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Abstract. For any C∗-algebra A, an A-dynamical system is a C∗-dynamical

system that contains A and can be generated by the images of A under
the semigroup of nonnegative time endomorphisms. There is a universal A-

dynamical system that occupies a position in noncommutative dynamics that
resembles the position of the tangent bundle in commutative dynamics.

We describe an approach to noncommutative dilation theory based on the

universal A-dynamical system, emphasizing the role of continuous free prod-
ucts of C∗-algebras, noncommutative moment polynomials, and conditional

expectations.

1. Introduction

This paper gives an exposition of a new approach to the dilation theory of
semigroups of completely positive maps on von Neumann algebras. This approach
is based on the notion of an A-dynamical system. These objects provide the C∗-
algebraic structure that underlies much of noncommutative dynamics, whether it
takes place in C∗-algebra or a von Neumann algebra, independently of issues relat-
ing to dilation theory. Indeed, for a fixed C∗-algebra A, the universal A-dynamical
system occupies a position in noncommutative dynamics that is somewhat analo-
gous to the position of the tangent bundle in commutative dynamics.

After describing the general properties of A-dynamical systems, we introduce
α-expectations and noncommutative moment polynomials, and show how these
objects enter into the construction of C∗-dilations. Indeed, once one is in possession
of this C∗-algebraic infrastructure, a natural argument establishes the existence and
uniqueness of dilations for quantum dynamical semigroups acting on von Neumann
algebras. We give no proofs; but a technically complete and more comprehensive
discussion can be found in Chapter 8 of the monograph [Arv03b]. While the
exposition to follow has some overlap with Lecture 2 of [Arv03a], our objective
here is to bring out the role of the universal A-dynamical system as a general tool
in noncommutative dynamics.
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2. A-Dynamical Systems and Continuous Free Products

The flow of time in quantum theory is represented by a one-parameter group
of ∗-automorphisms α = {αt : t ∈ R} of a C∗-algebra B. There is often a C∗-
subalgebra A ⊆ B that can be singled out from physical considerations which,
together with its time translates, generates B. Borrowing a class of examples from
[Arv03b], we recall that in a nonrelativistic quantum mechanical system with n
degrees of freedom the flow of time is represented by a one-parameter group of
automorphisms of B(L2(Rn)) of the form αt(T ) = eitHTe−itH , t ∈ R, where H is
a self-adjoint Schrödinger operator

H = −
n∑

k=1

∂2

∂x2
k

+ V (X1, . . . , Xn),

X1, . . . , Xn denote the configuration observables at time 0

Xk : ξ(x1, . . . , xn) 7→ xkξ(x1, . . . , xn),

defined appropriately on a common dense domain in L2(Rn), and V denotes the
potential associated with the interaction forces. The functional calculus provides a
faithful representation of the commutative C∗-algebra C0(Rn) on L2(Rn) by way
of f 7→ f(X1, . . . , Xn), and these functions of the configuration operators form a
commutative C∗-subalgebra A ⊆ B(H). The family of commutative C∗-algebras
{αt(A) : t ≥ 0} generates an irreducible C∗-subalgebra B of B(H); in particular, for
different times t1 6= t2, the C∗-algebras αt1(A) and αt2(A) fail to commute with each
other. Indeed, there is no reason, physical or mathematical, to expect nontrivial
relations to exist between the subalgebras αt1(A) and αt2(A) when t1 6= t2.

We now examine this phenomenon in general. Throughout, A will denote an
arbitrary but fixed C∗-algebra, with or without unit.

Definition 2.0.1. An A-dynamical system is a triple (ι, B, α) consisting of a
semigroup α = {αt : t ≥ 0} of ∗-endomorphisms acting on a C∗-algebra B and an
injective ∗-homomorphism ι : A → B, such that B is generated by ∪t≥0αt(ι(A)).

Note that we have imposed no continuity requirement on the semigroup αt in
its time parameter t. Given any C∗-algebra B containing A that is acted upon by
a one-parameter group of ∗-automorphisms {αt : t ∈ R} ⊆ aut B, then there is an
A-dynamical system associated with the C∗-subalgebra of B generated by A and its
translates under αt, t ≥ 0. Conversely, every A-dynamical system (ι, B, α) is acted
upon by a semigroup of ∗-endomorphisms, but in general these endomorphisms
need not be extendable to automorphisms of a larger C∗-algebra containing B.

We identify A with its image ι(A) in B, thereby replacing ι with the inclusion
map A ⊆ B. Thus, an A-dynamical system is a dynamical system (B,α) that
contains A as a C∗-subalgebra in a specified way, with the property that B is the
norm-closed linear span of finite products

(2.1) B = span{αt1(a1)αt2(a2) · · ·αtk
(ak)}

where t1, . . . , tk ≥ 0, a1, . . . , ak ∈ A, k = 1, 2, . . . .
We will examine the class of all A-dynamical systems in order to secure more

information about certain of its members. The above examples illustrate that even
in cases where A = C(X) is commutative, the structure of individual A-dynamical
systems can be very complex.



A-DYNAMICAL SYSTEM 3

There is a natural hierarchy in the class of all A-dynamical systems, defined by
(ι, B, α) ≥ (ι̃, B̃, α̃) iff there is a ∗-homomorphism θ : B → B̃ satisfying θ ◦ αt =
α̃t ◦ θ, t ≥ 0, and θ(a) = a for a ∈ A. Since θ fixes A, it follows from (2.1) that
θ must be surjective, θ(B) = B̃, hence (ι̃, B̃, α̃) is a quotient of (ι, B, α). Two
A-dynamical systems are said to be equivalent if there is a map θ as above that is
an isomorphism of C∗-algebras. This will be the case iff each of the A-dynamical
systems dominates the other.

There is a largest equivalence class in this hierarchy, whose representatives are
called universal A-dynamical systems. We will show that universal A-dynamical
systems exist by first exhibiting the solution of a closely related universal problem.

Remark 2.0.2 (Noncommutative Path Space of a C∗-algebra). Consider the
free product of an infinite family of copies of A indexed by the nonnegative reals

PA = ∗t≥0At, At = A.

By that we mean the following. We have a family of ∗-homomorphisms θt of A
into a C∗-algebra PA such PA is generated by ∪{θt(A) : t ≥ 0} and such that
the following universal property is satisfied: for every family π̄ = {πt : t ≥ 0}
of ∗-homomorphisms of A into some other C∗-algebra B, there is a necessarily
unique ∗-homomorphism ρ : PA → B such that πt = ρ ◦ θt, t ≥ 0. Nondegenerate
representations of PA correspond to families π̄ = {πt : t ≥ 0} of representations
πt : A → B(H) of A on a common Hilbert space H, subject to no condition other
than the triviality of their common nullspace

ξ ∈ H, πt(A)ξ = {0} ∀t ≥ 0 =⇒ ξ = 0.

A simple argument establishes the existence of the continuous free product PA by
taking the direct sum of a sufficiently large set of such representation families π̄.
The universal properties determine PA up to an obvious equivalence.

The functor A → PA is a noncommutative replacement for the functor that
replaces a space X with the space of all paths in X. Indeed, for every compact
Hausdorff space X the cartesian product

PX =
∏
{Xt : t ≥ 0}, Xt = X, t ≥ 0,

is naturally a compact Hausdorff space whose points can be viewed as paths in X.
Of course, individual “paths” can be very irregular functions, even non-measurable.
C(PX) is a commutative C∗-algebra with the property that for every t ≥ 0, the
map that evaluates an element of PX at time t defines an injective ∗-homomorphism
θt : C(X) → C(PX) by way of θt(f)(x) = f(x(t)), f ∈ C(X), x ∈ PX. These
maps have the following universal property: For every commutative C∗-algebra B
with unit and every family of unital ∗-homomorphisms πt : C(X) → B, there is
a unique ∗-homomorphism ρ : C(PX) → B satisfying ρ ◦ θt = πt, t ≥ 0. Thus,
we pass from C(PX) to P(C(X)) by insisting that the universal property should
persist for families of morphisms {πt : t ≥ 0} of C(X) to arbitrary C∗-algebras B.
The target C∗-algebras B are allowed to be noncommutative, nonunital, and the
morphisms may be nonunital or even zero. The natural homomorphism of PC(X)
on C(PX) gives rise to an exact sequence of C∗-algebras

0 −→ K(X) −→ PC(X) −→ C(PX) −→ 0

whose kernel K(X) appears as a somewhat mysterious object.
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Finally, perhaps it is worth pointing out that when X is a smooth manifold,
the tangent bundle TX of X can be viewed as an infinitesimal germ of the path
space PX. Indeed, in this case we may consider the subspace P∞X ⊆ PX of all
smooth paths in X. For each x ∈ P∞X we obtain a tangent vector at the point
x(0) ∈ X by differentiating the arc t 7→ x(t) in X at time zero. In this case the
map x ∈ P∞X 7→ (x(0), ẋ(0)) ∈ TX defines a surjection of P∞X onto TX.

We can now exhibit a universal A-dynamical system. The universal property
of PA implies that there is a semigroup of shift endomorphisms σ = {σt : t ≥ 0}
acting on PA, defined uniquely by σt ◦ θs = θt+s, s, t ≥ 0. The same universal
properties of PA lead easily to the fact that θ0 is an injective ∗-homomorphism of
A into PA, and we use this map to identify A with θ0(A) ⊆ PA. We may conclude
that the triple (i,PA, σ) becomes an A-dynamical system with the property that
every other A-dynamical system is subordinate to it.

Definition 2.0.3. (i,PA, σ) is called the universal A-dynamical system.

While this definition puts the the universal property of PA into the foreground,
it fails to exhibit structural features of PA in terms that are concrete enough to
establish its more subtle properties. We will present a more constructive definition
of PA and the universal A-dynamical system in Section 5.

3. α-Expectations and C∗-Dilations

We will make essential use of conditional expectations onto hereditary subal-
gebras, and we begin by reviewing terminology. Given an inclusion of C∗-algebras
A ⊆ B, a conditional expectation of B on A is an idempotent positive linear map
E : B → A with range A, satisfying E(ax) = aE(x) for a ∈ A, x ∈ B. Conditional
expectations are completely positive linear maps of norm 1 whenever A 6= {0}. For
any subset S of B we write [S] for the norm-closed linear span of S. The subalgebra
A is said to be hereditary if for a ∈ A and b ∈ B, one has

0 ≤ b ≤ a =⇒ b ∈ A.

The hereditary subalgebra of B generated by a subalgebra A is the closed linear
span [ABA] of all products axb, a, b ∈ A, x ∈ B, and in general A ⊆ [ABA]. A
corner of B is a hereditary subalgebra of the particular form A = pBp where p is
a projection in the multiplier algebra M(B) of B.

When A = pBp is a corner of B, the map E(x) = pxp, defines a conditional
expectation of B onto A. On the other hand, many of the conditional expectations
encountered here do not have this simple form, even when A has a unit. Indeed,
if A is subalgebra of B that is not hereditary, then there is no natural conditional
expectation E : B → A. Most significantly for us, the universal A-dynamical
system (ι,PA, σ) never contains A as a hereditary subalgebra, hence there is no
“obvious” conditional expectation E : PA → A.

Suppose now that we are given a semigroup P = {Pt : t ≥ 0} of completely
positive contractions acting on a C∗-algebra A. We are interested in singling out
certain A-dynamical systems (ι, B, α) with the property that there is a conditional
expectation E : B → A with the property

(3.1) E(αt(a)) = Pt(a), a ∈ A, t ≥ 0.
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Of course, for many A-dynamical systems (ι, B, α) there will be no such conditional
expectation; and even if such an expectation exists, there is no reason to expect it
to be unique. What we require is the notion of an α-expectation.

Definition 3.0.4. Let (ι, B, α) be an A-dynamical system. An α-expectation
is a conditional expectation E : B → A having the following two properties:

E1. Equivariance: E ◦ αt = E ◦ αt ◦ E, t ≥ 0.
E2. The restriction of E to the hereditary subalgebra generated by A is mul-

tiplicative, E(xy) = E(x)E(y), x, y ∈ [ABA].

Note that an arbitrary conditional expectation E : B → A gives rise to a family
of linear maps P = {Pt : t ≥ 0} of A to itself by way of Pt(a) = E(αt(a)), a ∈ A.
Each Pt is a completely positive contraction. When E is an α-expectation property
E1 implies that Pt is related to αt by

(3.2) E ◦ αt = Pt ◦ E, t ≥ 0.

The preceding formula (3.2) implies that P must satisfy the semigroup property
Ps ◦ Pt = Ps+t, as well as (3.1).

Property E2 is of course automatic if A is a hereditary subalgebra of B. It is
a fundamentally noncommutative hypothesis on B. For example, if Y is a compact
Hausdorff space and B = C(Y ), then every unital subalgebra A ⊆ C(Y ) generates
C(Y ) as a hereditary algebra, and the only linear maps E : C(Y ) → A satisfying
E2 are ∗-endomorphisms of C(Y ).

Definition 3.0.5. Let P = {Pt : t ≥ 0} be a semigroup of completely positive
contractions acting on a C∗-algebra A. A C∗-dilation of (A,P ) is an A-dynamical
system (ι, B, α) with the property that there is an α-expectation E : B → A
satisfying (3.1):

Pt(a) = E(αt(a)), a ∈ A, t ≥ 0.

Notice that we have made no hypothesis of continuity of the semigroup P in
its time variable. While the completely positive semigroups that arise in practice
always obey some form of continuity in the time variable, it will be convenient to
have the above flexibility. We will see in the following section that an α-expectation
E : B → A is uniquely determined by the family of completely positive maps
{Pt : t ≥ 0} defined by Pt(a) = E(αt(a)), t ≥ 0; thus, the α-expectation associated
with a C∗-dilation of a given CP semigroup P is uniquely determined by P .

It is a fundamental fact that C∗-dilations always exist. Indeed, the following
result implies that the universal A-dynamical system is also a universal C∗-dilation
in the sense that all semigroups of completely positive contractions that act on A
can be dilated simultaneously to (ι,PA, σ).

Theorem 3.0.6. For every semigroup of completely positive contractions P =
{Pt : t ≥ 0} acting on A, there is a unique σ-expectation E : PA → A satisfying

(3.3) Pt(a) = E(σt(a)), a ∈ A, t ≥ 0.

Both assertions are nontrivial; we discuss uniqueness in the following section,
existence is discussed in Section 5.
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4. Moment Polynomials and n-point Functions

The theory of C∗-dilations rests on properties of certain noncommutative poly-
nomials that are defined recursively as follows.

Proposition 4.0.7. Let A be an algebra over a field F. For every family of
linear maps {Pt : t ≥ 0} of A to itself satisfying the semigroup property Ps+t =
Ps ◦ Pt and P0 = id, there is a unique family of multilinear mappings from A to
itself, indexed by the k-tuples of nonnegative real numbers, k = 1, 2, . . . , where for
a fixed k-tuple t̄ = (t1, . . . , tk)

a1, . . . , ak ∈ A 7→ [t̄; a1, . . . , ak] ∈ A

is a k-linear mapping, all of which satisfy
MP1. Ps([t̄; a1, . . . , ak]) = [t1 + s, t2 + s, . . . , tk + s; a1, . . . , ak].
MP2. Given a k-tuple for which t` = 0 for some ` between 1 and k,

[t̄; a1, . . . , ak] = [t1, . . . , t`−1; a1, . . . , a`−1]a`[t`+1, . . . , tk; a`+1, . . . , ak].

The proofs of both existence and uniqueness are straightforward arguments
using induction on the number k of variables. Note that in the second axiom MP2,
we make the natural conventions when ` has one of the extreme values 1, k. For
example, if ` = 1, then MP2 should be interpreted as

[0, t2, . . . , tk; a1, . . . , ak] = a1[t2, . . . , tk; a2, . . . , ak].

In particular, in the linear case k = 1, MP2 makes the assertion

[0; a] = a, a ∈ A;

and after applying axiom MP1 one obtains

[t; a] = Pt(a), a ∈ A, t ≥ 0,

thereby determining all moment polynomials of degree one.
One may calculate particular moment polynomials of higher degree explicitly,

but the computations quickly become tedious. For example, in order to calculate
[6, 4, 2, 3; a, b, c, d] = P2([4, 2, 0, 1; a, b, c, d]), one writes

[4, 2, 0, 1; a, b, c, d] = [4, 2; a, b]c[1, d] = [4, 2; a, b]cP1(d) = P2([2, 0; a, b])cP1(d)

= P2([2, a]b)cP1(d) = P2(P2(a)b)cP1(d),

and therefore
[6, 4, 2, 3; a, b, c, d] = P2(P2(P2(a)b)cP1(d)).

The computed value of [t1, . . . , tk; a1, . . . , ak] depends strongly on the order relations
that exist between the components of t1, . . . , tk. For example, after permuting the
terms 6, 4, 2, 3 of the previous example one finds that

[2, 6, 3, 4; a, b, c, d] = P2(aP1((P3(b)cP1(d))).

Finally, we remark that when A is a C∗-algebra and the linear maps satisfy
Pt(a)∗ = Pt(a∗), a ∈ A, t ≥ 0, then the associated moment polynomials obey the
following symmetry

(4.1) [t1, . . . , tk; a1, . . . , ak]∗ = [tk, . . . , t1; a∗k, . . . , a∗1].

Indeed, one simply notes that the sequence of polynomials [[·; ·]] defined by

[[t1, . . . , tk; a1, . . . , ak]] = [tk, . . . , t1; a∗k, . . . , a∗1]
∗
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also satisfies axioms MP1 and MP2, and hence must coincide with the moment
polynomials of {Pt} by the uniqueness assertion of Proposition 4.0.7.

Moment polynomials are important because they completely determine the
expectation values of C∗-dilations of A in the following sense.

Theorem 4.0.8. Let P = {Pt : t ≥ 0} be a semigroup of completely posi-
tive maps on A satisfying ‖Pt‖ ≤ 1, t ≥ 0, with associated moment polynomials
[t1, . . . , tn; a1, . . . , an].

Let (i, B, α) be an A-dynamical system and let E : B → A be an α-expectation
with the property E(αt(a)) = Pt(a), a ∈ A, t ≥ 0. Then the n-point functions of α
are given by

(4.2) E(αt1(a1)αt2(a2) · · ·αtn(an)) = [t1, . . . , tn; a1, . . . , an],

for every n = 1, 2, . . . , ti ≥ 0, ai ∈ A. In particular, there is at most one α-
expectation E : B → A satisfying E(αt(a)) = Pt(a), a ∈ A, t ≥ 0.

To summarize progress, we have seen that there is a universal A-dynamical
system (ι,PA, σ) such that every other A-dynamical system is a quotient of it. We
have also singled out certain A-dynamical systems (ι, B, α) for which α expectations
E : B → A exist, and for those A-dynamical systems we have seen that E is uniquely
determined by the semigroup P of completely positive maps on A that it determines
by way of

Pt(a) = E(αt(a)), t ≥ 0, a ∈ A.

Finally, starting with any semigroup of completely positive contractions {Pt : t ≥ 0}
acting on A, we have seen by way of Theorem 3.0.6 that the universal A-dynamical
system is actually a C∗-dilation of {Pt : t ≥ 0}.

In the sections to follow we will say something about the proof of Theorem 3.0.6
and describe how that result leads to the appropriate dilation theorem for quantum
dynamical semigroups acting on von Neumann algebras. We do not discuss the key
issue of minimality in much detail here, but refer the reader to [Arv03b].

5. Construction of PA and C∗-dilations

Given a pair (A,P ) consisting of a semigroup P = {Pt : t ≥ 0} of completely
positive contractions on a C∗-algebra A, Theorem 3.0.6 asserts that there is a
unique σ-expectation E : PA → A satisfying

E(σt(a)) = Pt(a), t ≥ 0, a ∈ A.

Note that the uniqueness assertion follows from Theorem 4.0.8. The proof of
existence is based on a construction that exhibits the structure of the continuous
free product PA in concrete terms, along the following lines. One realizes PA as
the enveloping C∗-algebra of a concrete Banach ∗-algebra `1(Σ) that is not a C∗-
algebra, but that has appropriate universal properties. One is then able to write
down a natural completely positive map on `1(Σ) that is associated with the moment
polynomials of P ; and the fact is that the latter map can be promoted through the
completion procedure to obtain an σ-expectation on PA with the correct properties.
We now describe this construction of PA, omitting the proofs of key results (see
Chapter 8 of [Arv03b]).

Let S be the set of finite sequences t̄ = (t1, t2, . . . , tk) of nonnegative real
numbers ti, k = 1, 2, . . . which have distinct neighbors,

t1 6= t2, t2 6= t3, . . . , tk−1 6= tk.
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Multiplication and involution are defined in S as follows. The product of two ele-
ments s̄ = (s1, . . . , sk), t̄ = (t1, . . . , t`) ∈ S is defined by conditional concatenation

s̄ · t̄ =

{
(s1, . . . , sk, t1, . . . , t`), if sk 6= t1,

(s1, . . . , sk, t2, . . . , t`), if sk = t1,

where we make the natural conventions when t̄ = (t) is of length 1, namely s̄ · (t) =
(s1, . . . , sk, t) if sk 6= t, and s̄ · (t) = s̄ if sk = t. The involution in S is defined by

(s1, . . . , sk)∗ = (sk, . . . , s1).

One finds that S is an associative ∗-semigroup.
Fixing a C∗-algebra A, we attach a Banach space Στ to every k-tuple τ =

(t1, . . . , tk) ∈ S as follows
Στ = A⊗̂ · · · ⊗̂A︸ ︷︷ ︸

k times

,

the k-fold projective tensor product of copies of the Banach space A. We assemble
the various Στ into a family p : Σ → S of Banach spaces over S by taking the total
space to be Σ = {(τ, ξ) : τ ∈ S, ξ ∈ Eτ}, with projection p(τ, ξ) = τ .

We introduce a multiplication in Σ as follows. Fix λ = (λ1, . . . , λk) and µ =
(µ1, . . . , µ`) in S and choose ξ ∈ Σµ, η ∈ Σν . If λk 6= µ1 then ξ · η is defined as the
tensor product ξ ⊗ η ∈ Σµ·ν . If λk = µ1 then we must tensor over A and make the
obvious identifications. More explicitly, in this case there is a natural map of the
tensor product Σµ⊗A Σν onto Σµ·ν by making identifications of elementary tensors
as follows:

(a1 ⊗ · · · ⊗ ak)⊗A (b1 ⊗ · · · ⊗ b`) ∼ a1 ⊗ · · · ⊗ ak−1 ⊗ akb1 ⊗ b2 ⊗ · · · ⊗ b`.

With this convention ξ · η is defined by

ξ · η = ξ ⊗A η ∈ Σµ·ν .

This defines an associative multiplication in the family of Banach spaces Σ. There
is also a natural involution in Σ, defined on each Σµ, µ = (s1, . . . , sk) as the unique
antilinear isometry to Σµ∗ satisfying

((s1, . . . , sk), a1 ⊗ · · · ⊗ ak)∗ = ((sk, . . . , s1), a∗k ⊗ · · · ⊗ a∗1).

This defines an isometric antilinear mapping of the Banach space Σµ onto Σµ∗ , for
each µ ∈ S, and thus the structure Σ becomes an involutive ∗-semigroup in which
each fiber Σµ is a Banach space.

Let `1(Σ) be the Banach ∗-algebra of summable sections. The norm and in-
volution are the natural ones ‖f‖ =

∑
µ∈Σ ‖f(µ)‖, f∗(µ) = f(µ∗)∗. Noting that

Σλ · Σµ ⊆ Σλ·µ, the multiplication in `1(Σ) is defined by convolution

f ∗ g(ν) =
∑

λ·µ=ν

f(λ) · g(µ),

and one easily verifies that `1(Σ) is a Banach ∗-algebra.
For µ = (s1, . . . , sk) ∈ S and a1, . . . , ak ∈ A we define the function

δµ · a1 ⊗ · · · ⊗ ak ∈ `1(Σ)

to be zero except at µ, and at µ it has the value a1⊗· · ·⊗ak ∈ Σµ. These elementary
functions have `1(Σ) as their closed linear span. Finally, there is a natural family
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of ∗-homomorphisms θt : A → `1(Σ), t ≥ 0, defined by

θt(a) = δ(t) · a, a ∈ A, t ≥ 0,

and these maps are related to the generating sections by

δ(t1,...,tk) · a1 ⊗ · · · ⊗ ak = θt1(a1)θt2(a2) · · · θtk
(ak).

The algebra `1(Σ) fails to have a unit, but it has the same representation theory
as PA in the following sense. Given a family of representations πt : A → B(H),
t ≥ 0, fix ν = (t1, . . . , tk) ∈ S. There is a unique bounded linear operator Lν :
Σν → B(H) of norm 1 that is defined by its action on elementary tensors as follows

Lν(a1 ⊗ · · · ⊗ ak) = πt1(a1) · · ·πtk
(ak).

Thus there is a bounded linear map π̃ : `1(Σ) → B(H) defined by

π̃(f) =
∑
µ∈S

Lµ(f(µ)), f ∈ `1(Σ).

One finds that π̃ is a ∗-representation of `1(Σ) with ‖π̃‖ = 1. This representation
satisfies π̃ ◦ θt = πt, t ≥ 0. Conversely, every bounded ∗-representation π̃ of `1(Σ)
on a Hilbert space H is associated with a family of representations πt, t ≥ 0, of A
on H by way of πt = π̃ ◦ θt.

The results of the preceding discussion are summarized as follows:

Proposition 5.0.9. The enveloping C∗-algebra C∗(`1(Σ)), together with the
family of homomorphisms θ̃t : A → C∗(`1(Σ)), t ≥ 0, defined by promoting the
homomorphisms θt : A → `1(Σ), has the same universal property as the infinite
free product PA = ∗t≥0a, and is therefore isomorphic to PA.

There is a natural semigroup of ∗-endomorphisms of `1(Σ) defined by

σt : δ(s1,...,sk) · ξ 7→ δ(s1+t,...,sk+t) · ξ, (s1, . . . , sk) ∈ Σ, ξ ∈ Σν

and it promotes to the natural shift semigroup of PA = C∗(`1(Σ)). The inclusion
of A in `1(Σ) is given by the map θ0(a) = δ(0)a ∈ `1(Σ), and it too promotes to the
natural inclusion of A in PA.

Finally, we fix a semigroup of completely positive contractions Pt : A → A,
t ≥ 0, and consider the associated moment polynomials of Proposition 4.0.7. Since
‖Pt‖ ≤ 1 for every t ≥ 0, an inductive argument on the degree n shows that

‖[t1, . . . , tn; a1, . . . , an]‖ ≤ ‖a1‖ · · · ‖an‖, tk ≥ 0, ak ∈ A,

hence there is a unique bounded linear map E0 : `1(Σ) → A satisfying

E0(δ(t1,...,tk) · a1 ⊗ · · · ⊗ ak) = [t1, . . . , tk; a1, . . . , ak],

for (t1, . . . , tk) ∈ S, a1, . . . , ak ∈ A, k = 1, 2, . . . , and in fact ‖E0‖ ≤ 1. Using
the axioms MP1 and MP2, one finds that the map E0 preserves the adjoint (see
Equation (4.1)), satisfies the conditional expectation property E0(af) = aE0(f)
for a ∈ A, f ∈ `1(Σ), that the restriction of E0 to the “hereditary” ∗-subalgebra
of `1(Σ) spanned by θ0(A)`1(Σ)θ0(A) is multiplicative, and that it is related to φ
by E0 ◦ σ = φ ◦ E0 and E0(σ(a)) = φ(a), a ∈ A. Thus, E0 satisfies the axioms of
Definition 3.0.4, suitably interpreted for the Banach ∗-algebra `1(Σ).

In view of the basic fact that a bounded completely positive linear map of
a Banach ∗-algebra to A promotes naturally to a completely positive map of its
enveloping C∗-algebra to A, the critical property of E0 reduces to:
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Theorem 5.0.10. For every n ≥ 1, a1, . . . , an ∈ A, and f1, . . . , fn ∈ `1(Σ), we
have

n∑
i,j=1

a∗jE0(f∗j fi)ai ≥ 0.

Consequently, E0 extends uniquely through the completion map `1(Σ) → PA to
a completely positive map E : PA → A that becomes a σ-expectation satisfying
Equation (3.3).

Corollary 5.0.11. Every semigroup of completely positive contractions acting
on a C∗-algebra has a C∗-dilation.

6. Existence of W ∗-dilations

We conclude by describing how one uses the results of the preceding sections
to obtain dilations appropriate for the category of von Neumann algebras.

Definition 6.0.12. An E-semigroup is a semigroup {αt : t ≥ 0} of normal
∗-endomorphisms of a von Neumann algebra M that obeys the natural continuity
requirement in its time variable, namely that for every normal linear functional ρ
on M and x ∈ M , ρ(αt(x)) should move continuously in t ∈ [0,∞).

Let (M,α) be a pair consisting of a von Neumann algebra M with separable
predual and an E-semigroup α = {αt : t ≥ 0} acting on it. The operators αt(1)
form a decreasing family of projections in M in general, and if one has αt(1) = 1
for every t ≥ 0, then α is called an E0-semigroup. The general issues discussed in
this section do not depend on spatial aspects of M , and for the most part we will
not have to realize M in any concrete representation as a subalgebra of B(H).

A corner of M is a von Neumann subalgebra of the particular form N = pMp,
where p is a projection in M . The corner is said to be full if the central carrier of
p is 1, and in that case pMp is a factor iff M is a factor of the same type.

Given an arbitrary projection p ∈ M , one can ask if there is a semigroup of
completely positive maps P = {Pt : t ≥ 0} that acts on the corner pMp and is
related to α as follows

(6.1) Pt(pxp) = pαt(x)p, t ≥ 0, x ∈ M.

Such maps Pt need not exist in general; for example, taking x = 1 − p, one finds
that a necessary condition for Pt to exist is that p should satisfy pαt(1− p)p = 0.
Equivalently, a projection p ∈ M is said to be coinvariant under α if

(6.2) αt(1− p) ≤ 1− p, t ≥ 0.

Remark 6.0.13 (Increasing Projections and E0-semigroups). A projection p ∈
M is said to be increasing if it has the property

(6.3) αt(p) ≥ p, t ≥ 0.

Notice that in general, an increasing projection must be coinvariant. Indeed, since
αt(1) ≤ 1, we will have

αt(1− p) = αt(1)− αt(p) ≤ 1− p

whenever p is an increasing projection. The converse is not necessarily true. But in
the special case where α is an E0-semigroup, αt(1−p) = 1−αt(p); we conclude that
a projection is coinvariant under an E0-semigroup iff it is an increasing projection.
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Now for any projection p ∈ M , one can define a family of linear maps P =
{Pt : t ≥ 0} on N = pMp by compressing each map αt as follows

(6.4) Pt(a) = pαt(a)p, a ∈ pMp, t ≥ 0.

Obviously, each Pt is a normal completely positive linear map of pMp into itself
satisfying ‖Pt‖ ≤ 1 for every t ≥ 0. More significantly, one easily establishes:

Proposition 6.0.14. Let p be a coinvariant projection for α and consider the
family of maps P = {Pt : t ≥ 0} of pMp defined by (6.4). P is a continuous
semigroup of completely positive contractions, satisfying (6.1). If, in addition, α is
an E0-semigroup, then we have Pt(p) = p, t ≥ 0.

Dilation theory in the category of von Neumann algebras concerns the proper-
ties of completely positive semigroups that can be obtained from E-semigroups in
this particular way. By a CP semigroup we mean a pair (N,P ) where P = {Pt :
t ≥ 0} is a semigroup of normal completely positive linear maps acting on a von
Neumann algebra N which satisfies ‖Pt‖ ≤ 1 for every t ≥ 0.

Definition 6.0.15. A triple (M,α, p) consisting of an E-semigroup α = {αt :
t ≥ 0} acting on a von Neumann algebra M , together with a distinguished coin-
variant projection p ∈ M , is called a dilation triple. Let N = pMp be the corner
of M associated with p and let P = {Pt : t ≥ 0} be the semigroup acting on N as
follows

(6.5) Pt(a) = pαt(a)p, t ≥ 0, a ∈ N.

The CP semigroup (N,P ) called a compression of (M,α, p), and (M,α, p) is called
a dilation of (N,P ).

We emphasize that the notion of a compression to a subalgebra has meaning
only when (a) the subalgebra is a corner pMp of M and (b) the projection p satisfies
(6.2). We have glossed over the key notion of minimal dilation. Indeed, there are
several notions of minimality that are associated with this dilation theory, and it
is a nontrivial fact that they are all equivalent, see [Arv03b]. In the discussion
to follow we ignore considerations of minimality, confining attention to question of
existence. However, we point out that an arbitrary dilation can always be reduced
to a minimal one, and that a necessary condition for (M,α, p) to be a minimal
dilation of (N,P ) is that the central carrier of p should be 1. Thus, in the context
of minimal dilations, if N is a factor then M must be a factor of the same type.

Starting with a CP semigroup (N,P ), in order to find a dilation (M,α, p) of
(N,P ) one has to find a way of embedding N as a corner pMp of a larger von
Neumann algebra M , on which there is a specified action of an E-semigroup α that
is related to P as above. Notice that Corollary 5.0.11 provides the following infras-
tructure. If we view N as a unital C∗-algebra and P as a semigroup of contractive
completely positive maps on N , forgetting the continuity of Pt in its time variable,
then we can assert that the pair (N,P ) has a C∗-dilation (ι, B, α). Certainly, B
is not a von Neumann algebra and α is not an E-semigroup; thus (ι, B, α) can-
not serve as a W ∗-dilation of (N,P ). However, it is possible to make use of the
α-expectation E : B → N to find another dilation of (N,P ) that is subordinate to
(ι, B, α) and has all the desired properties. The results are summarized as follows.
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Theorem 6.0.16 (Existence of W ∗-dilations). Let {Pt : t ≥ 0} be a contractive
CP -semigroup acting on a von Neumann algebra N with separable predual. Then
(N,P ) has a dilation (M,α, p).

Idea of Proof. Considering P = {Pt : t ≥ 0} as a semigroup of completely
positive contractions acting on the unital C∗-algebra N , we see from Corollary
5.0.11 that P has a C∗-dilation (ι, B, α). We may obviously assume that N ⊆ B(H)
acts concretely and nondegenerately on some separable Hilbert space H. We will
construct a representation π of B on a Hilbert space K ⊇ H with the property
that each αt can be extended to a normal ∗-endomorphism of the weak closure M
of π(B), and this will provide the required dilation of (N,P ). The representation
π is obtained as follows.

Let E : B → N be the α-expectation associated with (ι, B, α). Since we may
view E as a completely positive map of B to B(H), it has a minimal Stinespring
decomposition E(x) = V ∗π(x)V , x ∈ B, where π is a representation of B on
another Hilbert space K and V : H → K is a bounded linear map such that V H
has K as its closed linear span.

Let M be the von Neumann algebra π(B)′′. The remainder of the proof
amounts to establishing three things. First, for every t ≥ 0 there is a unique normal
∗-endomorphism α̃t acting on M that satisfies α̃t(π(x)) = π(αt(x)), x ∈ B. Second,
α̃ = {α̃t : t ≥ 0} is appropriately continuous in its time variable, thereby defining
an E-semigroup acting on M . Third, that p = V V ∗ is a projection in M whose
corner pMp can be naturally identified with N , and that after this identification is
made, (M, α̃, p) becomes a dilation triple for (N,P ). �

Historical Remarks. A number of approaches to dilation theory for semi-
groups of completely positive maps have been proposed over the years, including
work of Evans and Lewis [EL77], Accardi et al [AL82], Kümmerer [Küm85],
Sauvageot [Sau86], and many others. Our attention was drawn to these devel-
opments by work of Bhat [Bha99], building on work of Bhat and Parthasarathy
[BP94] for noncommutative Markov processes, in which the first dilation theory
for CP semigroups acting on B(H) emerged that was effective for our work on
E0-semigroups [Arv97], [Arv00]. SeLegue [SeL97] showed how to apply multi-
operator dilation theory to obtain Bhat’s dilation result for CP semigroups acting
on B(H), and he calculated the expectation values of the n-point functions of such
dilations. Recently, Bhat and Skeide [BS00] have initiated an approach to the sub-
ject that is based on Hilbert modules over C∗-algebras and von Neumann algebras.

Special cases of Theorem 6.0.16 appeared in [Bha99], and a version of the
full result appears in [BS00]. The approach taken here differs significantly from
the former, and follows ideas from [Arv02], in which the dilation theory of a
single completely positive map P on a C∗-algebra A is related directly to noncom-
mutative dynamics by exploiting properties of the universal A-dynamical system,
α-expectations, and the moment polynomials of P .
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