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Abstract. Product systems are the classifying structures for semi-
groups of endomorphisms of B(H), in that two E0-semigroups are co-
cycle conjugate iff their product systems are isomorphic. Thus it is im-
portant to know that every abstract product system is associated with
an E0-semigrouop. This was first proved more than fifteen years ago by
rather indirect methods. Recently, Skeide has given a more direct proof.
In this note we give yet another proof by a very simple construction.

1. Introduction, formulation of results

Product systems are the structures that classify E0-semigroups up to co-
cycle conjugacy, in that two E0-semigroups are cocycle conjugate iff their
concrete product systems are isomorphic [Arv89]. Thus it is important to
know that every abstract product system is associated with an E0-semigroup.
There were two proofs of that fact [Arv90], [Lie03] (also see [Arv03]), both
of which involved substantial analysis. In a recent paper, Michael Skeide
[Ske06] gave a more direct proof. In this note we present a new and simpler
method for constructing an E0-semigroup from a product system.

Our terminology follows the monograph [Arv03]. Let E = {E(t) : t > 0}
be a product system and choose a unit vector e ∈ E(1). e will be fixed
throughout. We consider the Fréchet space of all Borel - measurable sections
t ∈ (0,∞) �→ f(t) ∈ E(t) that are locally square integrable

(1.1)
∫ T

0
‖f(λ)‖2 dλ < ∞, T > 0.

Definition 1.1. A locally L2 section f is said to be stable if there is a λ0 > 0
such that

f(λ + 1) = f(λ) · e, λ ≥ λ0.

Note that a stable section f satisfies f(λ + n) = f(λ) · en for all n ≥ 1
whenever λ is sufficiently large. The set of all stable sections is a vector
space S, and for any two sections f, g ∈ S, 〈f(λ + n), g(λ + n)〉 becomes
independent of n ∈ N when λ is sufficiently large. Thus we can define a
positive semidefinite inner product on S as follows

(1.2) 〈f, g〉 = lim
n→∞

∫ n+1

n
〈f(λ), g(λ)〉 dλ = lim

n→∞

∫ 1

0
〈f(λ + n), g(λ + n)〉 dλ.

2000 Mathematics Subject Classification. 46L55, 46L09.

1



2 WILLIAM ARVESON

Let N be the subspace of S consisting of all sections f that vanish eventually,
in that for some λ0 > 0 one has f(λ) = 0 for all λ ≥ λ0. One finds that
〈f, f〉 = 0 iff f ∈ N . Hence 〈·, ·〉 defines an inner product on the quotient
S/N , and its completion becomes a Hilbert space H with respect to the
inner product (1.2). Obviously, H is separable.

There is a natural representation of E on H. Fix v ∈ E(t), t > 0. For
every stable section f ∈ S, let φ0(v)f be the section

(φ0(v)f)(λ) =

{
v · f(λ − t), λ > t,

0, 0 < λ ≤ t.

Clearly φ0(v)S ⊆ S. Moreover, φ0(v) maps null sections into null sections,
hence it induces a linear operator φ(v) on S/N . The mapping (t, v), ξ ∈
E × S/N �→ φ(v)ξ ∈ H is obviously Borel-measurable, and it is easy to
check that ‖φ(v)ξ‖2 = ‖v‖2 · ‖ξ‖2 (see Section 2 for details). Thus we obtain
a representation φ of E on the completion H of S/N by closing the densely
defined operators φ(v)(f + N ) = φ0(v)f + N , v ∈ E(t), t > 0, f ∈ S.

Theorem 1.2. Let α = {αt : t ≥ 0} be the associated E-semigroup on B(H)

(1.3) αt(X) =
∞∑

n=1

φ(en(t))Xφ(en(t))∗, X ∈ B(H), t > 0,

where e1(t), e2(t), . . . is an orthonormal basis for E(t) for every t > 0. Then
for every t ≥ 0 one has αt(1) = 1.

2. Proof of Theorem 1.2

The following observation implies that we could just as well have defined
the inner product of (1.2) by

〈f, g〉 = lim
T→∞

∫ T+1

T
〈f(λ), g(λ)〉 dλ.

Lemma 2.1. For any two stable sections f, g, there is a λ0 > 0 such that

〈f, g〉 =
∫ T+1

T
〈f(λ), g(λ)〉 dλ

for all real numbers T ≥ λ0.

Proof. For integer values of k, the integral∫ k+1

k
〈f(λ), g(λ)〉 dλ

becomes independent of k when k is large. Thus, for sufficiently large T and
the integer n = nT satisfying T < n ≤ T + 1, it is enough to show that

(2.1)
∫ T+1

T
〈f(λ), g(λ)〉 dλ =

∫ n+1

n
〈f(λ), g(λ)〉 dλ.
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The integral on the left decomposes into a sum
∫ n
T +

∫ T+1
n . For λ ≥ T ,

〈f(λ), g(λ)〉E(λ) = 〈f(λ) ·e, g(λ) ·e〉E(λ+1) = 〈f(λ+1), g(λ+1)〉E(λ+1), hence∫ n

T
〈f(λ), g(λ)〉 dλ =

∫ n

T
〈f(λ + 1), g(λ + 1)〉 dλ =

∫ n+1

T+1
〈f(λ), g(λ)〉 dλ.

It follows that∫ T+1

T
〈f(λ), g(λ)〉 dλ = (

∫ n+1

T+1
+

∫ T+1

n
)〈f(λ), g(λ)〉 dλ

=
∫ n+1

n
〈f(λ), g(λ)〉 dλ

and (2.1) is proved. �

To show that φ is a representation, we must show that for every t > 0,
every v, w ∈ E(t), and every f, g ∈ S one has 〈φ0(v)f, φ0(w)g〉 = 〈v, w〉〈f, g〉.
Indeed, for sufficiently large n ∈ N we can write

〈φ0(v)f, φ0(w)g〉 =
∫ n+1

n
〈φ0(v)f(λ), φ0(w)g(λ)〉 dλ

=
∫ n+1

n
〈v · f(λ − t), w · g(λ − t)〉 dλ

= 〈v, w〉
∫ n+1

n
〈f(λ − t), g(λ − t)〉 dλ

= 〈v, w〉
∫ n−t+1

n−t
〈f(λ), g(λ)〉 dλ = 〈v, w〉〈f, g〉,

where the final equality uses Lemma 2.1.
It remains to show that φ is an essential representation, and for that, we

must calculate the adjoints of operators in φ(E). The following notation
from [Arv03] will be convenient.

Remark 2.2. Fix s > 0 and an element v ∈ E(s); for every t > 0 we consider
the left multiplication operator �v : x ∈ E(t) �→ v · x ∈ E(s + t). This
operator has an adjoint �∗v : E(s + t) → E(s), which we write more simply
as v∗η = �∗vη, η ∈ E(s + t). Equivalently, for s < t, v ∈ E(s), y ∈ E(t),
we write v∗y for �∗vy ∈ E(s). Note that v∗y is undefined for v ∈ E(s) and
y ∈ E(t) when t ≤ s.

Given elements u ∈ E(r), v ∈ E(s), w ∈ E(t), the “associative law”

(2.2) u∗(v · w) = (u∗v) · w
makes sense when r ≤ s (t > 0 can be arbitrary), provided that it is suitably
interpreted when r = s. Indeed, it is true verbatim when r < s and t > 0,
while if s = r and t > 0, then it takes the form

(2.3) u∗(v · w) = 〈v, u〉E(s) · w, u, v ∈ E(s), w ∈ E(t).



4 WILLIAM ARVESON

Lemma 2.3. Choose v ∈ E(t). For every stable section f ∈ S, there is a
null section g ∈ N such that

(φ0(v)∗f)(λ) = v∗f(λ + t) + g(λ), λ > 0.

Proof. A straightforward calculation of the adjoint of φ0(v) : S → S with
respect to the semidefinite inner product (1.2). �

Lemma 2.4. Let 0 < s < t, let v1, v2, . . . be an orthornormal basis for E(s)
and let ξ ∈ E(t). Then

(2.4)
∞∑

n=1

‖v∗nξ‖2 = ‖ξ‖2.

Proof. For n ≥ 1, ξ ∈ E(t) �→ vn(v∗nξ) ∈ E(t) defines a sequence of mutually
orthogonal projections in B(E(t)). We claim that these projections sum
to the identity. Indeed, since E(t) is the closed linear span of the set of
products E(s)E(t − s), it suffices to show that for every vector in E(t) of
the form ξ = η · ζ with η ∈ E(s), ζ ∈ E(t− s), we have

∑
n vn(v∗nξ) = ξ. For

that, we can use (2.2) and (2.3) to write

vn(v∗nξ) = vn(v∗n(η · ζ)) = vn((v∗nη) · ζ) = 〈η, vn〉vn · ζ,

hence
∞∑

n=1

vn(v∗nξ) = (
∞∑

n=1

〈η, vn〉vn) · ζ = η · ζ = ξ,

as asserted. (2.4) follows after taking the inner product with ξ. �

Proof of Theorem 1.2. Since the projections αt(1) decrease with t, it suffices
to show that α1(1) = 1; and for that, it suffices to show that for ξ ∈ H of
the form ξ = f + N where f is a stable section, one has

(2.5) 〈α1(1)ξ, ξ〉 =
∞∑

n=1

‖φ0(vn)∗f‖2 = ‖f‖2 = ‖ξ‖2,

v1, v2, . . . denoting an orthonormal basis for E(1). Fix such a basis (vn) for
E(1) and a stable section f . Choose λ0 > 1 so that f(λ + 1) = f(λ) · e for
λ > λ0. For λ > λ0 we have λ + 1 > 1, so Lemma 2.4 implies

∞∑
n=1

‖v∗nf(λ + 1)‖2 = ‖f(λ + 1)‖2 = ‖f(λ) · e‖2 = ‖f(λ)‖2.

It follows that for every integer N > λ0,
∞∑

n=1

∫ N+1

N
‖v∗nf(λ + 1)‖2 dλ =

∫ N+1

N

∞∑
n=1

‖v∗nf(λ + 1)‖2 dλ

=
∫ N+1

N
‖f(λ)‖2 dλ = ‖f + N‖2

H .
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Lemma 2.3 implies that when N is sufficiently large, the left side is
∞∑

n=1

∫ N+1

N
‖(φ0(vn)∗f)(λ)‖2 dλ =

∞∑
n=1

‖φ0(vn)f‖2,

and (2.5) follows. �
Remark 2.5 (Nontriviality of H). Let L2((0, 1];E) be the subspace of L2(E)
consisting of all sections that vanish almost everywhere outside the unit
interval. Every f ∈ L2((0, 1];E) corresponds to a stable section f̃ ∈ S by
extending it from (0, 1] to (0,∞) by periodicity

f̃(λ) = f(λ − n) · en, n < λ ≤ n + 1, n = 1, 2, . . . ,

and for every n = 1, 2, . . . we have∫ n+1

n
‖f̃(λ)‖2 dλ =

∫ n+1

n
‖f(λ − n) · en‖2 dλ =

∫ 1

0
‖f(λ)‖2 dλ.

Hence the map f �→ f̃ +N embeds L2((0, 1];E) isometrically as a subspace
of H; in particular, H is not the trivial Hilbert space {0}.
Remark 2.6 (Purity). An E0-semigroup α = {αt : t ≥ 0} is said to be pure
if the decreasing von Neumann algebras αt(B(H)) have trivial intersection
C ·1. The question of whether every E0-semigroup is a cocycle perturbation
of a pure one has been resistant [Arv03]. Equivalently, is every product
system associated with a pure E0-semigroup? While the answer is yes for
product systems of type I and II, and it is yes for the type III examples
constructed by Powers (see [Pow87] or Chapter 13 of [Arv03]), it is unknown
in general.

It is perhaps worth pointing out that we have shown that the examples
of Theorem 1.2 are not pure; hence the above construction appears to be
inadequate for approaching that issue. Since the proof establishes a negative
result that is peripheral to the direction of this note, we omit it.
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