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Abstract. We construct a new class of semigroups of completely positive maps

on B(H) which can be decomposed into an infinite tensor product of such semi-
groups. Under suitable hypotheses, the minimal dilations of these semigroups to

E0-semigroups are pure, and have no normal invariant states. Concrete examples

are discussed in some detail.

Dedicated to Robert T. Powers on the occasion of his sixtieth birthday

1. Introduction.
An E0-semigroup is a semigroup of normal unital ∗-endomorphisms α = {αt :

t ≥ 0} acting on the algebra B(H) of all bounded operators on a separable Hilbert
space H, which satisfies the natural continuity condition

lim
t→0+

〈αt(x)ξ, η〉 = 〈xξ, η〉, x ∈ B(H), ξ, η ∈ H.

E0-semigroups are classified roughly into types I, II, III, depending on the exis-
tence of “intertwining semigroups”. In general, the von Neumann algebras Nt =
αt(B(H)) are type I subfactors of B(H) which decrease with increasing t. An
E0-semigroup α is called pure if its “tail” algebra is trivial in the sense that

(1.1) ∩
t≥0

αt(B(H)) = C1.

Pure E0-semigroups emerge naturally in noncommutative dynamics. For exam-
ple, Powers [P2] has developed a “standard form” for most E0-semigroups (more
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precisely, those which are not of type III), which is analogous to the standard form
for von Neumann algebras. A key element is the result that any E0-semigroup not
of type III can be perturbed by a cocycle so as to become a pure E0-semigroup
which leaves invariant a (necessarily unique) vector state. The perturbed semigroup
is said to be in standard form. This standard form is unique in the sense that if
two E0-semigroups in standard form are cocycle-conjugate then they must actually
be conjugate.

On the other hand, in the interaction theory developed by one of us [A7], one is
presented with a pair of pure E0-semigroups, each of which has an invariant normal
state. Significantly, in the context of interactions the invariant states are typically
not vector states. Given any pure E0-semigroup α with an invariant normal state
ω, an arbitrary normal state ρ of B(H) can be restricted to each of the type I
subfactors αt(B(H)), t ≥ 0, and each of these restrictions has an eigenvalue list.
The basic interaction inequality of [A2] depends upon an asymptotic formula which
relates the limiting behavior of these eigenvalue lists to those of ρ and ω as t→∞.

Consideration of such issues has led us to single out pure E0-semigroups for at-
tention, and many significant problems remain open. For example, Powers’ result
above implies that every E0-semigroup that is not of type III is a cocycle per-
turbation of a pure E0-semigroup, but it is not known if every E0-semigroup can
be perturbed by a cocycle into a pure one. In this paper we are concerned with
the construction of pure E0-semigroups which do not have normal invariant states.
The first examples of this phenomenon were given in [A3], and were based on the
canonical commutation relations. In this paper we give a new and more flexible
construction of such examples. As in [A3], we actually construct examples of semi-
groups of completely positive linear maps of B(H) having appropriate properties,
and then obtain the examples of E0-semigroups by a dilation procedure. However,
the examples constructed here differ from from those of [A3] in that they decompose
into infinite tensor products of simpler flows acting on matrix algebras.

We now describe the setting of this paper in more detail. By a CP semigroup we
mean a one-parameter semigroup φ = {φt : t ≥ 0} of normal completely positive
linear maps of B(H) which is unital in the sense that φt(1) = 1 for every t, and
is continuous in t as described above for E0-semigroups. The definition of pure
E0-semigroup (1.1) must be modified appropriately for the broader category of CP
semigroups. A CP semigroup φ is said to be pure if for every pair of normal states
ρ, σ of B(H) we have

(1.2) lim
t→∞

‖ρ ◦ φt − σ ◦ φt‖ = 0.

It is known that (1.1) and (1.2) are equivalent in case φ = α is an E0-semigroup
[A2]. Notice that if φ is a pure CP semigroup and if there is a normal state ω of
B(H) that is φ-invariant in the sense that ω ◦ φt = ω for every t ≥ 0, then because
of (1.2) ω must be an absorbing state in the sense that for every normal state ρ we
have

(1.3) lim
t→∞

‖ρ ◦ φt − ω‖ = 0.

When an absorbing state exists, it is obviously the unique normal φ-invariant state.
Conversely, if for an arbitrary CP semigroup φ there is a state ω of B(H) satisfying
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(1.3) for every normal state ρ, then ω is a (normal) absorbing state and φ must be
a pure CP semigroup.

In the physics literature the asymptotic behavior (1.3) is called return to equi-
librium, whereas in ergodic theory it is called mixing. Indeed, (1.3) implies that for
every pair of operators A,B ∈ B(H) and every normal state σ on B(H) one has

lim
t→∞

σ(φt(A)B) = ω(A)σ(B),

and in particular ω is a mixing state: ω(φt(A)B) → ω(A)ω(B) as t→∞.
In general, a pure CP semigroup need not have an absorbing state (equivalently,

there may not exist a normal state that is φ-invariant). But in the context of CP
semigroups acting on matrix algebras, (1.2) and (1.3) are equivalent. Indeed, if H
is finite dimensional and φ is a pure CP semigroup acting on B(H), then a simple
application of the Markov-Kakutani fixed point theorem shows that there must be
a state ω of B(H) satisfying ω ◦ φt = ω for every t ≥ 0. Since in this case ω must
be normal, the preceding observations imply that (1.3) is satisfied.

In section 2, we show how to construct examples of pure CP semigroups which
decompose into an infinite tensor product of CP semigroups acting on matrix al-
gebras (Theorem A). Under appropriate hypotheses, these CP semigroups do not
have normal invariant states. In section 3 we discuss examples and show how to
arrange the general hypotheses of Theorem A. These results are applied to the
theory of E0-semigroups in section 4.

2. Infinite tensor products of CP Semigroups.
In this section we discuss general problems associated with the construction

of infinite tensor products of CP semigroups. We give an effective criterion for
their existence, and we determine when such infinite tensor products are pure.
Applications are taken up in the following section.

Starting with a sequence of CP semigroups φk acting on B(Hk), k = 1, 2, . . . , one
can choose an arbitrary sequence of normal pure states ωk of B(Hk), k = 1, 2, . . . ,
and with that data attempt to construct an infinite spatial tensor product ⊗kφ

k of
CP semigroups. One finds, however, that the existence of such a product semigroup
depends strongly on the choice of the sequence ω1, ω2, . . . . In order to discuss this,
we begin by introducing an intermediate C∗-algebra A which is in some sense an
infinite tensor product of type I factors, and which carries “locally” the structure
of a von Neumann algebra. On A there is a natural way of defining the infinite
tensor product of CP semigroups, but there is no Hilbert space. We show that for
appropriate sequences (ωk), the GNS construction applied to ⊗kωk gives rise to a
representation of A on a Hilbert space H so that the tensor product of semigroups
can be extended uniquely to a CP semigroup on B(H).

Given a pair of normal completely positive linear maps φ, ψ on B(H), B(K)
respectively, there is a unique normal completely positive linear map φ ⊗ ψ on
B(H ⊗K), defined uniquely by its action on operators A⊗B,

φ⊗ ψ(A⊗B) = φ(A)⊗ ψ(B), A ∈ B(H), B ∈ B(K).

Similarly, there is a natural notion of finite tensor product of normal completely
positive linear maps; when φk acts on B(Hk), k = 1, . . . , n, φ1⊗· · ·⊗φn is a normal
completely positive linear map on B(H1 ⊗ · · · ⊗Hn).
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Suppose now that we have a sequence of CP semigroups φk = {φk
t : t ≥ 0} acting

on B(Hk), k = 1, 2, . . . . For each n = 1, 2, . . . consider the type I factor

An = B(H1 ⊗ · · · ⊗Hn),

and the semigroup of completely positive maps φ1 ⊗ · · · ⊗ φn defined on it by

(φ1 ⊗ · · · ⊗ φn)t = φ1
t ⊗ · · · ⊗ φn

t , t ≥ 0.

One verifies easily that φ1⊗· · ·⊗φn is a CP semigroup. The natural embedding of
An intoAn+1 is given by the unital ∗-monomorphism A ∈ An 7→ A⊗1Hn+1 ∈ An+1,
and since φn+1

t (1Hn+1) = 1Hn+1 we have the following coherence

(2.1) (φ1 ⊗ · · · ⊗ φn+1)t(A⊗ 1Hn+1) = (φ1 ⊗ · · · ⊗ φn)t(A)⊗ 1Hn+1 ,

for every t ≥ 0, every A ∈ An, and every n = 1, 2, . . . .
Finally, we form the inductive limit of C∗-algebras

A = lim
−→

An.

There is a natural way of identifying An with a subalgebra of A, and after making
this identification one has An ⊆ An+1 ⊆ A, and A is the norm closure of the
unital ∗-subalgebra ∪nAn. Because of (2.1) there is a unique semigroup of unital
completely positive maps φ = {φt : t ≥ 0} which acts as follows on A,

(2.2) φt �An= (φ1 ⊗ · · · ⊗ φn)t, t ≥ 0, n = 1, 2, . . . .

In order to discuss continuity in the time parameter of this semigroup, we require
the notion of locally normal linear functionals on the C∗-algebra A. A bounded lin-
ear functional ρ on A is said to be locally normal if its restriction to each subalgebra
An is a normal linear functional on that type I factor. The set of all locally normal
functionals is a norm-closed linear subspace of the dual space of A. Since every
CP semigroup acting on a type I factor M is the adjoint of a strongly continuous
semigroup acting on its predual M∗, it follows that for every locally normal linear
functional ρ on A, we have

(2.3) lim
t→t0

‖ρ ◦ φt �An
−ρ ◦ φt0 �An

‖ = 0, n = 1, 2, . . . .

We emphasize that one cannot expect t 7→ ρ ◦φt to move continuously in the norm
of the dual space of A, except in rather special circumstances. In any case, from
(2.3) it follows that for every A ∈ A and every locally normal ρ, the function
t ∈ [0,∞) 7→ ρ(φt(A)) is continuous.

Suppose now that we choose a sequence ωk of pure normal states ωk of B(Hk),
k = 1, 2, . . . , subject to the following hypothesis: there are positive constants
A1, A2, . . . satisfying

∑
k Ak <∞ and

(H) ‖ωk − ωk ◦ φk
t ‖ ≤ Ak, 0 ≤ t ≤ 1, k = 1, 2, . . . .

For example, (H) will be satisfied when each space Hk is finite dimensional and
the generators Lk of the semigroups φk, defined by φk

t = exp tLk, t ≥ 0, satisfy
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k ‖ωk ◦ Lk‖ <∞ (see Corollary 1 below). Explicit examples will be discussed in

section 3.
Since ω1 ⊗ · · · ⊗ ωn is a normal pure state of An for every n, the product state

ω̄ = ω1⊗ω2⊗. . . is a locally normal pure state ofA. Applying the GNS construction
to ω̄ we obtain a separable Hilbert space K, a faithful irreducible representation of
A onK, and a distinguished unit vector Ω ∈ K. We identifyA with its image in this
representation, so that it becomes a unital strongly dense ∗-subalgebra A ⊆ B(K),
and once this is done we have ω̄(A) = 〈AΩ,Ω〉 for A ∈ A. Following is the main
result of this section.

Theorem A. Assume that hypothesis (H) is satisfied. Then for each t ≥ 0 the
CP map φt defined on A by (2.2) extends uniquely to a normal completely positive
linear map φ̃t on B(K), and φ̃ = {φ̃t : t ≥ 0} is a CP semigroup on B(K).
φ̃ is a pure CP semigroup on B(K) iff every φk is a pure CP semigroup on

B(Hk), k = 1, 2, . . . .
Assuming that Hk is finite dimensional and φk has the normalized trace on

B(Hk) as an absorbing state for every k = 1, 2, . . . , then φ̃ is pure and has no
normal invariant state.

Before giving the proof, we require a more concrete realization ofK as the infinite
tensor product of the Hilbert spaces H1,H2, . . . . Our construction is similar to that
in [vN] (see also [G]). For n = 1, 2, . . . let Kn be the n-fold tensor product of Hilbert
spaces

Kn = H1 ⊗H2 ⊗ · · · ⊗Hn.

Choosing a unit vector fk ∈ Hk such that ωk(A) = 〈Afk, fk〉 for A ∈ B(Hk), we
can map Kn isometrically into Kn+1 as follows

ξ ∈ Kn 7→ ξ ⊗ fn+1 ∈ Kn+1,

and this gives rise to an inductive system of Hilbert spaces. K is defined as the
completion of the inductive limit of Hilbert spaces

K = lim
−→

Kn.

Thus each space Kn is isometrically embedded in K and their union is dense. For
a vector ξ ∈ Kn we denote its image in K with the suggestive notation

ξ ⊗ fn+1 ⊗ fn+2 ⊗ · · · = ξ ⊗⊗∞k=n+1fk.

Note that parentheses come and go with impunity; for example, the equality

ξ ⊗ fn+1 ⊗ fn+2 ⊗ · · · = (ξ ⊗ fn+1)⊗ fn+2 ⊗ . . .

simply asserts that the image of ξ ∈ Kn in the limit space K is the same as the
image of ξ ⊗ fn+1 ∈ Kn+1 in the limit space K.

The C∗-algebra A acts on K as follows. To define a representation of A it suffices
to specify how an operator in An acts on Km when m > n, and for an operator
A ∈ Am and a vector in Km ⊆ K of the form η = ξ ⊗ fm+1 ⊗ fm+2 ⊗ . . . Aη is
given by

Aη = [(A⊗ 1Hn+1 ⊗ · · · ⊗ 1Hm
)ξ]⊗ fm+1 ⊗ fm+2 ⊗ . . . .
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It is easily checked that this defines a representation of A on K, and that for the
vector Ω ∈ K given by Ω = f1 ⊗ f2 ⊗ . . . , AΩ is dense in K and

(ω1 ⊗ ω2 ⊗ . . . )(A) = 〈AΩ,Ω〉 , A ∈ A.

Thus, we settle on this Hilbert space K, this “product vector” Ω ∈ K, and the
realization of A ⊆ B(K) described in the preceding paragraphs.

This has the following consequence for the description of normal linear function-
als on B(K). For any vector h ∈ Kn = H1 ⊗ H2 ⊗ · · · ⊗ Hn we may consider its
image ξ = h⊗fn+1⊗fn+2⊗ . . . in K , and the corresponding vector state on B(K)

ωξ = ωh ⊗ ωn+1 ⊗ ωn+2 ⊗ . . . .

Since any normal linear functional ρ on An can be expressed as a series

ρ(A) =
∞∑

k=1

θk 〈Auk, vk〉

where uk, vk are unit vectors in H1 ⊗ · · · ⊗Hn and (θk) is a summable sequence of
nonnegative reals, a similar argument shows that there is a unique normal state on
B(K) of the form

(2.4) ρ̂ = ρ⊗ ωn+1 ⊗ ωn+2 ⊗ · · · = ρ⊗
∞
⊗

k=n+1
ωk,

The tensor product notation is intended merely to suggest the form this linear
functional takes on when it is restricted to the dense C∗-algebra A ⊆ B(K).

Lemma 2.1. For every normal linear functional (resp. state) σ of B(K) and every
ε > 0, there is an n ∈ N and a normal linear functional (resp. state) ρ on An such
that

‖σ − ρ⊗
∞
⊗

k=n+1
ωk‖ < ε.

Proof. Let σ be a normal linear functional on B(K). We can approximate σ
as closely as we wish with a finite linear combination of functionals of the form
ωξ,η(T ) = 〈Tξ, η〉 with ξ, η ∈ H. Thus it suffices to show that each ωξ,η can be so
approximated. Fixing ξ and η in H, we can find an n ∈ N and vectors ξn, ηn ∈ Hn

such that both norms

‖ξ − ξn ⊗ fn+1 ⊗ fn+2 ⊗ . . . ‖, ‖η − ηn ⊗ fn+1 ⊗ fn+2 ⊗ . . . ‖

are less than ε/2. It follows that

‖ωξ,η − ωξn,ηn ⊗
∞
⊗

k=n+1
ωk‖ < ε,

as asserted.
The argument for normal states is similar, after one notes that every normal

state σ of B(K) can be expressed as a convex combination of vector states

σ = θ1ωξ1,ξ1 + θ2ωξ2,ξ2 + . . .
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where θk ≥ 0 and
∑

k θk = 1. �

Since A ⊆ B(K) it makes sense to speak of normal states and normal linear
functionals on A; for example, a normal state of A is the restriction to A of a
normal state of B(K). We remark that a straightforward application of Kaplansky’s
density theorem shows that the restriction map ρ 7→ ρ �A is an order-preserving
isometric isomorphism of the Banach space of all normal linear functionals of B(K)
onto the normal subspace of the dual of A. In particular the normal subspace of
A′ is closed in the norm of A′.

Lemma 2.2. Let θ : A → A be a unital completely positive map with the property
that ρ ◦ θ on A extends to a normal state on B(K) for every normal state ρ on
B(K). Then θ extends uniquely to a normal CP map θ̃ on B(K).

proof. The uniqueness of the extension is clear from the fact that A is weak∗-dense
in B(K). Morever, if there is a normal linear map θ̃ which extends θ then θ̃ must be
completely positive. Thus we need only show that θ can be extended to a normal
map on B(K).

Let L1(K) denote the Banach space of all trace class operators on B(K) and
choose T ∈ L1(K). Then ρ(B) = trace(TB) defines a normal linear functional
on B(K). By hypothesis A ∈ A 7→ ρ(θ(A)) can be extended to a normal linear
functional on B(K), hence there is a unique trace class operator ψ(T ) ∈ L1(K)
such that

trace(ψ(T )A) = trace(Tθ(A)), A ∈ A.

ψ is obviously a linear map of L1(K) into itself. Since the unit ball of A is strongly
dense in the unit ball of B(K) and ‖θ‖ ≤ 1, the formula itself implies that

trace |ψ(T )| = sup
‖A‖≤1

|trace(ψ(T )A)| = sup
‖A‖≤1

|trace(Tθ(A))| ≤ trace |T |

for every T ∈ L1(K), hence ‖ψ‖ ≤ 1. The adjoint ψ′ : B(K) → B(K) defines
a normal linear map on B(K) which satisfies trace(Tψ′(A)) = trace(Tθ(A)) for
A ∈ A and all T ∈ L1(K), thus ψ′ extends θ. �

proof of Theorem A. Fix t ≥ 0. We show first that φt : A → A can be extended
(necessarily uniquely) to a normal completely positive map on B(K). Note that it
suffices to prove this for 0 ≤ t ≤ 1, because the semigroup property implies that
φnt = (φt)n for every n = 1, 2, . . . and a composition of normal maps on B(K) is a
normal map. Thus we assume that t ∈ [0, 1].

By Lemma 2.2, it is enough to show that for every normal linear functional ρ
on B(K), ρ ◦ θt is a normal functional on A. Lemma 2.1 implies that ρ can be
approximated in norm with a decomposable linear functional of the form

ρ0 = ψ ⊗
∞
⊗

k=n+1
ωk

for some n ∈ N, where ψ is a normal linear functional on An satifying ‖ψ‖ = ‖ρ0‖.
Notice that by adjusting ψ appropriately, we may also choose n as large as we wish
in this representation for ρ0. Since the normal part of the dual of A is norm-closed,
it suffices to show that ρ0 ◦ φt belongs to the normal part of A′.
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For such a decomposable ρ0, we have

ρ0 ◦ φt = [ψ ◦ (φ1
t ⊗ · · · ⊗ φn

t )]⊗
∞
⊗

k=n+1
ωk ◦ φk

t .

Considering the normal linear functional on B(K)

ν = [ψ ◦ (φ1
t ⊗ · · · ⊗ φn

t )]⊗
∞
⊗

k=n+1
ωk

and the fact that ‖ψ ◦ (φ1
t ⊗ · · · ⊗ φn

t )‖ ≤ ‖ψ‖ = ‖ρ0‖, we have

‖ρ0 ◦ φt − ν‖ ≤ ‖ρ0‖ · ‖(
∞
⊗

k=n+1
ωk ◦ φk

t −
∞
⊗

k=n+1
ωk) �A ‖.

Since

‖(
∞
⊗

k=n+1
ωk ◦ φk

t −
∞
⊗

k=n+1
ωk) �A ‖ ≤

∞∑
k=n+1

‖ωk ◦ φk
t − ωk‖

and since for 0 ≤ t ≤ 1 the series on the right is the tail of a convergent series by
(H), it follows that ‖ρ0−ν‖ can be made arbitrarily small by choosing n sufficiently
large. Since ν is normal, ρ0 ◦ φt must be normal, as required.

Thus we may extend each φt uniquely to a normal completely positive map φ̃t

of B(K). We prove next that the extended semigroup is continuous in the time
parameter in the sense that for every normal linear functional ρ on B(K)

lim
t→0

‖ρ ◦ φ̃t − ρ‖ = 0.

Since we can approximate ρ arbitrarily closely in norm with decomposable func-
tionals of the form

ρ0 = ψ ⊗
∞
⊗

k=n+1
ωk

where n ∈ N and ψ ∈ A′n and since ‖φ̃t‖ ≤ 1 for every t, it suffices to show that
‖ρ0 ◦ φ̃t − ρ0‖ → 0 as t→ 0, for ρ0 of this form.

As in the preceding argument, we may suppose that n is as large as we please;
moreover the norm of any normal linear functional on B(K) agrees with the norm
of its restriction to A. Writing

ρ0 ◦ φ̃t − ρ0 = (ρ0 ◦ φ̃t − ψ ⊗
∞
⊗

k=n+1
ωk ◦ φk

t ) + (ψ ⊗
∞
⊗

k=n+1
ωk ◦ φk

t − ρ0),

we estimate the norm of (ρ0 ◦ φ̃t − ρ0) �A as follows

‖ρ0 ◦ φ̃t − ρ0‖ ≤‖ψ ◦ (φ1
t ⊗ · · · ⊗ φn

t )− ψ‖ · ‖
∞
⊗

k=n+1
ωk ◦ φk

t ‖

+ ‖ψ‖ · ‖
∞
⊗

k=n+1
ωk ◦ φk

t −
∞
⊗

k=n+1
ωk‖

≤‖ψ ◦ (φ1
t ⊗ · · · ⊗ φn

t )− ψ‖+ ‖
∞
⊗

k=n+1
ωk ◦ φk

t −
∞
⊗

k=n+1
ωk‖
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The second term on the right can be estimated as in the preceding argument,

‖
∞
⊗

k=n+1
ωk ◦ φk

t −
∞
⊗

k=n+1
ωk‖ ≤

∞∑
k=n+1

‖ωk ◦ φk
t − ωk‖ ≤

∞∑
k=n+1

Ak,

because of (H). Since φ1 ⊗ · · · ⊗ φn is a CP semigroup acting on B(H1 ⊗ · · · ⊗Hn),
we have

lim sup
t→0

‖ρ0 ◦ φ̃t − ρ0‖ ≤ lim sup
t→0

‖ψ ◦ (φ1
t ⊗ · · · ⊗ φn

t )− ψ‖+
∞∑

k=n+1

Ak =
∞∑

k=n+1

Ak,

and since we are free to choose n as large as we please, the right side can be made
as small as we please because

∑
k Ak converges. Thus φ̃ is a CP semigroup.

Assuming now that each φk is a pure CP semigroup, we prove next that φ̃ is
pure. That result requires that we first discuss the behavior of pure CP semigroups
under finite tensor products. For a Hilbert space H, we write L1

0(H) for the space
of all trace class operators T ∈ L1(H) satisfying trace T = 0.

Remark. The significance of the space L1
0(H) for pure CP semigroups acting on

B(H) is as follows. Notice first that a trace class operator T on H belongs to
L1

0(H) iff its associated linear functional σ(A) = trace(TA), A ∈ B(H), satisfies
σ(1) = 0. On the other hand, a normal linear functional σ satisfies σ(1) = 0 iff it
admits a decomposition

σ = λ · (ρ1 − ρ2) + µ ·
√
−1 · (ρ3 − ρ4),

where λ, µ are real scalars and each ρk is a normal state. We conclude: a CP
semigroup φ = {φt : t ≥ 0} acting on B(H) is pure iff for every normal linear
functional σ satisfying σ(1) = 0, we have

(2.5) lim
t→∞

‖σ ◦ φt‖ = 0.

Lemma 2.3. For Hilbert spaces H1 and H2,

L1
0(H1 ⊗H2) = span{T1 ⊗ S2 + S1 ⊗ T2 : Tk ∈ L1(Hk), Sk ∈ L1

0(Hk)}.

proof. The inclusion ⊇ is obvious. For the opposite inclusion, let A ∈ B(H1 ⊗H2)
be a bounded operator satisfying trace(RA) = 0 for every trace class operator R
of the form R = T1 ⊗ S2 or R = S1 ⊗ T2 where Sk ∈ L1

0(Hk) and Tk ∈ L1(Hk),
k = 1, 2. Considering the natural duality between bounded operators and trace
class operators, it is enough to show that A is a scalar multiple of the identity.

Indeed, we claim that from the hypothesis

trace(A(S1 ⊗ T2)) = 0, for all S1 ∈ L1
0(H1), T2 ∈ L1(H2)

it follows that A ∈ (B(H1) ⊗ 1H2)
′. To see that, choose X ∈ B(H1) and consider

the commutator [X ⊗ 1H2 , A] = (X ⊗ 1H2)A− A(X ⊗ 1H2). Then for any pair of
trace class operators Tk ∈ L1(Hk), k = 1, 2 we have

trace([X ⊗ 1H2 , A]T1 ⊗ T2) = trace(A(T1X −XT1)⊗ T2) = 0,
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because the commutator T1X −XT1 belongs to L1
0(H1). Since L1(H1 ⊗H2) is the

closed linear span of {T1 ⊗ T2 : Tk ∈ L1(Hk)}, [X ⊗ 1H2 , A] = 0 follows.
Similarly, the hypothesis

trace(A(T1 ⊗ S2)) = 0, for all T1 ∈ L1(H1), S2 ∈ L1
0(H2)

implies that A ∈ (1H1 ⊗ B(H2))′. Hence

A ∈ (B(H1)⊗ 1H2)
′ ∩ (1H1 ⊗ B(H2))′ = (B(H1)⊗ B(H2))′ = C · 1H1⊗H2 ,

as required. �

Lemma 2.4. Let φ1 and φ2 be pure CP semigroups acting on B(H1) and B(H2)
respectively. Then the tensor product φ1 ⊗ φ2 is a pure CP semigroup acting on
B(H1 ⊗H2).

proof. We deduce this from Lemma 2.3 as follows. According to the characterization
(2.5), it is enough to show that for every normal linear functional σ on B(H1⊗H2)
satisfying σ(1) = 0, we have ‖σ ◦ (φ1

t ⊗ φ2
t )‖ → 0 as t → ∞. Because of Lemma

2.3, σ can be closely approximated in norm with a finite linear combination of
functionals of the form ρ1⊗ρ2 where ρk is a normal linear functional on B(Hk) and
where either ρ1 or ρ2 annihilates the identity operator on its respective space.

But for a functional of the form σ = ρ1 ⊗ ρ2 we have

‖(ρ1 ⊗ ρ2) ◦ (φ1
t ⊗ φ2

t )‖ = ‖ρ1 ◦ φ1
t‖ · ‖ρ2 ◦ φ2

t‖,

so that if either ρ1(1H1) = 0 or ρ2(1H2) = 0, then because both φ1 and φ2 are pure
we conclude from (2.5) that

lim
t→∞

‖ρ1 ◦ φ1
t‖ · ‖ρ2 ◦ φ2

t‖ = 0.

After taking finite linear combinations of such functionals ρ1⊗ ρ2 and then passing
to norm limits, it follows that ‖σ ◦ (φ1

t ⊗φ2
t )‖ → 0 as t→∞ for every normal linear

functional σ satisfying σ(1) = 0. �

Returning now to the proof of Theorem A, suppose that each of the given se-
quence of CP semigroups φk is pure. ¿From Lemma 2.4 it follows that every finite
tensor product φ1⊗· · ·⊗φn is a pure CP semigroup acting on An, n = 1, 2, . . . . We
now show that the infinite tensor product φ̃ is pure. For that, fix a pair of normal
states ρ, σ on B(K). We have to show that

lim
t→∞

‖ρ ◦ φ̃t − σ ◦ φ̃t‖ = 0.

Again, we approximate ρ and σ closely in norm with normal product states ρ0 and
σ0 respectively

ρ0 = ρn ⊗
∞
⊗

k=n+1
ωk, σ0 = σn ⊗

∞
⊗

k=n+1
ωk

where ρn and σn are states of An and n is a positive integer, as large as we wish.
Estimating as above, we have

‖(ρ0 − σ0) ◦ φ̃t �A ‖ ≤ ‖(ρn − σn) ◦ (φ1
t ⊗ · · · ⊗ φn

t ) �An
‖ · ‖

∞
⊗

k=n+1
ωk ◦ φk

t ‖

≤ ‖(ρn − σn) ◦ (φ1
t ⊗ · · · ⊗ φn

t ) �An ‖
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and the right side tends to zero as t → ∞ because φ1 ⊗ · · · ⊗ φn is a pure CP
semigroup on An.

The converse assertion, namely that purity of φ̃ on B(K) implies that each φk is
a pure CP semigroup on B(Hk) is straightforward, and we omit the proof. �

When the Hilbert spaces Hk are all finite dimensional, there is a more concrete
criterion in terms of the generators of the individual semigroups φk on B(Hk).

Corollary 1. For every k = 1, 2, . . . let φk be a CP semigroup acting on a full
matrix algebra Mk which has the normalized trace on Mk as an absorbing state,
and let ωk be a pure state of Mk. Let ω̄ = ω1 ⊗ ω2 ⊗ . . . be the asociated product
state on the UHF algebra A = M1 ⊗M2 ⊗ . . . and let φ = {φt : t ≥ 0} be the
product semigroup, acting on A by φt = φ1

t ⊗ φ2
t ⊗ . . . , t ≥ 0.

Let Lk : Mk → Mk be the generator of φk, φk
t = exp tLk, t ≥ 0, and assume

that

(2.6)
∞∑

k=1

‖ωk ◦ Lk‖ <∞.

The GNS construction applied to ω̄ realizes A as an irreducible C∗-algebra acting
on a Hilbert space K with the property that φ extends uniquely to a normal CP
semigroup φ̃ acting on B(K) which is pure and has no normal invariant states.

Remarks. Regarding the summability hypothesis (2.6), consider any CP semigroup
φ = {φt : t ≥ 0} acting on a matrix algebra M and let L be the generator of φ,
φt = exp tL, t ≥ 0. A state ω is invariant in the sense that ω ◦ φt = ω for all
t ≥ 0 iff ω ◦ L = 0. Thus one may regard ω as being “approximately” invariant
when ‖ω ◦ L‖ is small. In the setting of Corollary 1, the tracial state of Mk is the
unique φk-invariant state of Mk, thus no pure state can be invariant. However,
the hypothesis (2.6) means that the sequence of pure states ωk should be chosen so
that they are “approximately” invariant in the sense that the sum (2.6) converges.
Notice however that (2.6) will be satisfied with an arbitrary sequence of pure states
ω1, ω2, . . . whenever ‖Lk‖ tends to zero fast enough that

∑
k ‖Lk‖ converges.

proof of Corollary 1. We show first that φ̃ extends uniquely to a pure CP semigroup
on B(K). In view of Theorem A it suffices to show that the hypothesis (2.6) implies
that (H) is satisfied. For that, we claim that for any CP semigroup acting on a
matrix algebra M with generator L, one has

(2.7) sup
0≤t≤1

‖ω ◦ φt − ω‖ ≤ ‖ω ◦ L‖,

for every state ω of M. Indeed, for fixed A ∈M satisfying ‖A‖ ≤ 1,

ω ◦ φt(A)− ω(A) =
∫ t

0

d

ds
ω ◦ φs(A) , ds = ω ◦ L(

∫ t

0

φs(A) ds).

Since

‖
∫ t

0

φs(A) ds‖ ≤
∫ t

0

‖φs(A)‖ ds ≤ t · ‖A‖ ≤ t,

we have |ω ◦ φt(A)− ω(A)| ≤ ‖ω ◦ L‖ for every t ∈ [0, 1], and (2.7) follows.
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It remains only to show that φ̃ has no normal invariant state, and for that we
claim that the normalized trace τ on the UHF algebra A = M1 ⊗M2 ⊗ . . . is
the unique state of A which is invariant under the action of the product semigroup
φ1 ⊗ φ2 . . . acting on A. Indeed, Lemma 2.3 implies that for every n = 1, 2, . . . ,
the restriction of φ1 ⊗ φ2 ⊗ . . . to An = B(H1 ⊗ · · · ⊗ Hn) is pure, and since by
hypothesis each φk leaves the trace of B(Hk) invariant, it follows that the trace
of B(H1 ⊗ · · · ⊗Hn) is invariant under the action of this restricted CP semigroup,
hence the trace on B(H1 ⊗ · · · ⊗Hn) is an absorbing state. In particular it is the
unique invariant state. It follows that τ is the unique invariant state of A.

Now if ρ is a φ̃-invariant normal state of B(K) then the restriction of ρ to A is
an invariant state of A which, by the preceding paragraph, must be the normalized
trace τ of A. But τ cannot belong to the normal part of the dual of A in any
irreducible representation of A, contradicting the existence of ρ. �

Corollary 2. Let M = MN (C) be a matrix algebra and let θ = {θt : t ≥ 0} be
a CP semigroup on M which has the normalized trace as an absorbing state. Let
λ1, λ2, . . . be a sequence of positive numbers satisfying

∑
n λn < ∞. Consider the

UHF algebra A = M⊗M⊗ . . . and the CP semigroup acting on it as follows

φt = θλ1t ⊗ θλ2t ⊗ . . . .

Then for every sequence of pure state ωk of M the product state ω1⊗ω2⊗ . . . gives
rise to an irreducible representation of A on a Hilbert space H with the property
that φ extends uniquely to a CP semigroup acting on B(H) which has no normal
invariant states.

proof. Letting Lk be the generator of φk
t = θλkt, one sees that Lk is related to the

generator M of θ by Lk = λkM , and hence

∞∑
k=1

‖ωk ◦ Lk‖ ≤
∞∑

k=1

‖Lk‖ = ‖M‖ ·
∞∑

k=1

λk <∞,

and the conclusion is immediate from Corollary 1. �

3. Examples.
In order to apply the results of the preceding section one must start with a

sequence of CP semigroups acting on matrix algebras, each of which is pure and
has the normalized trace as an absorbing state. In this section we give concrete
examples of the latter and discuss how such examples can be constructed in general.

Remarks. We have already pointed out that if a CP semigroup φ = {φt : t ≥ 0}
acting on B(H) has an absorbing state, then it must be pure. Significantly, in the
simplest cases in which H is finite dimensional, the converse is true as well. Indeed,
any pure CP semigroup acting on a matrix algebra M must have an invariant state
ω, by the Markov-Kakutani fixed point theorem. It follows that for any state ρ on
M we have

lim
t→∞

‖ρ ◦ φt − ω‖ = lim
t→∞

‖ρ ◦ φt − ω ◦ φt‖ = 0,

because φ is pure. Hence ω must be an absorbing state.
We begin with a concrete example and then put that into a more general context.
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Example 3.1. In [Bi] P. Biane defines a CP semigroup B = {Bt : t ≥ 0}, called
an Ornstein-Uhlenbeck semigroup, on finite-dimensional C∗-algebras A generated
by finitely many hermitian unitary elements u1, u2, . . . , un, n ∈ N, which pairwise
either commute or anticommute. The action of the semigroup on ordered words
w = uk1uk2 . . . ukj

, k1 < k2 < · · · < kj in A is as follows, Bt(w) = exp(−tj)w.
Assuming that n = 2N is even and the uk anticommute, their generated C∗-algebra
A is isomorphic to the matrix algebra M2N (C); and since for every nontrivial word
w we have

lim
t→∞

Bt(w) = 0,

it follows that for every A ∈ A we have

lim
t→∞

Bt(A) = τ(A)1.

Thus, B is a pure CP semigroup acting on A which has the normalized trace as an
absorbing state.

The following results show how to construct many such examples.

Proposition 3.1. Let M be a matrix algebra and let Q be a unit-preserving com-
pletely positive map of M into itself which preserves the trace in the sense that
τ ◦Q = τ and is ergodic in the sense that

(3.1) Q(A) = A =⇒ A ∈ C · 1.
Then L(A) = Q(A) − A is the generator of a pure CP semigroup which has the
normalized trace as an absorbing state.

Proof. Let φt = exp tL where L(A) = Q(A)− A. Since φt = e−t exp tQ, it is clear
that φ is a CP semigroup, and it leaves the trace invariant because τ ◦ L = 0.
Condition (3.1) implies that the only operators A satisfying φt(A) = A for all t are
scalars, i.e., φ acts ergodically on M. By Theorem 4.4 of [A2] φ is pure, and thus
τ must be an absorbing state. �

Remark. It is well-known [EL] that the most general unit-preserving completely
positive linear map on a matrix algebra M may be constructed as follows

Q(A) = V1AV
∗
1 + · · ·+ VrAV

∗
r ,

where V1, . . . , Vr is an arbitrary sequence of elements of M satisfying V1V
∗
1 + · · ·+

VrV
∗
r = 1. For such a map Q the ergodicity requirement (3.1) is satisfied iff the set

{Vk} is irreducible in the sense that

{V1, V
∗
1 , . . . , Vr, V

∗
r }′ = C1.

This follows, for example, from Theorem 4.4 of [A2].

Remark. As the simplest nontrivial example of the semigroups of Example 3.1
above, consider the semigroup B = {Bt : t ≥ 0} acting on the C∗-algebra generated
by a pair of anticommuting self-adjoint unitaries u1, u2. Up to conjugacy one may
take the C∗-algebra to be M2(C), and for the generator of the semigroup {Bt : t ≥
0} one can take the map L(A) = Q(A)−A where Q is the composition θ ◦E of the
natural conditional expectation E of M2(C) onto the diagonal subalgebra and θ is
the order 2 automorphism θ(A) = RAR ,

R =
(

0 1

1 0

)
.

We omit these computations, but one can check quite easily that the map Q = θ◦E
satisfies the hypotheses of Proposition 3.1.
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4. Applications to E0-semigroups.
In this section we show how the CP semigroups constructed in section 2 can

be dilated so as to give examples of pure E0-semigroups which have no normal
invariant states.

It is important to distinguish between the dilation theory that is associated
with CP semigroups and the simpler dilation theory associated with Stinespring’s
theorem. In order to discuss the issue, we take the simplest case in which φ is a
normal completely positive map acting on B(H) satisfying φ(1) = 1. Stinespring’s
theorem implies that there is a Hilbert space H̃ containing H and a representation
π : B(H) → B(H̃) satisfying π(1H) = 1H̃ , such that for P = PH we have

φ(A) = Pπ(A) �H , A ∈ B(H).

Since φ is normal, one can arrange that π is a normal representation. We abuse
notation slightly by writing φ(A) = Pπ(A)P , after identifying B(H) with the corner
PB(H̃)P of B(H̃).

Useful as the Stinespring representation is, it is inadequate for our purposes.
Instead, we require a Hilbert space H̃ ⊇ H and a normal ∗-endomorphism α of
B(H̃) into itself, such that α(1) = 1, α(P ) ≥ P for P = PH and

(4.1) φ(A) = Pα(A)P, A ∈ B(H) = PB(H̃)P.

One verifies readily that the condition α(P ) ≥ P implies that (4.1) is valid for all
powers in the sense that

(4.2) φn(A) = Pαn(A)P, n = 0, 1, 2, . . . .

Such a representation of φ cannot be deduced from Stinespring’s theorem. It can be
deduced from a general dilation theorem for (finite or infinite) sequences of (perhaps
noncommuting) operators V1, V2, · · · ∈ B(H) which satisfy

V1V
∗
1 + V2V

∗
2 + · · · = 1H .

That dilation theorem implies that there is a sequence of isometries U1, U2, . . . on a
larger Hilbert space H̃ ⊇ H satisfying U1U

∗
1 +U2U

∗
2 + · · · = 1H̃ , with the property

that U∗kH ⊆ H and Vk is the compression of Uk to H, for every k. The relation
between all of these operators, φ, and α is

φ(A) = V1AV
∗
1 + V2AV

∗
2 + . . . , A ∈ B(H),

α(B) = U1BU
∗
1 + U2BU

∗
2 + . . . B ∈ B(H̃).

We remark that the existence of operator dilations of this type originated in papers
of Frazho [Fr] and Bunce [Bu], and have been extensively studied.

In [B1] (also see [B2], [B3], [BF]) B. V. R. Bhat proved a general result which
implies that every CP semigroup acting on B(H) can be dilated to an E0-semigroup
acting on B(H̃) in a sense parallel to (4.2) above. There is a notion of “minimal”
dilation, and a minimal dilation of a CP semigroup is unique up to conjugacy. The
details are as follows.
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We follow the approach of [A5]. Let H̃ be a Hilbert space, and let α = {αt :
t ≥ 0} be an E0-semigroup acting on B(H̃). A projection P ∈ B(H̃) is said to be
increasing if P ≤ αt(P ) for all t ≥ 0. Assuming that P is increasing, it is not hard
to show that the family of completely positive maps φ = {φt : t ≥ 0} defined on
PB(H̃)P = B(PH̃) by

φt(x) = Pαt(a)P, t ≥ 0

satisfies the semigroup property, thus it defines a CP semigroup on B(PH̃). φ is
called a compression of α and α is called a dilation of φ. α is said to be a minimal
dilation of φ if the identity is the only increasing projection Q ∈ B(H̃), Q ≥ P ,
for which the compression of α to QB(H̃)Q is an E0-semigroup. In this context,
Bhat’s theorem has the following consequence (see [A5] for this formulation).

Theorem 4.1. Let φ be a CP semigroup on B(H). There exists a dilation α of φ
on B(H̃), for some Hilbert space H̃ containing H, such that α is a minimal dilation
of φ. Any two minimal dilations of φ are conjugate.

Thus we may speak of the minimal dilation of a CP semigroup. As shown in
Proposition 3.5 of [A2], a minimal dilation α of a pure CP semigroup φ inherits
from φ the property of being pure. If φ, in addition to being pure, has no invariant
normal states, then α has no invariant normal states. Combining these results with
Theorem A of Section 2 yields the following.

Theorem 4.2. Let α be the minimal dilation of a CP semigroup φ = {φt : t ≥ 0}
on B(H) which arises from an infinite tensor product construction satisfying the
hypotheses of Theorem A. Then α is pure and has no invariant normal states.

We conclude this section by showing that the minimal dilation α of φ has a
realization as an infinite tensor product of E0-semigroups (hence of CP semigroups)
in the sense of section 2. We show also that in certain situations α is completely
spatial. This result depends upon the fact, [A6], [P1] that the minimal dilation of
a CP semigroup on a matrix algebra is completely spatial.

Let (φk) be a sequence of CP semigroups on matrix algebras Mk satisfying (H).
We view Mk as B(Hk) for a finite dimensional Hilbert space Hk. For each k ∈ N
let αk, acting on the algebra B(H̃k), be a minimal dilation of φk.

First we observe that the pure state ωk = 〈 · fk, fk〉 on B(Hk) extends in an
obvious way to a pure state (which we’ll also call ωk) on B(H̃k) because H̃k ⊇ Hk,
and if the φk satisfy (H) then so do the αk. For fixed k, let p be the projection of
H̃k onto Hk. We have

‖ωk − ωk ◦ αk
t ‖ = sup

x∈B(H̃k)1

|ωk(x)− 〈αk
t (x)fk, fk〉|.

Since p is increasing for αk it follows that φk
t (pxp) = pαk

t (pxp)p = pαk
t (x)p, and

since fk = pfk, the right side of the preceding formula is

sup
x∈B(H̃k)1

|ωk(x)− 〈φ(k)
t (pxp)fk, fk〉| ≤ ‖(ωk − ωk ◦ φ(k)

t ) �Mk
‖‖x‖ ≤ Ak,

where Ak is the constant in (H) which dominates ‖(ωk−ωk◦φk
t ) �Mk

‖ for 0 ≤ t ≤ 1.
Continuing the argument along the lines of section 2, we conclude that the infinite
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tensor product
∞
⊗

k=1
αk exists as a CP semigroup. It is obviously an E0-semigroup

which serves as a dilation of the CP semigroup φ =
∞
⊗

k=1
φk. In fact, we have the

following.

Theorem 4.3. The dilation α on B(H̃) is a minimal dilation of φ.

Remark. It is straightforward to show, by using the criteria for minimality obtained
in Theorem B of [A5], that the finite tensor product of minimal dilations of CP
semigroups is itself a minimal dilation. The proof below relies on this result to
establish the case for infinite tensor products.

proof. Let P ∈ B(H̃) be the projection onto the subspace H on which φ acts. Then
P compresses α down to φ. Let P+ be the orthogonal projection in H̃ onto the
closed linear span H+ of the vectors of the form

(4.3) αt1(a1)αt2(a2) · · ·αtn
(an)ξ,

where ξ runs over H and the aj ’s lie in B(H). By [A5] P+ compresses α to a minimal
dilation of φ. To show that α is minimal, then, it suffices to show that P+ is the
identity in B(H̃), and to establish this it suffices to show that all product vectors of
the form ξ1⊗ξ2⊗· · ·⊗ξm⊗fm+1⊗fm+2⊗· · · are in the range of P+ for all vectors
ξk ∈ H̃k. Set ξ =

∞
⊗

k=1
fk. For fixed m ∈ N consider the linear span of all terms of

the form (4.3) where aj ∈ (
m
⊗

k=1
Mk)⊗ (I ⊗ I ⊗ · · · ) for all j. By the remark above

m
⊗

k=1
α(k) on

m
⊗

k=1
B(H̃k) is a minimal dilation of

m
⊗

k=1
φ(k) on

m
⊗

k=1
B(Hk), and therefore

ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξm ⊗ fm+1 ⊗ fm+2 ⊗ · · · is in the range of P+. But then, since m
is arbitrary, all of H̃ is in range of P+, so p+ = 1 and α is a minimal dilation of
φ. �

We conjecture that the minimal dilations of CP semigroups constructed as in
section 2 are all are all conjugate to a cocycle perturbation of a CAR/CCR flow.
The following confirms the conjecture for a large family of CP semigroups satisfying
the hypotheses of Corollary 2.

Theorem 4.4. Given a sequence of positive numbers λ1, λ2, . . . , let φ be a CP
semigroup acting on a matrix algebra M. Let φ̃ be the infinite tensor product

φ̃t = φλ1t ⊗ φλ2t ⊗ . . .

acting on the UHF algebra A = M⊗M⊗ . . . . Let ω = ω1 ⊗ ω2 ⊗ · · · be a pure
product state on A which induces an irreducible representation of A on B(H). If∑

n λ
1/2
n <∞, then the minimal dilation α̃ of the unique extension of φ̃ to B(H) is

a cocycle perturbation of a CCR/CAR flow.

Remark. In [A1] one of us characterized the CAR/CCR flows as being those E0-
semigroups which are completely spatial (see the following definition). Our proof of
the theorem rests on the verification that E0-semigroups satisfying the hypotheses of
the theorem are completely spatial. First we recall the following relevant definitions
from [A1].
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Definition 4.1. A strongly continuous one-parameter semigroup U = {Ut : t ≥ 0}
of operators in B(H̃) is called a unit of an E0-semigroup α on B(H̃) if for all
A ∈ B(H̃) and all t ≥ 0,

UtA = αt(A)Ut.

Remark. We shall denote by Uα the family of units of α. It is not difficult to
show that any U ∈ Uα is, up to perturbation by a semigroup of scalar operators, a
one-parameter semigroup of isometries.

Definition 4.2. An E0-semigroup α on B(H̃) is said to be completely spatial if for
all t ≥ 0 the Hilbert space H̃ coincides with the closed linear span of all vectors in
H̃ of the form

(4.4) U j1
s1
U j2

s2
· · ·U jn

sn
ξ,

with U j` ∈ Uα, j = 1, 2, . . . , n, with ξ ∈ B(H̃), and with
∑n

r=1 sr = t.

proof of theorem. Let α be a minimal dilation of φ. Since φ is a CP semigroup on
a matrix algebra its minimal dilation is completely spatial, by [A6] or [P1]. For
each k ∈ N let αk be the E0-semigroup defined by αk

t = αtλk
. αk is clearly a

minimal dilation of the CP semigroup φk related to φ by φk
t = φtλk

. Hence each
αk is completely spatial.

Using the notation of section 2, for somem ∈ N, let h = ξ1⊗ξ2⊗· · ·⊗ξm⊗fm+1⊗
fm+2⊗· · · , where ξk ∈ H̃k is arbitrary and fk, k = 1, 2, . . . are the distinguished unit
vectors used in the construction of the tensor product Hilbert space H. Since linear
combinations of such vectors are dense in H we will be done if we can show that
such vectors are in the closed linear span of vectors of the form (4.4). First note that
the finite tensor product of completely spatial E0-semigroups is completely spatial.
One sees this by recalling that the finite tensor product of CAR flows is a CAR flow
[P3] and then using the equivalence, up to cocycle conjugacy, between CAR flows
and completely spatial semigroups, [A1]. ¿From this observation it follows that the
product vector ξ1⊗ ξ2⊗· · ·⊗ ξm lies in the closed linear span of vectors of the form
U j1

s1
U j2

s2
· · ·U jn

sn
ξ, where each U j` is a unit of α1 ⊗ · · · ⊗ αm and ξ ∈

m
⊗

k=1
Hk.

Now let W be any fixed isometric unit of α. Note then that the semigroup W k

of isometries given by W k
t = Wtλk

, t ≥ 0 is a unit of αk. We wish to make sense
of the infinite tensor product Wm+1 ⊗Wm+2 ⊗ · · · and to show it is a unit of the
E0-semigroup

∞
⊗

k=m+1
αk. To see this, let P be the orthogonal projection in B(H̃),

with range H, which compresses α̃ to φ̃. Then by [A4] C = {Ct = PWtP : t ≥ 0}
is a contraction semigroup on H. For any unit vector f in H,

‖Wsf − f‖2 = 2(‖f‖2 −<〈Wsf, f〉) = 2<(‖f‖2 − 〈Csf, f〉) ≤ 2|1− 〈Csf, f〉 |.

Using the fact that Cs = esA for a bounded operator A we have

|1− 〈Csf, f〉 | = |
∫ s

0

d

ds
〈Csf, f〉 ds| = |

∫ s

0

〈CsAf, f〉 ds| ≤ ‖A‖ · s.

Taking square roots we arrive at the estimate

(E) ‖Wsf − f‖ ≤ c ·
√
s,
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where c is a constant. It will follow from this calculation that for fixed s ≥ 0 the
sequence of operators Vq(s) = I ⊗ I ⊗ · · · ⊗ I ⊗Wm+1

s ⊗Wm+2
s ⊗ · · · ⊗W q

s ⊗ I ⊗
I ⊗ · · · , q = m+ 1,m+ 2, . . . , converges strongly in B(H̃). To verify this it suffices
to show, since the sequence of operators is bounded in norm, that the sequence
{Vq(s)g : q ≥ m+ 1} is Cauchy for each g in some dense subset H̃0 of H̃. We may
take H̃0 to be the set of finite linear combinations of tensor products of unit vectors
of the form g = g1 ⊗ g2 ⊗ · · · gr ⊗ fr+1 ⊗ fr+2 ⊗ · · · , r ∈ N, gk ∈ H̃k, k = 1, 2, . . . r.
It follows that it suffices to show that {Vq(s)g : q ≥ m + 1} is Cauchy for tensor
product vectors of this form. Using (E) we have, for r < q1 < q2,

‖Vq2(s)g − Vq1(s)g‖ ≤
q2∑

k=q1+1

‖Vk(s)g − Vk−1(s)g‖

≤
q2∑

k=q1+1

‖W k
s fk − fk‖

≤
q2∑

k=q1+1

c ·
√
s ·

√
λk

This establishes our claim about the existence of the tensor product I ⊗ I ⊗ · · · I ⊗
∞
⊗

k=m+1
W k in B(H̃1 ⊗ H̃2 ⊗ · · · H̃m)′ ∩ B(H̃) of the isometric units W k. A similar

calculation to the one above shows that this semigroup is strongly continuous in the
real variable s. Moreover, following the construction in section 2 it is not difficult
to show that for fixed m ∈ N, W̄ = Wm+1 ⊗Wm+2 ⊗ · · · is a unit of

∞
⊗

k=m+1
αk.

Hence if U ` is a unit of
m
⊗

k=1
αk, then U ` ⊗ W̄ is a unit of

∞
⊗

k=1
αk.

Finally let h be the product vector given above, let t ≥ 0 be fixed, and for
ε > 0 let m sufficiently large that ‖W̄t(

∞
⊗

k=m+1
fk)−

∞
⊗

k=m+1
fk‖ < ε/2. Since

m
⊗

k=1
αk is

completely spatial there are units U ` in B(H̃1⊗ H̃2⊗ · · · H̃m) of this E0-semigroup
such that some linear combination F of vectors of the form U j1

s1
U j2

s2
· · ·U jn

sn
ξ satisfies

‖F − ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξm‖ < ε/2. Noting that U ` ⊗ W̄ is a unit of α̃ for all units U `

of
m
⊗

k=1
αk, and noting that ‖(F ⊗ W̄t(fm+1⊗ fm+2⊗ · · · ))− h‖ < ε we have verified

that α̃ is completely spatial.
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