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2 WILLIAM ARVESON

1. Introduction.
We consider the problem of discretizing the Hamiltonian of a one-dimensional

quantum system in a form that is appropriate for carrying out numerical studies.
Specifically, we start with a formal Schrödinger operator

H =
1
2
P 2 + v(Q)

acting on the Hilbert space L2(R), where P and Q are the canonical operators

P = −i
d

dx
Q = multiplication by x,

and v is a real-valued continuous function of a real variable. The problem of dis-
cretizing H is that of finding an approximation to H which satisfies two require-
ments: (a) the basic principles of numerical analysis are satisfied, and (b) the
uncertainty principle is preserved.

In [1, §§ 1–2], we argued that in order to satisfy these two conditions one must
first replace P , Q with the pair

Pτ =
1
τ

sin(τP )

Qτ =
1
τ

sin(τQ).

Here, τ is a fixed positive real number, the numerical step size. The discretized
Hamiltonian is then defined as the following bounded self-adjoint operator on L2(R):

Hτ =
1
2
P 2

τ + v(Qτ ).

Obviously, Hτ belongs to the unital C∗-algebra C∗(Pτ , Qτ ) generated by Pτ and
Qτ . We show that when τ2/π is irrational (e.g., when τ is a rational number),
C∗(Pτ , Qτ ) is isomorphic to the non-commutative sphere Bτ2 of Bratteli, Evans,
Elliott and Kishimoto [5][6]; hence it is a simple C∗-algebra with a unique trace.
We also describe the way in which the canonical commutation relations must be
“discretized” in order to accommodate pairs of operators (Pτ , Qτ ) of this type.
Together, these observations serve to make a more philosophical point, namely non-
commutative spheres will arise in any serious attempt to model quantum systems
on a computer.

In the “linear” case where v has the form v(x) = cx2/2, c being a positive
constant, the operator Hτ turns out to be unitarily equivalent to an operator of
the form λM + µI, where λ and µ are real constants and M is the almost Mathieu
Hamiltonian

M = U + U∗ + c(V + V ∗),

associated with a pair of unitary operators U , V satisfying

V U = ei4τ2
UV.

An extensive amount of work has been done to compute the spectra of such op-
erators. Here, we mention only [2], [3], [4], [9], [16] and refer the reader to the
monograph [8] for further references.

Finally, I would like to thank Larry Schweitzer for pointing out the references
[11] and [13] (as well as the relevance of his own work [17]) in connection with the
spectral invariance property of the Banach ∗-algebra l1(Z⊕ Z, ω).
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2. Discretized CCR algebras.
Let θ be a real number such that θ/π is irrational, and let ω be the bicharacter

of the discrete abelian group G = Z⊕ Z defined by

2.1. ω((m,n), (p, q)) = ei(np−mq)θ/2

A uniformly bounded family {Dx : x ∈ G} of self-adjoint operators on a Hilbert
space H is said to satisfy the discretized canonical commutation relations if

2.2 DxDy = ω(x, y)Dx+y + ω(y, x)Dx−y, x, y ∈ G.

Remarks. Notice that (2.2) is a generalization of the elementary trigonometric iden-
tity

2 cos A cos B = cos(A + B) + cos(A−B),

in which phase shifts have been added by way of the cocycle ω. Indeed, for any
pair of real numbers α, β, the function D : G → R defined by

D(m,n) = 2 cos(αm + βn)

satisfies (2.2) for the trivial cocycle ω = 1. It is related to formula (2.2) of [5],
except that our operators are self-adjoint and the phase factor is associated with a
nondegenerate bicharacter ω.

The purpose of this section is to associate a C∗-algebra with the relations (2.2),
and to point out some of its basic properties. Let {Dx : x ∈ G} satisfy (2.2). It is
clear that the norm closed linear span

D = span{Dx : x ∈ G}

is a separable C∗-algebra. Thus by passing from H to the subspace [DH] if neces-
sary, we can assume that D is nondegenerate.

Proposition 2.3.
(i) D0 = 2I.
(ii) D−x = Dx.
(iii) ‖Dx‖ ≤ 2, for every x ∈ G.

proof. Setting y = 0 in (2.2) we obtain DxD0 = 2Dx for all x ∈ G, from which (i)
is evident. Setting x = 0 in (2.2) now leads to 2Dy = D0Dy = Dy + D−y, hence
(ii). For (iii), let

M = sup
x∈G

‖Dx‖.

By hypothesis, M < ∞. Moreover, setting y = x in (2.2) gives

D2
x = D2x + D0 = D2x + 2I

and thus M2 ≤ M + 2. This inequality implies that −1 ≤ M ≤ 2, hence (iii) �

We now construct a Banach ∗-algebra whose representations are associated with
operator realizations of (2.2). Let l1(G, ω) denote the Banach space of all absolutely
summable complex functions on G, endowed with the multiplication and involution

f ∗ g(x) =
∑

y

ω(y, x)f(y)g(x− y)

f∗(x) = f(−x).
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It is easily checked that the linear subspace

Dθ = {f ∈ l1(G, ω) : f(−x) = f(x), x ∈ G}

is in fact a ∗-subalgebra of l1(G, ω). Of course, the adjoint operation in Dθ simplifies
to f∗(x) = f(x). Moreover, Dθ is linearly spanned by the elements

dx = δx + δ−x,

δx denoting the unit function supported at x, and one has

dxdy = ω(x, y)dx+y + ω(y, x)dx−y

‖dx‖ = 2

dx = d−x = d∗x.

Proposition 2.4. Let {Dx : x ∈ G} be a uniformly bounded family of self-adjoint
operators on a Hilbert space H satisfying (2.2). Then there is a unique representa-
tion π : Dθ → B(H) such that

π(dx) = Dx, x ∈ G.

proof. By proposition (2.3), we know that ‖Dx‖ ≤ 2; hence

π(f) =
1
2

∑
x∈G

f(x)Dx

defines a contractive self-adjoint linear mapping of Dθ into B(H). Moreover, using
(2.2) we have

π(f)π(g) =
1
4

∑
x,y

f(x)g(y)(ω(x, y)Dx+y + ω(y, x)Dx−y)

=
1
4

∑
z,x

f(x)g(z − x)ω(x, z)Dz +
1
4

∑
z,x

f(x)g(x− z)ω(−z, x)Dz.

Using the fact that g(x − z) = g(z − x) and ω(−z, x) = ω(x, z), the right side
becomes

1
2

∑
z

(
∑

x

f(x)g(z − x)ω(x, z))Dz = π(f ∗ g),

as required.
Finally, taking f = δx + δ−x = dx and using (ii) of (2.3), we find that

π(dx) =
1
2
(f(x)Dx + f(−x)Dx) = Dx

as required �

Remarks. It follows that the enveloping C∗-algebra C∗(Dθ) is the universal C∗-
algebra generated by the commutation relations (2.2).
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Let α be an automorphism of the discrete abelian group Z⊕Z. Then α is given
by a 2× 2 integer matrix (

a b
c d

)
by way of α(m,n) = (am + bn, cm + dn), where a, b, c, d ∈ Z satisfy the condition

detα = ad− bc = ±1.

It follows that

ω(αx, αy) =
{

ω(x, y), if detα = +1
ω(y, x), if detα = −1.

Hence the group SL(2, Z) of determinant 1 automorphisms acts naturally on Dθ

(resp. C∗(Dθ)) as a group of ∗-automorphisms. Any α ∈ aut(Z ⊕ Z) satisfying
detα = −1 gives rise to a ∗-anti-automorphism of Dθ (resp. C∗(Dθ)).

Finally, notice that there is a natural ∗-homomorphism which carries Dθ into
the irrational rotation C∗-algebra Aθ. Indeed, Dθ is obviously contained in the
larger Banach ∗-algebra l1(Z⊕Z, ω) obtained by simply dropping the requirement
that f(−x) = f(x). It is clear that l1(Z ⊕ Z, ω) is the universal Banach ∗-algebra
generated by unitary operators {Wx : x ∈ Z⊕ Z} satisfying

WxWy = ω(x, y)Wx+y, x, y ∈ Z⊕ Z.

Because of the formula (2.1) giving ω in terms of θ, the unitary elements U, V
defined by U = W(1,0), V = W(0,1) satisfy V U = eiθUV , and of course they generate
l1(Z ⊕ Z, ω) as a Banach ∗-algebra. It follows that the enveloping C∗-algebra of
l1(Z⊕Z, ω) is Aθ. Thus we obtain a morphism of Dθ into Aθ by simply restricting
the completion map

γ : l1(Z⊕ Z, ω) → Aθ

to Dθ. By the universal property of enveloping C∗-algebras there is correspondingly
a unique morphism of C∗-algebras

γB : C∗(Dθ) → Aθ.

In the next section it will be shown that γB is injective and we will identify its
range.

3. Spectral Invariance and Extensions of States.
Let A be a Banach ∗-algebra with unit, and let

A+ = {a∗1a1 + a∗2a2 + · · ·+ a∗nan : ak ∈ A,n ≥ 1}

denote the closed positive cone in A. For simplicity, we assume throughout this
section that the completion map γ of A into its enveloping C∗-algebra is injective.

Let B be a unital self-adjoint Banach subalgebra of A. We are interested in
determining whether or not the C∗-algebra obtained by closing γ(B) in the norm of
C∗(A) is the enveloping C∗-algebra of B. More precisely, we seek conditions under
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which the ∗-homomorphism γB : C∗(B) → C∗(A) defined by the commutative
diagram

(3.1)

B
incl−−−−→ Ay y

C∗(B)
γB−−−−→ C∗(A)

should be injective. Elementary considerations show that the following three con-
ditions are equivalent:

(1) γB is injective.
(2) Every positive linear functional on B can be extended to a positive linear

functional on A.
(3) A+ ∩B ⊆ B+.

Note, for example, that the implication (3) =⇒ (2) is the extension theorem of
M. G. Krein [15, p. 227], whereas (2) =⇒ (3) follows from a standard separation
theorem. It is not hard to find examples showing that these conditions are not
always satisfied (see Appendix).

A is said to have the spectral invariance property if for every element a ∈ A
which is invertible in C∗(A), we have a−1 ∈ A. This is equivalent to the assertion
that the spectrum of any element of A is the same whether it is computed in A or
in C∗(A), or that A is closed under the holomorphic functional calculus of C∗(A)
(see [10, p. 52] for further significant consequences of spectral invariance in more
general Frèchet algebras).

A familiar Tauberian theorem of Wiener asserts that if a continuous function on
the unit circle never vanishes and has an absolutely convergent Fourier series

f(eiθ) =
+∞∑

n=−∞
aneinθ,

∑
|an| < ∞, then 1/f has an absolutely convergent Fourier series. Of course, this

is precisely the assertion that the group algebra l1(Z) has the spectral invariance
property. While this theorem has a simple proof using the Gelfand theory, it is
certainly not a triviality.

The significance of spectral invariance for our purposes derives from the following.

Proposition 3.2. Let A be a unital Banach ∗-algebra which admits spectral in-
variance. Then for every self-adjoint unital Banach subalgebra B of A, the natural
∗-homomorphism

θB : C∗(B) → C∗(A)

is injective.

proof. We will verify property (3) above by showing that A+ ∩ B ⊆ B+. We may
clearly assume that A ⊆ C∗(A), as a self-adjoint subalgebra which is a Banach
algebra relative to a larger norm than that of C∗(A).

Choose x ∈ A+∩B; without loss of generality we may assume that the B-norm of
x is less than 1. Since x belongs to the positive cone of C∗(A) its spectrum in C∗(A)
is nonnegative. By spectral invariance we have σA(x) ⊆ [0, 1). Moreover, since
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σA(x) cannot separate the complex plane, we see from the spectral permanence
theorem that σB(x) = σA(x) ⊆ [0, 1). Hence for sufficiently small ε we have
σB(x + ε1) ⊆ (ε, 1). Thus we may apply the power series

√
t =

∞∑
n=0

an(1− t)n, |1− t| < 1

to the element x+ ε1 to obtain a square root in B, i.e., a self-adjoint element h ∈ B
satisfying x + ε1 = h2. This shows that x + ε1 ∈ B+, and we obtain the desired
conclusion by allowing ε to tend to zero �

We now apply this to show that the enveloping C∗-algebra C∗(Dθ) is isomor-
phic to the non-commutative sphere Bθ of [6]. If we realize the irrational rotation
C∗-algebra Aθ as the C∗-algebra generated by a pair of unitary operators U , V
satisfying V U = eiθUV , then there is a unique automorphism σ of Aθ satisfying
σ(U) = U−1, σ(V ) = V −1. In case θ/π is irrational, Bθ is defined to be the fixed
subalgebra

Bθ = {a ∈ Aθ : σ(a) = a}.

Let {Wx : x ∈ Z⊕ Z} be the family of unitary operators in Aθ defined by

W(m,n) = eimnθ/2UmV n, m, n ∈ Z.

One verifies easily that
WxWy = ω(x, y)Wx+y,

where ω is the bicharacter on Z⊕ Z defined in (2.1), and moreover the action of σ
is given by

σ(Wx) = W−x, x ∈ Z⊕ Z.

Since Aθ is spanned by {Wx : x ∈ Z ⊕ Z}, we conclude that Bθ is spanned by
{Wx + W−x : x ∈ Z⊕ Z}.

Corollary. Suppose θ is not a rational multiple of π, and let α : Dθ → Aθ be the
morphism defined by

α(dx) = Wx + W−x, x ∈ Z× Z.

Then the natural extension α̃ : C∗(Dθ) → Aθ gives an isomorphism of C∗-algebras

C∗(Dθ) ∼= Bθ.

proof. Let G = Z ⊕ Z and let ω : G × G → T be the bicharacter of (2.1). Con-
sider the Banach ∗-algebra l1(G, ω), where multiplication and involution are defined
respectively by

f ∗ g(x) =
∑

y

ω(y, x)f(y)g(y − x)

f∗(x) = f(−x).

Notice first that C∗(G, ω) is naturally identified with the irrational rotation C∗-
algebra Aθ = C∗(U, V ), where U and V are unitary operators satisfying the above
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relation V U = eiθUV . Indeed, letting {Wx : x ∈ G} be the operators of Aθ defined
in the preceding remarks, it is clear that we can define a morphism of l1(G, ω) into
Aθ by

γ(δx) = Wx, x ∈ G,

δx denoting the unit function at x. The range of γ is dense in Aθ, and the natural
extension of γ to C∗(l1(G, ω)) is injective because of the familiar universal property
of such pairs U , V .

Dθ is indentified (via an isometric isomorphism of Banach ∗-algebras) with a
subalgebra of l1(G, ω),

Dθ = {f ∈ l1(G, ω) : σ0(f) = f},

where σ0 is the ∗-automorphism of l1(G, ω) given by

σ0(f)(x) = f(−x), x ∈ G.

It is clear that the restriction of γ to Dθ carries dx = δx + δ−x to Wx +W−x; hence
by the preceding remarks γ(Dθ) is a dense ∗-subalgebra of Bθ. Thus γ extends
naturally to a surjective ∗-homomorphism of C∗(l1(G, ω)) onto Bθ, and it remains
only to show that the latter morphism is injective.

Now it is known that l1(G, ω) admits spectral invariance (see [13, Satz 5] for
example, or apply Theorem 1.1.3 of [17] together with the results of [11] on the
symmetry of the group algebra of the rank 3 discrete Heisenberg group); hence
Proposition 3.2 implies that γ �Dθ

extends uniquely to a ∗-isomorphism of C∗(Dθ)
onto γ(Dθ) = Dθ �

4. Representations.
In this section we make some general comments about the representation theory

of the discretized CCRs (2.2). We assume throughout that θ is a real number such
that θ/π is irrational.

Remark 4.1: Finite representations.
The unique trace on the irrational rotation algebra Aθ gives rise to a represen-

tation of Aθ which generates the hyperfinite II1 factor R. The closure of Bθ in this
representation is a sub von Neumann algebra of R. Since Bθ has a unique tracial
state [5], it follows that the closure of Bθ is a subfactor of R, and hence is also
isomorphic to R. Moreover, since Bθ is also simple [5], any finite representation of
Bθ is quasi-equivalent to this one.

It is not hard to show that the subfactor of R generated by Bθ in the above
representation has Jones index 2. Since any two subfactors of R of index 2 are
known to be isomorphic [12], we have here a very stable invariant for the embedding
of the discretized CCR algebra in the irrational rotation algebra Aθ.

In particular, by the corollary of 3.2 we may conclude from these remarks that
there is a representation of the discretized CCRs (2.2) which generates R as a von
Neumann algebra; moreover any finite representation of the discretized CCRs is
quasi-equivalent to this one.

Now let τ be a positive real number such that τ2/π is irrational, and let Pτ and
Qτ be the discretized canonical operators on L2(R) associated with the step size τ
as in section 1. We want to make explicit the relation that exists between the pair
(Pτ , Qτ ) and the C∗-algebra C∗(Bτ2) discussed in section 2.
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Theorem 4.2. There is a unique representation π of Dτ2 on L2(R) satisfying

π(d(1,0)) = 2τQτ ,

π(d(0,1)) = 2τPτ .

π(Dτ2) and {Pτ , Qτ} generate the same unital C∗-algebra. Thus, the three C∗-
algebras

C∗(Dτ2), Bτ2 , C∗(Pτ , Qτ )

are mutually isomorphic.

proof. Let U , V be the one-parameter groups

Utf(x) = eitxf(x),

Vtf(x) = f(x + t) f ∈ L2(R).

As in section 1 we have

4.3
Qτ =

1
2iτ

(Uτ − U−τ ) =
1
τ

sin(τQ),

Pτ =
1

2iτ
(Vτ − V−τ ) =

1
τ

sin(τP ).

We claim first that the sines in (4.3) can be replaced by cosines in the sense that
the pair (Pτ , Qτ ) is unitarily equivalent to the pair (P̃τ , Q̃τ ) given by

4.4
Q̃τ =

1
2τ

(Uτ + U−τ )

P̃τ =
1
2τ

(Vτ + V−τ ).

To see this, put λ = π/2τ and let R denote the reflection on L2(R) given by
Rf(x) = f(−x). Consider the unitary operator

W = RU−λVλ.

Using the commutation relations VtUs = eistUsVt together with RUsR
∗ = U−s and

RVtR
∗ = V−t, one finds that

WUsW
∗ = eiλsU−s

WVtW
∗ = eiλtV−t.

Noting that eiλτ =
√
−1, we obtain (4.4) by applying adW to (4.3), i.e.,

WQτW ∗ =
1
2τ

(Uτ + U−τ ) =
1
2τ

cos(τQ)

WPτW ∗ =
1
2τ

(Vτ + V−τ ) =
1
2τ

cos(τP ).

We may therefore assume that the pair (Qτ , Pτ ) is defined by (4.4).
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For each x = (m,n) ∈ Z⊕ Z, define a unitary operator Wx by

W(m,n) = eimnτ2/2UmτVnτ .

A straightforward computation shows that the family of unitaries {Wx : x ∈ Z⊕Z}
satisfies

WxWy = ω(x, y)Wx+y

ω being the cocycle of (2.1) for the value θ = τ2, and hence there is a representation
π of l1(Z⊕ Z, τ2) on L2(R) such that

π(wx) = Wx, x ∈ Z⊕ Z.

It is clear that π carries d(1,0) (resp. d(0,1)) to Uτ + U−τ = 2τQτ (resp. 2τPτ ).
It remains to show that the restriction of π to C∗(Dτ2) is uniquely defined by its

values on the two elements d(1,0), d(0,1)}, and that Qτ and Pτ generate π(C∗(Dτ2))
as a unital C∗-algebra. We will prove both by showing that the two elements
{d(1,0), d(0,1)} and the identity generate the Banach ∗-algebra Dτ2 . It is not hard to
adapt the results of [5] to prove that these three elements generate Dτ2 . Instead, we
present the following argument since it gives somewhat more structural information.

Actually, we will give a fairly explicit method for calculating each element dx =
δx + δ−x in terms of the self-adjoint elements p = d(1,0) and q = d(0,1), using
a “generating function” for the family {dx : x ∈ Z ⊕ Z}. Indeed, it suffices to
establish the following lemma.

Lemma 4.5. Let θ be a real number such that θ/π is irrational, and consider the
real-analytic function F : (−1, 1)× (−1, 1) → Dθ defined by

4.6 F (s, t) =
+∞∑

m,n=−∞
s|m|t|n|e−imnθ/2d(m,n).

(i) For −1 < u < 1,−2 ≤ x ≤ 2, let

φ(u, x) =
1− u2

1 + u2 − ux
.

Noting that φ is separately analytic in each variable, we have

F (s, t) = 2φ(s, q)φ(t, p), |s|, |t| < 1,

where q, p are the elements of Dθ defined by

q = d(1,0), p = d(0,1).

(ii) The Banach ∗-algebra Dθ is spanned by the set F ∪ F∗, where

F = {F (s, t) : |s|, |t| < 1}.
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proof of (i) Let ω be the bicharacter of Z⊕ Z defined by

ω((p, q), (m,n)) = ei(qm−pn)θ/2

and let u, v be the following elements of l1(Z⊕ Z, ω):

u = δ(1,0), v = δ(0,1).

Then w(m,n) = eimnθ/2umvn, hence

d(m,n) = eimnθ/2(umvn + u−mv−n).

It follows that

F (s, t) =
∞∑

m,n=−∞
s|m|t|n|(umvn + u−mv−n) = 2

∞∑
m,n=−∞

s|m|t|n|umvn

= 2
∞∑

m=−∞
s|m|um

∞∑
n=−∞

t|n|vn.

An elementary calculation shows that if z is any complex number having absolute
value 1 and −1 < s < 1, then

∞∑
m=−∞

s|m|zm =
1− s2

1 + s2 − s(z + z̄)
= φ(s, z + z̄).

Since q = d(1,0) = u + u∗ and p = d(0,1) = v + v∗, the assertion (i) follows from the
analytic functional calculus.

To prove (ii), let Apq be the coefficients in the power series expansion of F ,

F (s, t) =
∞∑

p,q=0

Apqs
ptq.

Obviously, {F (s, t) : s, t ∈ (−1, 1)} and {Apq : p, q ≥ 0} have the same closed linear
span. Using the fact that d(−m,−n) = d(m,n), a straightforward computation shows
that

Apq = 2e−ipqθ/2d(p,q) + 2eipqθ/2d(−p,q).

Thus,

A0q = 2(d(0,q) + d(0,q)) = 4d(0,q), and

Ap0 = 2(d(p,0) + d(−p,0)) = 4d(p,0).

In the remaining cases where pq 6= 0, the determinant of the coefficients of the 2×2
system of operator equations

Apq = 2e−ipqθ/2d(p,q) + 2eipqθ/2d(−p,q))

A∗pq = 2eipqθ/2d(p,q) + 2e−ipqθ/2d(−p,q))(4.7)

is 4(e−ipqθ − eipqθ) 6= 0, and in particular we can solve (4.7) for d(p,q) as a complex
linear combination of Apq and A∗pq. This argument shows that the closed linear
span of F ∪ F∗ contains {d(p,q) : p, q ∈ Z}, and (ii) follows. That completes the
proof of Theorem 4.2 �

Remark. In some very recent work [7], Bratteli and Kishimoto have established the
striking result that Bθ is an AF -algebra.
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Appendix: Failure of Extensions. We present a simple example of a pair of
commutative unital Banach ∗-algebras B ⊆ A such that A is a subalgebra of its
enveloping C∗-algebra, but such that the natural morphism γB : C∗(B) → C∗(A)
is not injective. Let A be the algebra of all complex-valued continuous functions
defined on the annulus {1 ≤ |z| ≤ 2} which are analytic in its interior. With norm
and involution defined by

‖f‖ = sup
1≤|z|≤2

|f(z)|, f∗(z) = f̄(z̄),

f̄ denoting the complex conjute of f , A is a unital Banach ∗-algebra. C∗(A) is the
commutative C∗-algebra C(X),

X = [−2,−1] ∪ [+1,+2]

denoting the intersection of the annulus {1 ≤ |z| ≤ 2} with the real axis, and the
completion map γ : A → C(X) is defined by restriction to X. Let B be the norm
closure of all holomorphic polynomials in A. Then B is a self-adjoint subalgebra
whose enveloping C∗-algebra is C(Y ), Y being the intersection of the polynomially
convex hull of the annulus with the real axis, namely

Y = [−2,+2].

The morphism γB : C(Y ) → C(X) is given by restriction to X, and hence there
is a nontrivial kernel. Put differently, for every real λ ∈ (−1,+1), the complex
homomorphism of B defined by

ωλ(f) = f(λ), f ∈ B

is a bounded positive linear functional on B which cannot be extended to a positive
linear functional on A.
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Boston, 1990.
9. Choi, M.-D. and Elliott, G., Gauss polynomials and the rotation algebra, Invent. Math. 99,

225–246.
10. Connes, A., An analogue of the Thom isomorphism for crossed products of a C∗-algebra by

an action of R, Adv. Math. 39 (1981), 31–55.

11. Hulanicki, A., On the symmetry of group algebras of discrete nilpotent groups, Studia Math.
35 (1970), 207–219.

12. Jones, V. F. R., Index for subfactors, Inv. Math 72 (1983), 1–25.
13. Leptin, H., Lokal Kompakte Gruppen mit Symmetrischen algebren, Istituo Naz. di Alta

Matematica, symposia mathematica XXII (1977).

14. Podles̀, Quantum spheres, Letters in Math. Phys. 14 (1987), 193–203.
15. Rickart, C., Banach Algebras, van Nostrand, Princeton, 1960.

16. Riedel, N., Point spectrum for the almost Mathieu equation, C. R. Math. Rep. Acad. Sci.
Canada VIII 6 (1986), 399-403.

17. Schweitzer, L., Dense subalgebras of C∗-algebras with applications to spectral invariance,

Thesis, U.C. Berkeley (1991).


