed in the first column of Table 1. Each of these six types corresponds to only
one connected component in the complement of the discriminant1 in the 14-dimensional projective space
of quartics.
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Fig. 1. The Edge quartic and some of its 28 bitangents.

Table 1
The six types of smooth quartics in the real projective plane.

The real curve Cayley octad Real bitangents Real Steiner complexes

4 ovals 8 real points 28 63
3 ovals 6 real points 16 31
2 non-nested ovals 4 real points 8 15
1 oval 2 real points 4 7
2 nested ovals 0 real points 4 15
empty curve 0 real points 4 15

The classification result in Theorem 1.7 is due to Zeuthen (1873). An excellent exposition can be
found in Salmon’s book (Salmon, 1879, Chapter VI). Klein (1876, Section 5) proved that each type
is connected in the complement of the discriminant {1 = 0}. We note that 1 is a homogeneous
polynomial of degree 27 in the 15 coefficients cijk of f . As a preprocessing step in our algorithms, we
use the explicit formula for1 given in Sanyal et al. (2009, Proposition 6.5) to verify that a given quartic
curve VC(f ) is smooth.

The present paper is organized as follows. In Section 2 we present an algorithm, based on Dixon’s
approach (Dixon, 1902), for computing one determinantal representation (1.2). The resulting 4×4-
matrices A, B and C specify three quadratic surfaces in P3 whose intersection consists of eight points,
known as a Cayley octad.

In Section 3 we use Cayley octads to compute representatives for all 36 inequivalent classes of
determinantal representations (1.2) of the given quartic f . This is accomplished by a combinatorial
algorithm developed by Hesse (1855), which realizes the Cremona action (Dolgachev and Ortland,
1988) on the Cayley octads. The output consists of 36 symmetric 8×8-matrices (3.4). These have rank
4 and their 28 entries are linear forms defining the bitangents.

In Section 4 we focus on Vinnikov quartics, that is, real quartics consisting of two nested ovals.
Helton and Vinnikov (2007) proved the existence of a representation (1.2) over R. We present a
symbolic algorithm for computing that representation in practice. Our method uses exact arithmetic
and writes the convex inner oval explicitly as a spectrahedron. This settles a question raised by
Henrion (2010, Section 1.2).

In Section 5 we identify sums of three squares with Steiner complexes of bitangents, and we
compute all 63 Gram matrices, i.e. all 6×6-matrices of rank 3 as in (1.6), again using only rational
arithmetic over K . This ties in with the results of Powers et al. (2004), where it was proved that a
smooth quartic f has precisely 63 inequivalent representations as a sum of three squares (1.3). They
strengthened Hilbert’s theorem in Hilbert (1888) by showing that precisely eight of these 63 are real
when f is positive.
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Section 6 is devoted to the boundary and facial structure of the Gram spectrahedron. This is the six-
dimensional spectrahedron consisting of all sums of squares representations of a fixed positive ternary
quartic f . We show that its eight special vertices are connected by 12 edges that form two complete
graphs K4. We also study the structure of the associated semidefinite programming problems.

Section 7 is devoted to the variety of Cayley octads (Dolgachev and Ortland, 1988, Section IX.3).
We discuss its defining equations and its boundary strata, we compute the discriminants of (1.2) and
(1.3), and we end with a classification of nets of real quadrics in P3.

We have implemented most of the algorithms presented in this paper in the system SAGE.1 Our
software and supplementary material on quartic curves and Cayley octads can be found at
math.berkeley.edu/∼cvinzant/quartics.html.

2. Computing a symmetric determinantal representation

We now prove, by way of a constructive algorithm, that every smooth quartic admits a symmetric
determinantal representation (1.2). First we compute the 28 bitangents, ℓ = αx + βy + γ z. Working
on the affine chart {γ = 1}, we equate

f

x, y, −αx − βy


= (κ0x2 + κ1xy + κ2y2)2,

eliminate κ0, κ1, κ2, and solve the resulting system for the unknowns α and β . This constructs the
splitting field K for the given f as a finite extension of Q. All further computations in this section are
performed via rational arithmetic in K .

Next consider any one of the
28
3


= 3276 triples of bitangents. Multiply their defining linear forms.

The resulting polynomial v00 = ℓ1ℓ2ℓ3 is a contact cubic forVC(f ), whichmeans that the ideal ⟨v00, f ⟩
in K [x, y, z] defines six points in P2 each of multiplicity 2. Six points that span three lines in P2 impose
independent conditions on cubics, so the space of cubics in the radical of ⟨v00, f ⟩ is 4-dimensional
over K . We extend {v00} to a basis {v00, v01, v02, v03} of that space.

Max Noether’s Fundamental Theorem (Fulton, 1969, Section 5.5) can be applied to the cubic v00
and the quartic f . It implies that a homogeneous polynomial lies in ⟨v00, f ⟩ if it vanishes to order two
at each of the six points of VC


⟨v00, f ⟩


. The latter property holds for the sextic forms v0iv0j. Hence

v0iv0j lies in ⟨v00, f ⟩ for 1 ≤ i ≤ j ≤ 3. Using the Extended Buchberger Algorithm, we can compute
cubics vij such that

v0iv0j − v00vij ∈ ⟨f ⟩. (2.1)

We now form a symmetric 4×4-matrix V whose entries are cubics in K [x, y, z]:

V =

 v00 v01 v02 v03
v01 v11 v12 v13
v02 v12 v22 v23
v03 v13 v23 v33

 .

The following result is due to Dixon (1902), and it almost solves our problem.

Proposition 2.2. Each entry of the adjoint V adj is a linear form times f 2, and

det(f −2
· V adj) = γ · f (x, y, z) for some constant γ ∈ K .

Hence, if det(V ) ≠ 0 then f −2
· V adj gives a linear matrix representation (1.2).

Proof. Since v00 ∉ ⟨f ⟩, the condition (2.1) implies that, over the quotient ring K [x, y, z]/⟨f ⟩, the
matrix V has rank 1. Hence, in the polynomial ring K [x, y, z], the cubic f divides all 2 × 2 minors
of V . This implies that f 2 divides all 3 × 3 minors of V , and f 3 divides det(V ). As the entries of V adj

have degree 9, it follows that V adj
= f 2 · W , whereW is a symmetric matrix whose entries are linear

1 www.sagemath.org.
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forms. Similarly, as det(V ) has degree 12, we have det(V ) = δf 3 for some δ ∈ K , and δ ≠ 0 unless
det(V ) is identically zero. Let I4 denote the identity matrix. Then

δf 3 · I4 = det(V ) · I4 = V · V adj
= f 2 · V · W .

Dividing by f 2 and taking determinants yields

δ4f 4 = det(V ) · det(W ) = δf 3 · det(W ).

This implies the desired identity det(W ) = δ3f . �
We now identify the conditions to ensure that det(V ) is not the zero polynomial.

Theorem 2.3. The determinant of V vanishes if and only if the six points of VC(f , ℓ1ℓ2ℓ3), at which the
bitangents ℓ1, ℓ2, ℓ3 touch the quartic curve VC(f ), lie on a conic in P2. This happens for precisely 1260 of
the 3276 triples of bitangents.

Proof. Dixon (1902) proves the first assertion. The census of triples appears in the table on page 233
in Salmon’s book (Salmon, 1879, Section 262). It is best understood via the Cayley octads in Section 3.
For further information see Dolgachev’s notes (Dolgachev, 2010, Section 6.1). �
Remark 2.4. Let ℓ1, ℓ2, ℓ3 be any three bitangents of VC(f ). If the six intersection points with VC(f )
lie on a conic, the triple {ℓ1, ℓ2, ℓ3} is called syzygetic, otherwise azygetic. A smooth quartic f has 1260
syzygetic and 2016 azygetic triples of bitangents. Similarly, a quadruple {ℓ1, ℓ2, ℓ3, ℓ4} of bitangents
is called syzygetic if its eight contact points lie on a conic and azygetic if they do not. Every syzygetic
triple ℓ1, ℓ2, ℓ3 determines a fourth bitangent ℓ4 with which it forms a syzygetic quadruple. Indeed,
if the contact points of ℓ1, ℓ2, ℓ3 lie on a conic with defining polynomial q, then q2 lies in the ideal
⟨f , ℓ1ℓ2ℓ3⟩, so that q2 = γ f + ℓ1ℓ2ℓ3ℓ4, and the other two points in VC(f , q) must be the contact
points of the bitangent ℓ4.

Algorithm 2.5. Given a smooth ternary quartic f ∈ Q[x, y, z], we compute the splitting field K over
which the 28 bitangents of VC(f ) are defined. We pick a random triple of bitangents and construct
the matrix V via the above method. If det(V ) ≠ 0, we compute the adjoint of V and divide by f 2,
obtaining the desired determinantal representation of f over K . If det(V ) = 0, we pick a different
triple of bitangents. On each iteration, the probability for det(V ) ≠ 0 is 2016

3276 =
8
13 .

Example 2.6. The diagram on the left of Fig. 1 shows an azygetic triple of bitangents to the Edge
quartic. Here, the six points of tangency do not lie on a conic. The representation of the Edge quartic
in (1.5) is produced by Algorithm 2.5 starting from the cubic v00 = 2(y + 2z)(−2x + z)(x − 2y). �

3. Cayley octads and the Cremona action

Algorithm 2.5 outputs a matrix M = xA + yB + zC where A, B, C are symmetric 4 × 4-matrices
with entries in the subfield K of C over which all 28 bitangents of VC(f ) are defined. Given one
such representation (1.2) of the quartic f , we shall construct a representative from each of the 35
other equivalence classes. Two representations (1.2) are considered equivalent if they are in the same
orbit under the action of GL4(C) by conjugation M → UTMU . We shall present an algorithm for the
following result. It performs rational arithmetic over the splitting field K of the 28 bitangents, and it
constructs one representative for each of the 36 orbits.
Theorem 3.1 (Hesse, 1855). Every smooth quartic curve f has exactly 36 equivalence classes of linear
symmetric determinantal representations (1.2).

Our algorithm begins by intersecting the three quadric surfaces seen inM:
uAuT

= uBuT
= uCuT

= 0 where u = (u0 : u1 : u2 : u3) ∈ P3(C). (3.2)

These equations have eight solutions O1, . . . ,O8. This is the Cayley octad of M . In general, a Cayley
octad is the complete intersection of three quadrics in P3(C).

The next proposition gives a bijection between the 28 bitangents of VC(f ) and the lines OiOj for
1 ≤ i ≤ j ≤ 8. The combinatorial structure of this configuration of 28 lines in P3 plays an important
role for our algorithms.
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Proposition 3.3. Let O1, . . . ,O8 be the Cayley octad defined above. Then the 28 linear forms OiMOT
j ∈

C[x, y, z] are the equations of the bitangents of VC(f ).

Proof. Fix i ≠ j. After a change of basis on C4 given by a matrix U ∈ GL4(C) and replacing M by
UTMU , we may assume that Oi = (1, 0, 0, 0) and Oj = (0, 1, 0, 0). The linear form bij = OiMOT

j now
appears in the matrix:

M =

 0 bij
bij 0 M ′

(M ′)T ∗

 .

Expanding det(M) and sorting for terms containing bij shows that f= det(M) is congruent to det(M ′)2

modulo ⟨bij⟩. This means that bij is a bitangent. �

Let O be the 8× 4-matrix with rows given by the Cayley octad. The symmetric 8× 8-matrix OMOT

has rank 4, and we call it the bitangent matrix of M . By the definition of O, the bitangent matrix has
zeros on the diagonal, and, by Proposition 3.3, its 28 off-diagonal entries are precisely the equations
of the bitangents:

OMOT
=



0 b12 b13 b14 b15 b16 b17 b18
b12 0 b23 b24 b25 b26 b27 b28
b13 b23 0 b34 b35 b36 b37 b38
b14 b24 b34 0 b45 b46 b47 b48
b15 b25 b35 b45 0 b56 b57 b58
b16 b26 b36 b46 b56 0 b67 b68
b17 b27 b37 b47 b57 b67 0 b78
b18 b28 b38 b48 b58 b68 b78 0

 . (3.4)

Remark 3.5. We can see that the octad O1, . . . ,O8 consists of K -rational points of P3: To see this, let
K ′ be the field of definition of the octad over K . Then any element σ of Gal(K ′

:K) acts on the octad by
permutation, and thus permutes the indices of the bitangents, bij. On the other hand, as all bitangents
are defined over K , σ must fix bij (up to a constant factor). Thus the permutation induced by σ on the
octad must be the identity and Gal(K ′

:K) is the trivial group.

Example 3.6. The symmetric matrixM in (1.5) determines the Cayley octad

OT
=

 1 0 0 0 −1 1 1 3
0 1 0 0 3 −1 1 1
0 0 1 0 1 3 1 −1
0 0 0 1 −1 −1 3 −1

 .

All the 28 bitangents of E(x, y, z) are revealed in the bitangent matrix

OMOT

=


0 x + 2y 2x + z y − 2z 5x + 5y + 3z 5x − 3y + 5z 3x + 5y − 5z −x + y + z

x + 2y 0 y + 2z −2x + z x − y + z 3x + 5y + 5z −5x + 3y + 5z 5x + 5y − 3z
2x + z y + 2z 0 x − 2y −3x + 5z + 5y x − z + y 5x + 3z − 5y 5x + 5z + 3y
y − 2z −2x + z x − 2y 0 −3y + 5z − 5x −5y − 3z + 5x −y − z − x 5y − 5z − 3x

5x + 5y + 3z x − y + z −3x + 5z + 5y −3y + 5z − 5x 0 24y + 12z −12x + 24z 24x + 12y
5x − 3y + 5z 3x + 5y + 5z x − z + y −5y − 3z + 5x 24y + 12z 0 24x − 12y 12x + 24z
3x + 5y − 5z −5x + 3y + 5z 5x + 3z − 5y −y − z − x −12x + 24z 24x − 12y 0 24y − 12z
−x + y + z 5x + 5y − 3z 5x + 5z + 3y 5y − 5z − 3x 24x + 12y 12x + 24z 24y − 12z 0

 .

Each principal 4 × 4-minors of this matrix is a multiple of E(x, y, z), as in (3.7). �

Each principal 3 × 3-minor of the bitangent matrix (3.4) is a contact cubic 2bijbikbjk of VC(f ) and
can serve as the starting point for the procedure in Section 2. Hence, each principal 4 × 4-minorMijkl
of (3.4) represents the same quartic:

det(Mijkl) = a non-zero scalar multiple of f (x, y, z)

= b2ijb
2
kl + b2ikb

2
jl + b2ilb

2
jk − 2(bijbikbjlbkl + bijbilbjkbkl + bikbilbjkbjl). (3.7)

However, all these
8
4


= 70 realizations of (1.2) lie in the same equivalence class.
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In what follows, we present a simple recipe due to Hesse (1855) for finding 35 alternate
bitangent matrices, each of which lies in a different GL4(C)-orbit. This furnishes all 36 inequivalent
determinantal representations promised in Theorem 3.1. We begin with a remark that explains the
number 1260 in Theorem 2.3.

Remark 3.8. We can use the combinatorics of the Cayley octad to classify syzygetic collections of
bitangents. There are 56 triples △ of the form {bij, bik, bjk}. Any such triple is azygetic, by the if-
direction in Theorem 2.3, because the cubic bijbikbjk appears on the diagonal of the adjoint of the
invertible matrix Mijkl. Every product of an azygetic triple of bitangents appears as a 3 × 3 minor
of exactly one of the 36 inequivalent bitangent matrices, giving 36 · 56 = 2016 azygetic triples of
bitangents and

28
3


− 2016 = 1260 syzygetic triples.

A quadruple of bitangents of type � is of the form {bij, bjk, bkl, bil}. Any such quadruple is syzygetic.
Indeed, Eq. (3.7) implies f +4(bijbjkbklbil) = (bijbkl−bikbjl+bilbjk)2, and this reveals a conic containing
the eight points of contact.

Consider the following matrix which is obtained by permuting the entries ofMijkl:

M ′

ijkl =

 0 bkl bjl bjk
bkl 0 bil bik
bjl bil 0 bij
bjk bik bij 0

 .

This procedure does not change the determinant: det(M ′

ijkl) = det(Mijkl) = f . This gives us 70
linear determinantal representations (1.2) of the quartic f , one for each quadruple I = {i, j, k, l} ⊂

{1, . . . , 8}. These are equivalent in pairs:

Theorem 3.9. If I ≠ J are quadruples in {1, . . . , 8}, then the symmetric matrices M ′

I and M ′

J are in the
same GL4(C)-orbit if and only if I and J are disjoint. None of these orbits contains the original matrix
M = xA + yB + zC.

Proof. Fix I = {1, 2, 3, 4} and note the following identity in K [x, y, z, u0, u1, u2, u3]: u0
u1
u2
u3


T 0 b12 b13 b14

b12 0 b23 b24
b13 b23 0 b34
b14 b24 b34 0


 u0

u1
u2
u3



= u0u1u2u3


u−1
0

u−1
1

u−1
2

u−1
3


T 0 b34 b24 b23

b34 0 b14 b13
b24 b14 0 b12
b23 b13 b12 0




u−1
0

u−1
1

u−1
2

u−1
3

 .

This shows that the Cayley octad of M ′

1234 is obtained from the Cayley octad of M1234 by applying the
Cremona transformation at O1,O2,O3,O4. Equivalently, observe that the standard basis vectors of Q4

are the first four points in the Cayley octads of both M1234 and M ′

1234, and if Oi = (αi : βi : γi : δi) for
i = 5, 6, 7, 8 belong to the Cayley octad ofM1234, then O′

i = (αi
−1

: β−1
i : γ −1

i : δ−1
i ) for i = 5, 6, 7, 8

belong to the Cayley octad O′ ofM ′

1234.
Thus the transformation fromMijkl toM ′

ijkl corresponds to theCremona action cr3,8 onCayley octads,
as described on page 107 in the book of Dolgachev and Ortland (1988). Each Cremona transformation
changes the projective equivalence class of the Cayley octad, and altogetherwe recover the 36 distinct
classes. That M ′

I is equivalent to M ′

J when I and J are disjoint can be explained by the following
result due to Coble (1929). See Dolgachev and Ortland (1988, Section III.3) for a derivation in modern
terms. �

Theorem 3.10. Let O be an unlabeled configuration of eight points in linearly general position in P3. Then
O is a Cayley octad (i.e. the intersection of three quadrics) if and only if O is self-associated (i.e. fixed under
Gale duality; cf. Eisenbud and Popescu (2000)).
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The Cremona action on Cayley octads was known classically as the bifid substitution, a term coined
by Arthur Cayley himself. We can regard this as a combinatorial rule that permutes and scales the 28
entries of the 8 × 8 bitangent matrix:

Corollary 3.11. The entries of the two bitangent matrices OM1234OT
= (bij) and O′M ′

1234O
′T

= (b′

ij) are
related by non-zero scalars in the field K as follows:

The linear form b′

ij is a scalar multiple of

 bkl if {i, j, k, l} = {1, 2, 3, 4},
bij if |{i, j} ∩ {1, 2, 3, 4}| = 1,
bkl if {i, j, k, l} = {5, 6, 7, 8}.

Proof. The first case is the definition ofM ′

1234. For the second case we note that

b15 = O1M1234OT
5 = β5b12 + γ5b13 + δ5b14

and b′

15 = O′

1M
′

1234O
′T
5 = β−1

5 b34 + γ −1
5 b24 + δ−1

5 b23,
(3.12)

by Proposition 3.3. The identity O5M1234OT
5 = 0, when combined with (3.12), translates into

α5b15 + β5γ5δ5b′

15 = 0, and hence b′

15 = −α5β
−1
5 γ −1

5 δ−1
5 b15. For the last case we consider any

pair {i, j} ⊂ {5, 6, 7, 8}. We know that b′

ij = νbkl, for some ν ∈ K ∗ and {k, l} ⊂ {5, 6, 7, 8}, by the
previous two cases. We must exclude the possibility {k, l} ∩ {i, j} ≠ ∅. After relabeling this would
mean b′

56 = νb56 or b′

56 = νb57. If b′

56 = νb56 then the lines {b′

12, b
′

25, b
′

56, b
′

16} and {b34, b25, b56, b16}
coincide. This is impossible because the left quadruple is syzygetic while the right quadruple is not,
by Remark 3.8. Likewise, b′

56 = νb57 would imply that the azygetic triple {b′

15, b
′

56, b
′

16} corresponds
to the syzygetic triple {b15, b57, b16}. �

Remark 3.13. The 35 bifid substitutions of the Cayley octad are indexed by partitions of [8] =

{1, 2, . . . , 8} into pairs of 4-sets. They are discussed in modern language in Dolgachev and Ortland
(1988, Proposition 4, page 172). Each bifid substitution determines a permutation of the set


[8]
2


=

{i, j} : 1 ≤ i < j ≤ 8

. For instance, the bifid partition 1234|5678 determines the permutation

in Corollary 3.11. Hesse (1855, page 318) wrote these 35 permutations of

[8]
2


explicitly in a table

of format 35 × 28. Hesse’s remarkable table is a combinatorial realization of the Galois group (1.4).
Namely, W (E7)/{±1} is the subgroup of column permutations that fixes the rows.

We conclude this sectionwith a remark on the real case. Suppose that f is given by a real symmetric
determinantal representation (1.2), i.e. f = det(M) where M = xA + yB + zC and A, B, C are real
symmetric 4×4-matrices. ByVinnikov (1993, Section 0), such a representation exists for every smooth
real quartic f . Then the quadrics uAuT , uBuT , uCuT

∈ K [u0, u1, u2, u3]2 defining the Cayley octad are
real, so that the points O1, . . . ,O8 are either real or come in conjugate pairs.

Corollary 3.14. Let M = xA + yB + zC be a real symmetric matrix representation of f with Cayley octad
O1, . . . ,O8. Then the bitangent OT

i MOj is defined over R if and only if Oi and Oj are either real or form a
conjugate pair, Oi = Oj.

From the possible numbers of real octad points we can infer the numbers of real bitangents stated
in Table 1. If 2k of the eight points are real, then there are 4 − k complex conjugate pairs, giving2k
2


+ 4 − k = 2k2 − 2k + 4 real bitangents.

4. Spectrahedral representations of Vinnikov quartics

The symmetric determinantal representations f = det(M) of a ternary quartic f ∈ Q[x, y, z] are
grouped into 36 orbits under the action of GL4(C) given byM → T TMT . The algorithms in Sections 2
and 3 construct representatives for all 36 orbits. Ifwe represent each orbit by its 8×8-bitangentmatrix
(3.4), then this serves as a classifier for the 36 orbits. Supposewe are given any other symmetric linear
matrix representation M = xA + yB + zC of the same quartic f , and our task is to identify in which
of the 36 orbits it lies. We do this by computing the Cayley octad O of M and the resulting bitangent
matrix OMOT . That 8 × 8-matrix can be located in our list of 36 bitangent matrices by comparing
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Fig. 2. The Vinnikov quartic in Example 4.1.

principal minors of size 3 × 3. These minors are products of azygetic triples of bitangents, and they
uniquely identify the orbit since there are 2016 = 36 · 56 azygetic triples.

We now address the problem of finding matrices A, B and C whose entries are real numbers.
Theorem 1.7 shows that this is not a trivial matter because none of the 36 bitangent matrices in (3.4)
has only real entries, unless the curve VR(f ) consists of four ovals (as in Fig. 1). We discuss the case
when the curve is a Vinnikov quartic, which means that VR(f ) consists of two nested ovals.

As shown inHelton and Vinnikov (2007), the region bounded by the inner oval corresponds exactly
to 

(x, y, z) ∈ R3
: xA + yB + zC is positive definite


,

a convex cone. This means that the inner oval is a spectrahedron. The study of such spectrahedral
representations is of considerable interest in convex optimization. Recent work by Henrion (2010)
underscores the difficulty of this problem for curves of genus g ≥ 2, and in the last two paragraphs of
Henrion (2010, Section 1.2), he asks for the development of a practical implementation. This section
constitutes a definitive computer algebra solution to Henrion’s problem for smooth quartic curves.

Example 4.1. The following smooth quartic is a Vinnikov curve:

f (x, y, z) = 2x4 + y4 + z4 − 3x2y2 − 3x2z2 + y2z2.

Running the algorithm in Section 2, we find that the coefficients of the 28 bitangents are expressed in
radicals over Q. However, only four of the bitangents are real. Using Theorem 4.3 below, we conclude
that there exists a real matrix representation (1.2) with entries expressed in radicals over Q. One such
representation is

f (x, y, z) = det

 ux + y 0 az bz
0 ux − y cz dz
az cz x + y 0
bz dz 0 x − y

 with (4.2)

a = −0.57464203209296160548032752478263071485849363449367 . . . ,
b = 1.03492595196395554058118944258225904539129257996969 . . . ,
c = 0.69970597091301262923557093892256027951096114611925 . . . ,
d = 0.4800486503802432010856027835498806214572648351951 . . . ,

u =
√
2 = 1.4142135623730950488016887242096980785696718 . . . .

The expression in radicals is given by the following maximal ideal in Q[a, b, c, d, u]:

⟨u2
− 2, 256d8 − 384d6u + 256d6 − 384d4u + 672d4 − 336d2u + 448d2 − 84u + 121,

23c + 7584d7u + 10688d7 − 5872d5u − 8384d5 + 1806d3u + 2452d3 − 181du − 307d,
23b + 5760d7u + 8192d7 − 4688d5u − 6512d5 + 1452d3u + 2200d3 − 212du − 232d,
23a − 1440d7u − 2048d7 + 1632d5u + 2272d5 − 570d3u − 872d3 + 99du + 81d⟩.

A picture of the curve VR(f ) in the affine plane {x = 1} is shown in Fig. 2. �
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The objective of this section is to establish the following algorithmic result:

Theorem 4.3. Let f ∈ Q[x, y, z] be a quartic whose curve VC(f ) is smooth. Suppose f (x, 0, 0) = x4
and f (x, y, 0) is squarefree, and let K be the splitting field for its 28 bitangents. Then we can compute a
determinantal representation

f (x, y, z) = det(xI + yD + zR) (4.4)

where I is the identity matrix, D is a diagonal matrix, R is a symmetric matrix, and the entries of D and R
are expressed in radicals over K . Moreover, there exist such matrices D and R with real entries if and only
if VR(f ) is a Vinnikov curve containing the point (1 : 0 : 0) inside the inner oval.

The hypotheses in Theorem 4.3 impose no loss of generality. Any smooth quartic will satisfy them
after a linear change of coordinates (x : y : z) in P2.

Proof. Using the method in Section 2, we find a first representation f (x, y, z) = det(xA + yB + zC)
over the field K . However, the resulting matrices A, B, C might have non-real entries. The matrix A is
invertible because we have assumed det(xA) = f (x, 0, 0) = x4, which implies det(A) = 1.

The binary form f (x, y, 0) = det(xA+yB) is squarefree. That assumption guarantees that the 4×4-
matrix A−1B has four distinct complex eigenvalues. Since its entries are in K , its four eigenvalues lie
in a radical extension field L over K . By choosing a suitable basis of eigenvectors, we find a matrix
U ∈ GL4(L) such that U−1A−1BU is a diagonal matrix D1 = diag(λ1, λ2, λ3, λ4) over the field L.

We claim that D2 = UTAU and D3 = UTBU are diagonal matrices. For each column ui of U we have
A−1Bui = λiui, so Bui = λiAui. For 1 ≤ i < j ≤ 4 this implies uT

j Bui = λiuT
j Aui and, by switching

indices, we get uT
i Buj = λjuT

i Auj. Since B is symmetric, the difference of the last two expressions is
zero, and we conclude (λi − λj) · uT

i Auj = 0. By assumption, we have λi ≠ λj and therefore uT
i Auj = 0

and uT
i Buj = 0. This means that D2 and D3 are diagonal.

Let D4 be the diagonal matrix whose entries are the reciprocals of the square roots of the entries
of D2. These entries are also expressed in radicals over K . Then D4D2D4 = I is the identity matrix,
D4D3D4 = D is also diagonal, and

D4UTMUD4 = xI + yD + zR

is the real symmetric matrix representation required in (4.4).
In order for the entries of D and R to be real numbers, it is necessary (by Helton and Vinnikov

(2007)) that VR(f ) be a Vinnikov curve. We now assume that this is the case. The existence of a real
representation (4.4) is due to Vinnikov (1993, Section 0). A transcendental formula for the matrix
entries of D and R in terms of theta functions is presented in (4.2) and (4.3) of Helton and Vinnikov
(2007, Section 4). We need to show how our algebraic construction above can be used to compute
Vinnikov’s matrices D and R.

Given a quartic f ∈ Q[x, y, z] with leading term x4, the identity (4.4) translates into a system of
14 polynomial equations in 14 unknowns, namely the four entries of D and the ten entries of R. For
an illustration of how to solve them see Example 4.6. We claim that these equations have at most
24 · 8 · 36 = 6912 complex solutions and all solutions are expressed in radicals over K . Indeed, there
are 36 conjugation orbits, and per orbit we have the freedom to transform (4.4) by a matrix T such
that T TT = I and T TDT is diagonal. Since the entries of D are distinct, these constraints imply that T is
a permutation matrix times a diagonal matrix with entries ±1. There are 24 · 16 possible choices for
T , but T and −T yield the same triple (I,D, R), so the number of solutions per orbit is 24 · 8.

We conclude that, for each of the 36 orbits, either all representations (4.4) are real or none
of them is. Hence, by applying this method to all 36 inequivalent symmetric linear determinantal
representations constructed in Section 3, we are guaranteed to find Vinnikov’s real matrices D and R.
See also Plaumann et al. (2010, Section 2) for additional examples and a more detailed discussion. �

The above argument for the simultaneous diagonalizability of A and B is taken from Greub’s linear
algebra text book (Greub, 1975). We could also handle the exceptional case when A−1B does not have
four distinct eigenvalues. Even in that case there exists a matrix U in radicals over K such that UTAU
and UTBU are diagonal, but the construction of U is more difficult. The details are found in Greub
(1975, Section IX.3).



Author's personal copy

722 D. Plaumann et al. / Journal of Symbolic Computation 46 (2011) 712–733

Corollary 4.5. Every smooth Vinnikov curve has a real determinantal representation (1.2) in radicals over
the splitting field K of its 28 bitangents.

We close with the remark that the representation (4.4) generally does not exist over the field K
itself but the passage to a radical extension field is necessary.

Example 4.6. All 6912matrix representations xI + yD+ zR of the Edge quartic E(x, y, z) = 25 · (x4 +

y4 + z4) − 34 · (x2y2 + x2z2 + y2z2) are non-real and have degree 4 over Q. The entries of D are the
four complex zeros of the irreducible polynomial x4 −

34
25x

2
+ 1. After fixing D, we have 192 choices

for R, namely, selecting one of the 36 orbits fixes R up to conjugation by diag(±1, ±1, ±1, ±1). For
the orbit of the matrix xA + yB + zC in (1.5), our algorithm gives the representation

D =


−

√
21/5 − 2i/5 0 0 0

0
√
21/5 + 2i/5 0 0

0 0 −
√
21/5 + 2i/5 0

0 0 0
√
21/5 − 2i/5



R =


0 −

2
5 (

√
3/7 + i) −

√
27/35 0

−
2
5 (

√
3/7 + i) 0 0

√
27/35

−
√
27/35 0 0 −

2
5 (

√
3/7 − i)

0
√
27/35 −

2
5 (

√
3/7 − i) 0

 . �

5. Sums of three squares and Steiner complexes

Our next goal is to write the given quartic f as the sum of three squares of quadrics. Such
representations (1.3) are classified by Gram matrices of rank 3. A Gram matrix for f is a symmetric
6 × 6 matrix Gwith entries in C such that

f = vT
· G · v where v = (x2, y2, z2, xy, xz, yz)T .

We can write G = HT
· H , where H is an r × 6-matrix and r = rank(G). Then the factorization

f = (Hv)T · (Hv) expresses f as the sum of r squares.
It can be shown that no Gram matrix with r ≤ 2 exists when f is smooth, and there are infinitely

many for r ≥ 4. For r = 3 their number is 63 by Theorem 5.1.
Gram matrices classify the representations (1.3): two distinct representations

f = q21 + q22 + q23 = p21 + p22 + p23
correspond to the same Gram matrix G of rank 3 if and only if there exists an orthogonal matrix
T ∈ O3(C) such that T · (p1, p2, p3)T = (q1, q2, q3)T . The objective of this section is to present an
algorithmic proof for the following result.

Theorem 5.1. Let f ∈ Q[x, y, z] be a smooth quartic and K the splitting field for its 28 bitangents. Then f
has precisely 63 Gram matrices of rank 3, all of which we compute using rational arithmetic over the field
K .

The fact that f has 63 Gram matrices of rank 3 is a known result due to Coble (1929, Chapter 1,
Section 14); see also Powers et al. (2004, Proposition 2.1). Our contribution is a new proof that yields
a K -rational algorithm for computing all rank-3 Gram matrices. Instead of appealing to the Jacobian
threefold of f , as in Powers et al. (2004), we shall identify the 63 Gram matrices with the 63 Steiner
complexes of bitangents (see Salmon (1879, Section VI) and Dolgachev (2010, Section 6)).

We begin by constructing a representation f = q21 + q22 + q23 from any pair of bitangents. Let ℓ, ℓ′

be distinct bitangents of f , and let p ∈ C[x, y, z]2 be a non-singular quadric passing through the four
contact points of ℓℓ′ with f . By Max Noether’s Fundamental Theorem (Fulton, 1969, Section 5.5), the
ideal


ℓℓ′, f


contains p2, thus

f = ℓℓ′u − p2, (5.2)
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for some quadric u ∈ C[x, y, z]2, after rescaling p by a constant. Over C, the identity (5.2) translates
directly into one of the form:

f =


1
2
ℓℓ′

+
1
2
u
2

+


1
2i

ℓℓ′
−

1
2i

u
2

+ (ip)2. (5.3)

Remark 5.4. Just as systems of contact cubics to VC(f ) were behind the formula (1.2), systems of
contact conics to VC(f ) are responsible for the representations (1.3). The simplest choice of a contact
conic is a product of two bitangents.

In (5.3)wewrote f as a sumof three squares overC. There are
28
2


= 378 pairs {ℓ, ℓ′

} of bitangents.
We will see Theorem 5.10 that each pair forms a syzygetic quadruple with 5 other pairs. This yields
378/6 = 63 equivalence classes. More importantly, there is a combinatorial rule for determining
these 63 classes from a Cayley octad. This allows us to compute the 63 Gram matrices over K .

Eq. (5.2) can also be read as a quadratic determinantal representation

f = det


q0 q1
q1 q2


(5.5)

with q0 = ℓℓ′, q1 = p, and q2 = u. This expression gives rise to the quadratic system of contact conics
{λ2

0q0 + 2λ0λ1q1 + λ2
1q

2
2 : λ ∈ P1(C)}. The implicitization of this quadratic system is a quadratic

form on span{q0, q1, q2}. With respect to the basis (q0, q1, q2), it is represented by a symmetric 3 × 3
matrix C . Namely,

C =

 0 0 2
0 −1 0
2 0 0


and its inverse is C−1

=

 0 0 1/2
0 −1 0

1/2 0 0


.

The formula (5.5) shows that f = q0q2−q21 = (q0, q1, q2)·C−1
·(q0, q1, q2)T . We now extend q0, q1, q2

to a basis q = (q0, q1, q2, q3, q4, q5) of C[x, y, z]2. Let T denote the matrix that takes the monomial
basis v = (x2, y2, z2, xy, xz, yz) to q. IfG is the 6 × 6 matrix with C−1 in the top left block and zeros
elsewhere, then

f = (q0, q1, q2) · C−1
· (q0, q1, q2)T = vT

· T T
·G · T · v. (5.6)

Thus, G = T TGT is a rank-3 Gram matrix of f . This construction is completely reversible, showing
that every rank-3 Gram matrix of f is obtained in this way.

The key player in the formula (5.6) is the quadratic form given by C . From this, one easily gets the
Gram matrix G. We shall explain how to find G geometrically from the pair of bitangents ℓ, ℓ′. The
following result is taken from Salmon (1879):

Proposition 5.7. Let f = det(Q ) where Q is a symmetric 2 × 2-matrix with entries in C[x, y, z]2 as in
(5.5). Then Q defines a quadratic system of contact conics λTQλ, λ ∈ P1(C), that contains exactly six
products of two bitangents.

Sketch of Proof. To see that λTQλ is a contact conic, note that for any λ, µ ∈ C2,

(λTQλ)(µTQµ) − (λTQµ)2 =

−
i,j,k,l

λiλjµkµl(QijQkl − QikQjl). (5.8)

The expression QijQkl − QikQjl is a multiple of det(Q ) = f , and hence so is the left hand side of (5.8).
This shows that λTQλ is a contact conic of VC(f ). The set of singular conics is a cubic hypersurface in
C[x, y, z]2. As λTQλ is quadratic in λ, we see that there are six points λ ∈ P1(C) for which λTQλ is
the product of two linear forms. These are bitangents of f and therefore K -rational. �
Remark 5.9. If the Gram matrix G is real, then it is positive (or negative) semidefinite if and only if
the quadratic system Q = {λTQλ | λ ∈ P1(C)} does not contain any real conics. For if G is real, we
may take a real basis (q′

0, q
′

1, q
′

2) of span{q0, q1, q2} = ker(G)⊥ in C[x, y, z]2. IfQ does not contain any
real conics, then thematrix C ′ representingQ with respect to the basis (q′

0, q
′

1, q
′

2) is definite. Using C
′

instead of C in the above construction, we conclude that C ′−1 is definite and hence G is semidefinite.
The converse follows by reversing the argument.
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We now come to Steiner complexes, the second topic in the section title.

Theorem 5.10. Let S =

{ℓ1, ℓ

′

1}, . . . , {ℓ6, ℓ
′

6}

be six pairs of bitangents of a smooth quartic f ∈

Q[x, y, z]. Then the following three conditions are equivalent:

1. The reducible quadrics ℓ1ℓ
′

1, . . . , ℓ6ℓ
′

6 lie in a system of contact conics λTQλ, λ ∈ P1(C), for Q a
quadratic determinantal representation (5.5) of f .

2. For each i ≠ j, the eight contact points VC(ℓiℓ
′

iℓjℓ
′

j) ∩ VC(f ) lie on a conic.
3. With indices as in the bitangent matrix (3.4) for a Cayley octad, either

S =

{bik, bjk} | {i, j} = I and k ∈ Ic


for a 2-set I ⊂ {1, . . . , 8},

or S =

{bij, bkl} | {i, j, k, l} = I or {i, j, k, l} = Ic


for a 4-set I ⊂ {1, . . . , 8}.

Proof. This is a classical result due to Hesse (1855). The proof can also be found in the books of Salmon
(1879) and Miller et al. (1916, Section 185–186). �

A Steiner complex (Steiner, 1855) is a sextuple S of pairs of bitangents satisfying the conditions of
Theorem 5.10. A pair of bitangents in S is either of the form {bik, bjk} (referred to as type


) or of the

form {bij, bkl} (type ||). The first type of Steiner complex in Theorem5.10(3) contains pairs of bitangents
of type


and the second type contains pairs of type ||. There are

8
2


= 28 Steiner complexes of type

and
8
4


/2 = 35 Steiner complexes of bitangents of type ||. The two types of Steiner complexes are

easy to remember by the following combinatorial pictures:

Type


Type ||

This combinatorial encoding of Steiner complexes enables us to derive the last column in Table 1
in the introduction. We represent the quartic as (1.3) with A, B, C real, as in Vinnikov (1993).
The corresponding Cayley octad {O1, . . . ,O8} is invariant under complex conjugation. Let π be
the permutation in S8 that represents complex conjugation, meaning Oi = Oπ(i). Then complex
conjugation on the 63 Steiner complexes is given by the action of π on their labels. For instance,
when all Oi are real, as in the first row of Table 1, then π is the identity. For the other rows we can
relabel so that π = (12), π = (12)(34), π = (12)(34)(56) and π = (12)(34)(56)(78). We say
that a Steiner complex S is real if its labels are fixed under π . For example, if S is the Steiner complex
{{b13, b23}, . . . , {b18, b28}} of type


as above, then S is real if and only if π fixes {1, 2}. Similarly,

if S is the Steiner complex {{b12, b34}, {b13, b24}, {b14, b23}, {b56, b78}, {b57, b68}, {b58, b67}} of type
||, then S is real if and only if π fixes the partition


{1, 2, 3, 4}, {5, 6, 7, 8}


. For instance, for the

empty curve, in the last row Table 1, one can check that exactly 15 Steiner complexes are fixed by
π = (12)(34)(56)(78), as listed in Section 6.

We now sum up what we have achieved in this section, namely, a recipe for constructing the 63
Gram matrices from the 28 + 35 Steiner complexes


and ||.

Proof and Algorithm for Theorem 5.1. We take as input a smooth ternary quartic f ∈ Q[x, y, z]
and any of the 63 Steiner complexes


{ℓ1, ℓ

′

1}, . . . , {ℓ6, ℓ
′

6}

of bitangents of VC(f ). From this we

can compute a rank-3 Gram matrix for f as follows. The six contact conics ℓiℓ
′

i span a 3-dimensional
subspace of K [x, y, z]2, by Theorem 5.10(1), of which {ℓ1ℓ

′

1, ℓ2ℓ
′

2, ℓ3ℓ
′

3} is a basis. The six vectors ℓiℓ
′

i
lie on a conic in that subspace, and we compute the symmetric 3 × 3-matrix C representing this
conic in the chosen basis. We then extend its inverseC−1 by zeroes to a 6 × 6 matrixG and fix an
arbitrary basis {q4, q5, q6} of span{ℓ1ℓ

′

1, ℓ2ℓ
′

2, ℓ3ℓ
′

3}
⊥ in K [x, y, z]2. Let T ∈ K 6×6 be the matrix taking

v = (x2, y2, z2, xy, xz, yz)T to (ℓ1ℓ
′

1, ℓ2ℓ
′

2, ℓ3ℓ
′

3, q4, q5, q6)
T . Then G = T TGT is the desired rank-3

Grammatrix for f , and all rank-3 Grammatrices arise in this way. Note that G does not depend on the
choice of q4, q5, q5. �
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Remark 5.11. Given f , finding a Steiner complex as input for the above algorithm is not a trivial task.
But when a linear determinantal representation of f is known, and thus a Cayley octad, one can use
the criterion in Theorem 5.10(3).

Example 5.12. We consider the quartic f = det(M) defined by the matrix

M =

 52x + 12y − 60z −26x − 6y + 30z 48z 48y
−26x − 6y + 30z 26x + 6y − 30z −6x + 6y − 30z −45x − 27y − 21z

48z −6x + 6y − 30z −96x 48x
48y −45x − 27y − 21z 48x −48x

 .

The complex curveVC(f ) is smooth and its set of real pointsVR(f ) is empty. The corresponding Cayley
octad consists of four pairs of complex conjugates:

OT
=


i −i 0 0 −6 + 4i −6 − 4i 3 + 2i 3 − 2i

1 + i 1 − i 0 0 −4 + 4i −4 − 4i 7 − i 7 + i
0 0 i −i −3 + 2i −3 − 2i −

86
39 −

4
13 i −

86
39 +

4
13 i

0 0 1 + i 1 − i 1 − i 1 + i 4
39 −

20
39 i

4
39 +

20
39 i

 .

Here the 8×8 bitangent matrix OMOT
= (bij) is defined over the field K = Q(i) of Gaussian rationals,

and hence so are all 63 Gram matrices. According to the lower right entry in Table 1, precisely 15 of
the Gram matrices are real, and hence these 15 Gram matrices have their entries in Q. For instance,
the representation

f = 288


x2

y2

z2
xy
xz
yz


T 

45 500 3102 −9861 5718 −9246 4956
3102 288 −747 882 −18 −144

−9861 −747 3528 −864 −1170 −504
5718 882 −864 4440 1104 −2412

−9246 −18 −1170 1104 11 814 −5058
4956 −144 −504 −2412 −5058 3582




x2

y2

z2
xy
xz
yz


is obtained by applying our algorithm for Theorem 5.1 to the Steiner complex

S =

{b13, b58}, {b15, b38}, {b18, b35}, {b24, b67}, {b26, b47}, {b27, b46}


.

The above Gram matrix has rank 3 and is positive semidefinite, so it translates into a representation
(1.3) for f as the sum of three squares of quadrics over R. �

6. The Gram spectrahedron

The Gram spectrahedron Gram(f ) of a real ternary quartic f is the set of its positive semidefinite
Gram matrices. This spectrahedron is the intersection of the cone of positive semidefinite 6 × 6-
matrices with a 6-dimensional affine subspace. By Hilbert’s result in Hilbert (1888), Gram(f ) is non-
empty if and only if f is non-negative. In terms of coordinates on the 6-dimensional subspace given
by a fixed quartic

f (x, y, z) = c400x4 + c310x3y + c301x3z + c220x2y2 + c211x2yz + · · · + c004z4,

the Gram spectrahedron Gram(f ) is the set of all positive semidefinite matrices

c400 λ1 λ2
1
2 c310

1
2 c301 λ4

λ1 c040 λ3
1
2 c130 λ5

1
2 c031

λ2 λ3 c004 λ6
1
2 c103

1
2 c013

1
2 c310

1
2 c130 λ6 c220 − 2λ1

1
2 c211 − λ4

1
2 c121 − λ5

1
2 c301 λ5

1
2 c103

1
2 c211 − λ4 c202 − 2λ2

1
2 c112 − λ6

λ4
1
2 c031

1
2 c013

1
2 c121 − λ5

1
2 c112 − λ6 c022 − 2λ3


, where λ ∈ R6. (6.1)
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Themain result of Powers et al. (2004) is that a smooth positive quartic f has exactly eight inequivalent
representations as a sum of three real squares, which had been conjectured in Powers and Reznick
(2000). These eight representations correspond to rank-3 positive semidefinite Gram matrices. We
call these the vertices of rank 3 of Gram(f ). In Section 5 we compute them using arithmetic over K .

We define the Steiner graph of the Gram spectrahedron to be the graph on the eight vertices of rank
3 whose edges represent edges of the convex body Gram(f ).

Theorem 6.2. The Steiner graph of the Gram spectrahedron Gram(f ) of a generic positive ternary quartic
f is the disjoint union K4 ⊔ K4 of two complete graphs, and the relative interiors of these edges consist of
rank-5 matrices.

This theorem means that the eight rank-3 Gram matrices are divided into two groups of four,
and, for G and G′ in the same group, we have rank(G + G′) ≤ 5. The second sentence asserts that
rank(G + G′) = 5 holds for generic f . For the proof it suffices to verify this for one specific f . This we
have done, using exact arithmetic, for the quartic in Example 5.12. For instance, the rank-3 vertices


1

288


G =


45 500 3102 −9861 5718 −9246 4956
3102 288 −747 882 −18 −144

−9861 −747 3528 −864 −1170 −504
5718 882 −864 4440 1104 −2412

−9246 −18 −1170 1104 11 814 −5058
4956 −144 −504 −2412 −5058 3582




1
288


G′

=


45 500 −2802 −6666 5718 −9246 132
−2802 288 −72 882 1206 −144
−6666 −72 3528 −4878 −1170 −504
5718 882 −4878 16 248 5928 −3636

−9246 1206 −1170 5928 5424 −1044
132 −144 −504 −3636 −1044 2232


both contain the vector (11 355, −4241, 47 584, 8325, 28 530, 36 706)T in their kernel, so that
rank(G + G′) ≤ 5. But this vector spans the intersection of the kernels, hence rank(G + G′) = 5,
and every matrix on the edge has rank 5.

We also know that there exist instances of smooth positive quartics where the rank along an edge
drops to 4. One such example is the Fermat quartic, x4 + y4 + z4, which has two psd rank-3 Gram
matrices whose sum has rank 4. We do not know whether the Gram spectrahedron Gram(f ) has
proper faces of dimension ≥1 other than the twelve edges in the Steiner graph K4 ⊔ K4. In particular,
we do not know whether the Steiner graph coincides with the graph of all edges of Gram(f ).

Proof of Theorem 6.2. Fix a real symmetric linear determinantal representation M = xA + yB + zC
of f . The existence of suchM when f is positive was proved by Vinnikov (1993, Section 0). The Cayley
octad {O1, . . . ,O8} determined by M consists of four pairs of complex conjugate points. Recall from
Section 5 that a Steiner complex corresponds to either a subset I ⊂ {1, . . . , 8} with |I| = 2 (type


)

or a partition I|Ic of {1, . . . , 8} into two subsets of size 4 (type ||). We write SI for the Steiner complex
given by I or I|Ic andGI for the correspondingGrammatrix. Theorem6.2 follows from themore precise
result in Theorem 6.3 which we shall prove further below. �

Theorem 6.3. Let f be positive with VC(f ) smooth and conjugation acting on the Cayley octad by Oi =

Oπ(i) for π = (12)(34)(56)(78). The eight Steiner complexes corresponding to the vertices of rank 3 of the
Gram spectrahedron Gram(f ) are

1357|2468 1368|2457 1458|2367 1467|2358
1358|2467 1367|2458 1457|2368 1468|2357.

The Steiner graph K4 ⊔ K4 is given by pairs of Steiner complexes in the same row.

Our proof of Theorem 6.3 consists of two parts: (1) showing that the above Steiner complexes give
the positive semidefinite Gram matrices and (2) showing how they form two copies of K4. We will
begin by assuming (1) and proving (2):
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By Theorem 5.10, for any two pairs of bitangents {ℓ1, ℓ
′

1} and {ℓ2, ℓ
′

2} in a fixed Steiner complex
S, there is a conic u in P2 that passes through the eight contact points of these four bitangents with
VC(f ). In this manner, one associates with every Steiner complex S a set of

6
2


= 15 conics, denoted

conics(S).

Lemma 6.4. LetS and T be Steiner complexeswith Grammatrices GS and GT . If conics(S)∩conics(T ) ≠

∅ then rank(GS + GT ) ≤ 5.

Proof. Suppose S = {{ℓ1, ℓ
′

1}, . . . , {ℓ6, ℓ
′

6}}. Let Q be a quadratic matrix representation (5.5) such
that the six points ℓ1ℓ

′

1, . . . , ℓ6ℓ
′

6 ∈ P(C[x, y, z]2) lie on the conic {λTQλ : λ ∈ P1(C)}. By the
construction in the proof of Theorem 5.1, we know that the projective plane in P(C[x, y, z]2) spanned
by this conic is ker(GS)

⊥.
Consider two pairs {ℓ1, ℓ

′

1}, {ℓ2, ℓ
′

2} from S and let u ∈ conics(S) be the unique conic passing
through the eight contact points of these bitangents with the curve VC(f ). By our choice of Q , we can
find λ, µ ∈ P1 such that λTQλ = ℓ1ℓ

′

1 and µTQµ = ℓ2ℓ
′

2. Eq. (5.8) then shows that u = λTQµ. From
this we see that u ∈ span{Q11,Q12,Q22} = ker(GS)

⊥. Therefore, conics(S) ⊆ ker(GS)
⊥.

If conics(S) ∩ conics(T ) ≠ ∅, then the two 3-planes ker(GS)
⊥ and ker(GT )⊥ meet nontrivially.

Since C[x, y, z]2 has dimension 6, this implies that ker(GS) and ker(GT ) meet nontrivially. Hence
rank(GS + GT ) ≤ 5. �

For example, conics(S1358) and conics(S1457) share the conic going through the contact points
of b15, b26, b38, and b47. Lemma 6.4 then implies rank(G1358 + G1457) ≤ 5, as shown above for
Example 5.12 with G = G1358 and G′

= G1457.
Using this approach, we only have to check that conics(SI) ∩ conics(SJ) ≠ ∅ when I and J are in

the same row of the table in Theorem 6.3. More precisely:

Lemma 6.5. Let I and J be subsets of {1, . . . , 8} of size four with I ≠ J and I ≠ Jc . Then conics(SI) ∩

conics(SJ) ≠ ∅ if and only if |I ∩ J| = 2.

Proof. Every syzygetic set of four bitangents ℓ1, ℓ2, ℓ3, ℓ4 determines a unique conic u passing
through their eight contact points with VC(f ). There are three ways to collect the four bitangents into
two pairs, so u appears in conics(S) for exactly three Steiner complexes. For two Steiner complexes
SI and SJ , we have conics(SI) ∩ conics(SJ) ≠ ∅ if and only if there are bitangents ℓ1, ℓ2, ℓ3, ℓ4 such
that {ℓ1,ℓ2}, {ℓ3,ℓ4} ∈ SI and {ℓ1,ℓ3}, {ℓ2,ℓ4} ∈ SJ . This translates into |I ∩ J| = 2. �

To complete the proof of Theorem 6.3, it remains to show that the eight listed Steiner complexes
give positive semidefinite Gram matrices. Recall that a Steiner complex SI is real if and only if I is
fixed by the permutation π coming from conjugation. As stated in Section 3, there are 15 real Steiner
complexes, namely,

1. The eight complexes of type || listed in Theorem 6.3.
2. Three more complexes of type ||, namely 1234|5678, 1256|3478, 1278|3456.
3. Four complexes of type


, namely 12, 34, 56, 78.

Since we know from Powers et al. (2004) that exactly eight of these give positive semidefinite Gram
matrices, it suffices to rule out the seven Steiner complexes in (2) and (3). Every Steiner complex
SI gives rise to a system of contact conics QI = {λTQIλ, λ ∈ P1(C)}, where QI is a symmetric 2 × 2-
matrix as in (5.5), and a rank-3 Grammatrix GI for f . The following proposition is a direct consequence
of Remark 5.9.

Proposition 6.6. Let SI be a real Steiner complex. The Gram matrix GI is positive semidefinite if and only
if the system QI does not contain any real conics.

It follows that if SI is one of the three Steiner complexes in (2), then the Gram matrix GI is
not positive semidefinite, since the system QI contains a product of two of the real bitangents
b12, b34, b56, b78. Thus it remains to show that if I = ij with ij ∈ {12, 34, 56, 78} as in (3), then the
system Qij contains a real conic.

The symmetric linear determinantal representation M gives rise to the system {λTMadjλ | λ ∈

P3(C)} of (azygetic) contact cubics (see Dolgachev (2010, Section 6.3)). Themain idea of the following
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Table 2
Statistics for semidefinite programming over Gram spectrahedra.

Rank of optimal matrix 3 4 5 Any

Algebraic degree 63 38 1 102
Probability 2.01% 95.44% 2.55% 100%

is that multiplying a bitangent with a contact conic of f gives a contact cubic, and if both the bitangent
and the cubic are real, then the conic must be real. The next lemma identifies products of bitangents
and contact conics inside the system of contact cubics given byM .

Lemma 6.7. For i ≠ j we have bij · Qij =

λTMadjλ | λ ∈ span{Oi,Oj}

⊥

.

Proof. After a change of coordinates, we can assume that Oi,Oj,Ok,Ol are the four unit vectors
e1, e2, e3, e4. This means thatM = xA + yB + zC takes the form

M =

 0 bij bik bil
bij 0 bjk bjl
bik bjk 0 bkl
bil bjl bkl 0

 .

Consider the three 3 × 3-minors complementary to the lower 2 × 2-block of M . They are eT3M
adje3,

eT3M
adje4, eT4M

adje4. We check that all three are divisible by bij. Therefore b−1
ij · λTMadjλ with λ ∈

span{e3, e4} is a system of contact conics. Note that bikbjk = b−1
ij eT4M

adje4. Similarly, we can find the
other six products of pairs of bitangents from the Steiner complex Sij, as illustrated by the following
picture: i j

Hence the system of contact conics Qij arises from division by bij as asserted. �

Proof of Theorem 6.3 (and hence of Theorem 6.2). With all the various lemmas in place, only one
tiny step is left to be done. Fix any of the four Steiner complexes ij of type


in (3). Then the bitangent

bij is real. Since M is real and Oi = Oj, we can pick a real point λ ∈ span{Oi,Oj}
⊥. Lemma 6.7 implies

that that Qij contains the real conic b−1
ij · λTMadjλ. Proposition 6.6 now completes the proof. �

Semidefinite programming over the Gram spectrahedron Gram(f ) means finding the best sum
of squares representation of a positive quartic f , where ‘‘best’’ refers to some criterion that can be
expressed as a linear functional on Grammatrices. This optimization problem is of particular interest
from the perspective of Tables 1 and 2 in Nie et al. (2010), becausem = n = 6 is the smallest instance
where the Pataki range of optimal ranks has size three. For the definition of Pataki range see also (5.16)
in Rostalski and Sturmfels (in press, Section 5). The matrix rank of the exposed vertices of a generic
6-dimensional spectrahedron of 6 × 6-matrices can be either 3, 4 or 5.

The Gram spectrahedra Gram(f ) are not generic but they exhibit the generic behavior as far as the
Pataki range is concerned. Namely, if we optimize a linear function over Gram(f ) then the rank of the
optimal matrix can be either 3, 4 or 5. We obtained the following numerical result for the distribution
of these ranks by optimizing a random linear function over Gram(f ) for randomly chosen f :

The sampling in Table 2was done inmatlab,2 using the randommatrix generator. This distribution
for the three possible ranks appears to be close to that of the generic case, as given in Nie et al. (2010,
Table 1). The algebraic degree of the optimal solution, however, is much lower than in the generic
situation of Nie et al. (2010, Table 2), where the three degrees are 112, 1400 and 32. For example,

2 www.mathworks.com.
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while the rank-3 locus on the generic spectrahedron has 112 points over C, our Gram spectrahedron
Gram(f ) has only 63, one for each Steiner complex.

The greatest surprise in Table 2 is the number 1 for the algebraic degree of the rank-5 solutions. This
means that the optimal solution of a rational linear function over the Gram spectrahedron Gram(f ) is
Q-rational whenever it has rank 5. For a concrete example, consider the problem of maximizing the
function

159λ1 − 9λ2 + 34λ3 + 73λ4 + 105λ5 + 86λ6

over the Gram spectrahedron Gram(f ) of the Fermat quartic f = x4 + y4 + z4. The optimal solution
for this instance is the rank-5 Gram matrix (6.1) with coordinates

λ =


−867799528369
6890409751681

,
−7785115393679
13780819503362

,
−2624916076477
6890409751681

,

×
1018287438360
6890409751681

,
2368982554265
6890409751681

,
562671279961
6890409751681


.

The drop from 1400 to 38 for the algebraic degree of optimal Gram matrices of rank 4 is dramatic.
It would be nice to understand the geometry behind this. We finally note that the algebraic degrees
63, 38, 1 in Table 2 were computed using Macaulay23 by elimination from the KKT equations, as
described in Rostalski and Sturmfels (in press, Section 5).

7. The variety of Cayley octads

The Cayley octads form a subvariety of codimension three in the space of eight labeled points
in P3. A geometric study of this variety was undertaken by Dolgachev and Ortland (1988, Section
IX.3), building on classical work of Coble (1929). This section complements their presentation
with several explicit formulas we found useful for constructing examples and for performing
symbolic computations. Besides convex algebraic geometry (Helton and Vinnikov, 2007; Henrion,
2010; Rostalski and Sturmfels, in press), our results have potential applications in number theory
(e.g. arithmetic of del Pezzo varieties (Dolgachev and Ortland, 1988, Section V)) and integrable systems
(e.g. 3-phase solutions to theKadomtsev–Petviashvili equation (Dubrovin et al., 1997)). In Theorem7.5
we compute the discriminant of the quartics (1.2) and (1.3), and in Proposition 7.8 we discuss an
application to nets of real quadrics in P3.

We beginwith the fact that a Cayley octad is determined by any seven of its points. Here is a rational
formula for the eighth point in terms of the first seven.

Proposition 7.1. Consider a general configuration C of seven points in P3, with coordinates (1:0:0:0),
(0:1:0:0), (0:0:1:0), (0:0:0:1), (1:1:1:1), (α6:β6:γ6:δ6) and (α7:β7:γ7:δ7). The unique point (α8:β8:γ8:δ8)
in P3 which completes C to a Cayley octad is given by the following rational functions in the eight free
parameters:

α8 =
β6γ7 − β6δ7 − γ6β7 + γ6δ7 + δ6β7 − δ6γ7

β6γ6β7δ7 − β6γ6γ7δ7 − β6δ6β7γ7 + β6δ6γ7δ7 + γ6δ6β7γ7 − γ6δ6β7δ7
,

β8 =
α6γ7 − α6δ7 − γ6α7 + γ6δ7 + δ6α7 − δ6γ7

α6γ6α7δ7 − α6γ6γ7δ7 − α6δ6α7γ7 + α6δ6γ7δ7 + γ6δ6α7γ7 − γ6δ6α7δ7
,

γ8 =
α6β7 − α6δ7 − β6α7 + β6δ7 + δ6α7 − δ6β7

α6β6α7δ7 − α6β6β7δ7 − α6δ6α7β7 + α6δ6β7δ7 + β6δ6α7β7 − β6δ6α7δ7
,

δ8 =
α6β7 − α6γ7 − β6α7 + β6γ7 + γ6α7 − γ6β7

α6β6α7γ7 − α6β6β7γ7 − α6γ6α7β7 + α6γ6β7γ7 + β6γ6α7β7 − β6γ6α7γ7
.

3 www.math.uiuc.edu/Macaulay2.
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Proof. This can be verified using linear algebra over the rational function field K = Q(α6, β6, γ6, δ6,
α7, β7, γ7, δ7). We compute three linearly independent quadrics that vanish at the seven points and
check that they also vanish at (α8:β8:γ8:δ8). �

The formula in Proposition 7.1 parametrizes the semialgebraic set of real quartics that consist
of four ovals. Indeed, if the parameters α6, β6, γ6, δ6, α7, β7, γ7, δ7 are real numbers then the
corresponding quartic curve (1.2) has 28 real bitangents, so it falls into the first row of Table 1, and all
quartics with four ovals arise. Note that this row is the one relevant for applications to periodic water
waves (Dubrovin et al., 1997). In practice we usually choose rational numbers for the parameters. This
represents all curves whose 28 bitangents are rational, such as the Edge quartic (1.5), and it ensures
that the ground field is K = Q for all computations in Sections 3–6.

Yet the above formula has two disadvantages. First of all, it breaks the symmetry among the eight
points in the Cayley octad, and, secondly, it does not offer an arithmetically useful parametrization
for the last two rows of Table 1. Indeed, Vinnikov quartics and positive quartics are the lead actors
in this paper, and we found ourselves unable to manipulate them properly using Proposition 7.1. For
example, for a long time we failed to find a quartic with eight rank-3 Grammatrices over Q. Then we
derived Proposition 7.2, and this led us to Example 5.12.

Let O be a configuration of eight points in general position in P3, represented by a 4 × 8-matrix. If
O∗ is another such matrix whose row space equals the kernel of O then the configuration represented
by O∗ is said to be Gale dual or associated to O. We refer to Dolgachev and Ortland (1988) and
Eisenbud and Popescu (2000) for the basics on Gale duality in the context of algebraic geometry. Both
configurations O and O∗ are understood as equivalence classes modulo projective transformations of
P3 and relabeling of the eight points. We say that the configuration O is Gale self-dual if O and O∗ are
equivalent in this sense. By a classical result due to Coble (1929), O is Gale self-dual if and only if O is
a Cayley octad; see Theorem 3.10.

The variety of Cayley octads is defined by the equationO = O∗.We now translate this equation into
an algebraic form that is useful for computations. Let pijkl denote the 4× 4-minor of the 4× 8-matrix
O that represents our configuration of eight points in P3. Consider the condition that O is mapped to
a configuration projectively equivalent to its Gale dual O∗ if we relabel the points by the permutation
(18)(27)(36)(45). We express this condition using the Plücker coordinates pijkl.

Proposition 7.2. Eight points in P3 form a Cayley octad if and only if

p1234p1256p3578p4678 = p5678p3478p1246p1235, p1234p1257p3568p4678 = p5678p3468p1247p1235,

p1234p1267p3568p4578 = p5678p3458p1247p1236, p1234p1356p2578p4678 = p5678p2478p1346p1235,

p1234p1457p2568p3678 = p5678p2368p1347p1245, p1234p1467p2568p3578 = p5678p2358p1347p1246,

p1235p1267p3468p4578 = p4678p3458p1257p1236, p1235p1347p2468p5678 = p4678p2568p1357p1234,

p1235p1367p2468p4578 = p4678p2458p1357p1236, p1235p1467p2468p3578 = p4678p2358p1357p1246,

p1236p1347p2458p5678 = p4578p2568p1367p1234, p1236p1456p2478p3578 = p4578p2378p1356p1246,

p1245p1267p3468p3578 = p3678p3458p1257p1246, p1245p1346p2378p5678 = p3678p2578p1456p1234,

p1245p1356p2378p4678 = p3678p2478p1456p1235, p1245p1357p2368p4678 = p3678p2468p1457p1235,

p1245p1367p2368p4578 = p3678p2458p1457p1236, p1246p1357p2368p4578 = p3578p2468p1457p1236,

p1246p1357p2458p3678 = p3578p2468p1367p1245, p1247p1357p2368p4568 = p3568p2468p1457p1237,

and p1346p1357p2458p2678 = p2578p2468p1367p1345.

Before discussing the proof of this theorem, we first explain why the shape of the above equations
is plausible. Consider the condition for six points (xi : yi : zi) in P2 to be self-dual, in the sense above.
This condition means that the six points lie on a conic, and we write this algebraically in terms of
Plücker coordinates as
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det



x21 y21 z21 x1y1 x1z1 y1z1
x22 y22 z22 x2y2 x2z2 y2z2
x23 y23 z23 x3y3 x3z3 y3z3
x24 y24 z24 x4y4 x4z4 y4z4
x25 y25 z25 x5y5 x5z5 y5z5
x26 y26 z26 x6y6 x6z6 y6z6


= p123p145p246p356 − p124p135p236p456. (7.3)

This formula appears in Dolgachev and Ortland (1988, Ex. 4, p. 37) and we adapt the derivation given
there.
Sketch of proof for Proposition 7.2. The cross ratio (p1234p1256)/(p1235p1246) is invariant under
projective transformations. The permutation (18)(27)(36)(45) of the points transforms that cross
ratio into (p8765p8743)/(p8764p8753). The conditionO = O∗ implies that these two cross ratios are equal.
By clearing denominators, the equality of cross ratios translates into the first of the 21 equations listed
above:

p1234p1256p3578p4678 = p5678p3478p1246p1235.

The other 20 equations are foundby the same argument for cross ratios. By incorporating the quadratic
Plücker relations among the pijkl, we check that our list of 21 cross ratio identities is complete, in the
sense that it ensures O = O∗. �

Dolgachev andOrtland (1988, page 176) present the conditions underwhich a regular Cayley octad
O can degenerate. Their analysis exhibits 64 = 28 + 35 + 1 boundary divisors in the compactified
space of Cayley octads. These are as follows:

(1) Two points of O can come together. This gives 28 =
8
2


boundary divisors, e.g., points 1 and 2

come together if and only if p12ij = 0 for 3 ≤ i < j ≤ 8.
(2) Four points of O can become coplanar. The equations in Proposition 7.2 then ensure that the other

four points become coplanar as well. So, in total there are 35 =
1
2

8
4


boundary divisors such as

{p1234 = p5678 = 0}.
(3) The eight points of O can lie on a twisted cubic curve, which is the intersection of the three

quadrics. The condition for seven points in P3 to lie on a twisted cubic curve has codimension
2. White (1915, Eq. (2)) writes this condition by adding an index to (7.3). This gives 7·15·3
equations like

p1237p1457p2467p3567 − p1247p1357p2367p4567 = 0. (7.4)

Applying the symmetric group S8 to the indices, we obtain equations for the codimension 4 locus
of octads that lie on a twisted cubic curve. This locus is a divisor in the compacted space of Cayley
octads, as in Dolgachev and Ortland (1988, Section IX.3). Equivalently, the (7.4) imply those in
Proposition 7.2.

We now shift gears and examine the three types of boundary divisors from the perspective of the
desirable representations (1.2) and (1.3) of a ternary quartic f . In other words, we wish to identify the
conditions, expressed algebraically in terms of these two representations, for the quartic curve VC(f )
to become singular.

Recall that the discriminant1 of f is a homogeneous polynomial of degree 27, featured explicitly in
(Sanyal et al., 2009, Proposition 6.5), in the 15 coefficients cijk of (1.1). If we take f in the representation
(1.2) then each coefficient cijk is replaced by a polynomial of degree 4 in the 30 = 10+10+10 entries
of the symmetric matrices A, B and C . The result of performing this substitution in the discriminant
1(cijk) is denoted 1(A, B, C). This is a homogeneous polynomial of degree 108 in 30 unknowns. We
call 1(A, B, C) the Vinnikov discriminant of a ternary quartic.

Similarly, if we take f in the representation (1.3) then each coefficient cijk is replaced by a
polynomial of degree 2 in the 18 = 6 + 6 + 6 coefficients of the quadrics q1, q2 and q3. The
result of performing this substitution in the discriminant 1(cijk) is denoted 1(q1, q2, q3). This is a
homogeneous polynomial of degree 54 in 18 unknowns. We call 1(q1, q2, q3) the Hilbert discriminant
of a ternary quartic.
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Theorem 7.5. The irreducible factorization of the Vinnikov discriminant equals
1(A, B, C) = M(A, B, C) · P(A, B, C)2, (7.6)

where P has degree 30 and corresponds to the boundary divisor (2), whileM has degree 48, and this is the
mixed discriminant corresponding to both (1) and (3).
The irreducible factorization of the Hilbert discriminant equals

1(q1, q2, q3) = Q(q1, q2, q3) · R(q1, q2, q3)2, (7.7)
where Q has degree 30 and the degree 12 factor R is the resultant of q1, q2 and q3.

This theorem is proved by a computation, the details of which we omit here. It has been pointed
out to us by Igor Dolgachev and Giorgio Ottaviani that the factorization (7.6) was already known to
Salmon (1879), who refers toM(A, B, C) as the tact invariant. See also Gizatullin (2007, Section 10) for
a modern treatment.

We discuss the geometric meaning of the factors in (7.6) and (7.7). The polynomialsM, P, Q, and R
are absolutely irreducible: they do not factor over C. The polynomial P represents the condition that
the span of A, B and C in the space of 4 × 4-symmetric matrices contains a rank-2 matrix. Note that
the variety of such rank-2 matrices has codimension 3 and degree 10. The Chow form of that variety
is precisely our polynomial P, which explains why P has degree 3 · 10 = 30.

Non-vanishing of themixed discriminantM is the condition for the intersection of three quadrics in
P3 to be zero-dimensional and smooth. A general formula for the degree of such discriminants appears
in Nie (2010, Theorem 3.1). It implies thatM is tri-homogeneous of degree (16, 16, 16) in the entries
of (A, B, C), so the total degree of M is 48. Note that vanishing of M represents not just condition (1)
but it also subsumes condition (3) that the quadrics intersect in a twisted cubic curve.

The resultant R of three ternary quadrics (q1, q2, q3) is tri-homogeneous of degree (4, 4, 4) since
two quadrics meet in 4 points in P2. Thus R has total degree 12. The extraneous factor Q of degree
30 expresses the condition that, at some point in P2, the vector (q1, q2, q3) is non-zero and lies in the
kernel of its Jacobian.

We close this paper by reinterpreting Table 1 as a tool to study linear spaces of symmetric 4 × 4
matrices. Two matrices A and B determine a pencil of quadrics in P3, and three matrices A, B, C
determine a net of quadrics in P3. We now consider these pencils and nets over the field R of real
numbers. A classical fact, proved by Calabi (1964), states that a pencil of quadrics either has a common
point or contains a positive definite quadric. This fact is the foundation for an optimization technique
known in engineering as the S-procedure. The same dichotomy is false for nets of quadrics (Calabi,
1964, Section 4), and for quadrics in P3 it fails in two interesting ways.
Theorem 7.8. Let N be a real net of homogeneous quadrics in four unknowns with 1(N ) ≠ 0. Then
precisely one of the following four cases holds:
(a) The quadrics in N have a common point in P3(R).
(b) The net N is definite, i.e. it contains a positive definite quadric.
(c) There is a definite net N ′ with det(N ′) = det(N ), but N is nondefinite.
(d) The net N contains no singular quadric.
Proof. For a real net of quadrics, N = R{A, B, C}, the Vinnikov discriminant 1(A, B, C) in (7.6) is
independent (up to scaling) of the basis {A, B, C}, and thus can be denoted 1(N ). If 1(N ) is non-
zero, the polynomial det(N ) = det(xA + yB + zC) defines a smooth curve, which depends on the
choice of basis {A, B, C} only up to projective change of coordinates in [x : y : z]. This real quartic falls
into precisely one of the six classes in Table 1. The first four classes correspond to our case (a). The
fifth class corresponds to our cases (b) and (c) by the Helton–Vinnikov Theorem (Helton and Vinnikov,
2007). As a Vinnikov quartic has definite and non-definite real determinantal representations, both
(b) and (c) do occur (Vinnikov, 1993). For an example, see Plaumann et al. (2010, Ex. 5.2). The last class
corresponds to our case (d). �

Given a net of quadrics N = R{A, B, C}, one may wish to know whether there is a common
intersection point in real projective 3-space P3(R), and, if not, one seeks the certificates promised in
parts (b)–(d) of Theorem 7.8. Our algorithms in Sections 3–5 furnish a practical method for identifying
cases (b) and (d). The difference between (b) and (c) is more subtle and is discussed in detail in
Plaumann et al. (2010).
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