ON THE EXISTENCE OF E_{0}-SEMIGROUPS

WILLIAM ARVESON

Abstract

Product systems are the classifying structures for semigroups of endomorphisms of $\mathcal{B}(H)$, in that two E_{0}-semigroups are cocycle conjugate iff their product systems are isomorphic. Thus it is important to know that every abstract product system is associated with an E_{0}-semigrouop. This was first proved more than fifteen years ago by rather indirect methods. Recently, Skeide has given a more direct proof. In this note we give yet another proof by a very simple construction.

1. Introduction, Formulation of Results

Product systems are the structures that classify E_{0}-semigroups up to cocycle conjugacy, in that two E_{0}-semigroups are cocycle conjugate iff their concrete product systems are isomorphic [Arv89]. Thus it is important to know that every abstract product system is associated with an E_{0}-semigroup. There were two proofs of that fact [Arv90], [Lie03] (also see [Arv03]), both of which involved substantial analysis. In a recent paper, Michael Skeide [Ske06] gave a more direct proof. In this note we present a new and simpler method for constructing an E_{0}-semigroup from a product system.

Our terminology follows the monograph [Arv03]. Let $E=\{E(t): t>0\}$ be a product system and choose a unit vector $e \in E(1)$. e will be fixed throughout. We consider the Fréchet space of all Borel - measurable sections $t \in(0, \infty) \mapsto f(t) \in E(t)$ that are locally square integrable

$$
\begin{equation*}
\int_{0}^{T}\|f(\lambda)\|^{2} d \lambda<\infty, \quad T>0 \tag{1.1}
\end{equation*}
$$

Definition 1.1. A locally L^{2} section f is said to be stable if there is a $\lambda_{0}>0$ such that

$$
f(\lambda+1)=f(\lambda) \cdot e, \quad \lambda \geq \lambda_{0}
$$

Note that a stable section f satisfies $f(\lambda+n)=f(\lambda) \cdot e^{n}$ for all $n \geq 1$ whenever λ is sufficiently large. The set of all stable sections is a vector space \mathcal{S}, and for any two sections $f, g \in \mathcal{S},\langle f(\lambda+n), g(\lambda+n)\rangle$ becomes independent of $n \in \mathbb{N}$ when λ is sufficiently large. Thus we can define a positive semidefinite inner product on \mathcal{S} as follows

$$
\begin{equation*}
\langle f, g\rangle=\lim _{n \rightarrow \infty} \int_{n}^{n+1}\langle f(\lambda), g(\lambda)\rangle d \lambda=\lim _{n \rightarrow \infty} \int_{0}^{1}\langle f(\lambda+n), g(\lambda+n)\rangle d \lambda \tag{1.2}
\end{equation*}
$$

[^0]Let \mathcal{N} be the subspace of \mathcal{S} consisting of all sections f that vanish eventually, in that for some $\lambda_{0}>0$ one has $f(\lambda)=0$ for all $\lambda \geq \lambda_{0}$. One finds that $\langle f, f\rangle=0$ iff $f \in \mathcal{N}$. Hence $\langle\cdot, \cdot\rangle$ defines an inner product on the quotient $\mathcal{S} / \mathcal{N}$, and its completion becomes a Hilbert space H with respect to the inner product (1.2). Obviously, H is separable.

There is a natural representation of E on H. Fix $v \in E(t), t>0$. For every stable section $f \in \mathcal{S}$, let $\phi_{0}(v) f$ be the section

$$
\left(\phi_{0}(v) f\right)(\lambda)= \begin{cases}v \cdot f(\lambda-t), & \lambda>t \\ 0, & 0<\lambda \leq t\end{cases}
$$

Clearly $\phi_{0}(v) \mathcal{S} \subseteq \mathcal{S}$. Moreover, $\phi_{0}(v)$ maps null sections into null sections, hence it induces a linear operator $\phi(v)$ on $\mathcal{S} / \mathcal{N}$. The mapping $(t, v), \xi \in$ $E \times \mathcal{S} / \mathcal{N} \mapsto \phi(v) \xi \in H$ is obviously Borel-measurable, and it is easy to check that $\|\phi(v) \xi\|^{2}=\|v\|^{2} \cdot\|\xi\|^{2}$ (see Section 2 for details). Thus we obtain a representation ϕ of E on the completion H of $\mathcal{S} / \mathcal{N}$ by closing the densely defined operators $\phi(v)(f+\mathcal{N})=\phi_{0}(v) f+\mathcal{N}, v \in E(t), t>0, f \in \mathcal{S}$.

Theorem 1.2. Let $\alpha=\left\{\alpha_{t}: t \geq 0\right\}$ be the associated E-semigroup on $\mathcal{B}(H)$

$$
\begin{equation*}
\alpha_{t}(X)=\sum_{n=1}^{\infty} \phi\left(e_{n}(t)\right) X \phi\left(e_{n}(t)\right)^{*}, \quad X \in \mathcal{B}(H), \quad t>0, \tag{1.3}
\end{equation*}
$$

where $e_{1}(t), e_{2}(t), \ldots$ is an orthonormal basis for $E(t)$ for every $t>0$. Then for every $t \geq 0$ one has $\alpha_{t}(\mathbf{1})=\mathbf{1}$.

2. Proof of Theorem 1.2

The following observation implies that we could just as well have defined the inner product of (1.2) by

$$
\langle f, g\rangle=\lim _{T \rightarrow \infty} \int_{T}^{T+1}\langle f(\lambda), g(\lambda)\rangle d \lambda .
$$

Lemma 2.1. For any two stable sections f, g, there is a $\lambda_{0}>0$ such that

$$
\langle f, g\rangle=\int_{T}^{T+1}\langle f(\lambda), g(\lambda)\rangle d \lambda
$$

for all real numbers $T \geq \lambda_{0}$.
Proof. For integer values of k, the integral

$$
\int_{k}^{k+1}\langle f(\lambda), g(\lambda)\rangle d \lambda
$$

becomes independent of k when k is large. Thus, for sufficiently large T and the integer $n=n_{T}$ satisfying $T<n \leq T+1$, it is enough to show that

$$
\begin{equation*}
\int_{T}^{T+1}\langle f(\lambda), g(\lambda)\rangle d \lambda=\int_{n}^{n+1}\langle f(\lambda), g(\lambda)\rangle d \lambda . \tag{2.1}
\end{equation*}
$$

The integral on the left decomposes into a sum $\int_{T}^{n}+\int_{n}^{T+1}$. For $\lambda \geq T$, $\langle f(\lambda), g(\lambda)\rangle_{E(\lambda)}=\langle f(\lambda) \cdot e, g(\lambda) \cdot e\rangle_{E(\lambda+1)}=\langle f(\lambda+1), g(\lambda+1)\rangle_{E(\lambda+1)}$, hence

$$
\int_{T}^{n}\langle f(\lambda), g(\lambda)\rangle d \lambda=\int_{T}^{n}\langle f(\lambda+1), g(\lambda+1)\rangle d \lambda=\int_{T+1}^{n+1}\langle f(\lambda), g(\lambda)\rangle d \lambda .
$$

It follows that

$$
\begin{aligned}
\int_{T}^{T+1}\langle f(\lambda), g(\lambda)\rangle d \lambda & =\left(\int_{T+1}^{n+1}+\int_{n}^{T+1}\right)\langle f(\lambda), g(\lambda)\rangle d \lambda \\
& =\int_{n}^{n+1}\langle f(\lambda), g(\lambda)\rangle d \lambda
\end{aligned}
$$

and (2.1) is proved.
To show that ϕ is a representation, we must show that for every $t>0$, every $v, w \in E(t)$, and every $f, g \in \mathcal{S}$ one has $\left\langle\phi_{0}(v) f, \phi_{0}(w) g\right\rangle=\langle v, w\rangle\langle f, g\rangle$. Indeed, for sufficiently large $n \in \mathbb{N}$ we can write

$$
\begin{aligned}
\left\langle\phi_{0}(v) f, \phi_{0}(w) g\right\rangle & =\int_{n}^{n+1}\left\langle\phi_{0}(v) f(\lambda), \phi_{0}(w) g(\lambda)\right\rangle d \lambda \\
& =\int_{n}^{n+1}\langle v \cdot f(\lambda-t), w \cdot g(\lambda-t)\rangle d \lambda \\
& =\langle v, w\rangle \int_{n}^{n+1}\langle f(\lambda-t), g(\lambda-t)\rangle d \lambda \\
& =\langle v, w\rangle \int_{n-t}^{n-t+1}\langle f(\lambda), g(\lambda)\rangle d \lambda=\langle v, w\rangle\langle f, g\rangle,
\end{aligned}
$$

where the final equality uses Lemma 2.1.
It remains to show that ϕ is an essential representation, and for that, we must calculate the adjoints of operators in $\phi(E)$. The following notation from [Arv03] will be convenient.
Remark 2.2. Fix $s>0$ and an element $v \in E(s)$; for every $t>0$ we consider the left multiplication operator $\ell_{v}: x \in E(t) \mapsto v \cdot x \in E(s+t)$. This operator has an adjoint $\ell_{v}^{*}: E(s+t) \rightarrow E(s)$, which we write more simply as $v^{*} \eta=\ell_{v}^{*} \eta, \eta \in E(s+t)$. Equivalently, for $s<t, v \in E(s), y \in E(t)$, we write $v^{*} y$ for $\ell_{v}^{*} y \in E(s)$. Note that $v^{*} y$ is undefined for $v \in E(s)$ and $y \in E(t)$ when $t \leq s$.

Given elements $u \in E(r), v \in E(s), w \in E(t)$, the "associative law"

$$
\begin{equation*}
u^{*}(v \cdot w)=\left(u^{*} v\right) \cdot w \tag{2.2}
\end{equation*}
$$

makes sense when $r \leq s(t>0$ can be arbitrary), provided that it is suitably interpreted when $r=s$. Indeed, it is true verbatim when $r<s$ and $t>0$, while if $s=r$ and $t>0$, then it takes the form

$$
\begin{equation*}
u^{*}(v \cdot w)=\langle v, u\rangle_{E(s)} \cdot w, \quad u, v \in E(s), \quad w \in E(t) . \tag{2.3}
\end{equation*}
$$

Lemma 2.3. Choose $v \in E(t)$. For every stable section $f \in \mathcal{S}$, there is a null section $g \in \mathcal{N}$ such that

$$
\left(\phi_{0}(v)^{*} f\right)(\lambda)=v^{*} f(\lambda+t)+g(\lambda), \quad \lambda>0 .
$$

Proof. A straightforward calculation of the adjoint of $\phi_{0}(v): \mathcal{S} \rightarrow \mathcal{S}$ with respect to the semidefinite inner product (1.2).

Lemma 2.4. Let $0<s<t$, let v_{1}, v_{2}, \ldots be an orthornormal basis for $E(s)$ and let $\xi \in E(t)$. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\|v_{n}^{*} \xi\right\|^{2}=\|\xi\|^{2} \tag{2.4}
\end{equation*}
$$

Proof. For $n \geq 1, \xi \in E(t) \mapsto v_{n}\left(v_{n}^{*} \xi\right) \in E(t)$ defines a sequence of mutually orthogonal projections in $\mathcal{B}(E(t))$. We claim that these projections sum to the identity. Indeed, since $E(t)$ is the closed linear span of the set of products $E(s) E(t-s)$, it suffices to show that for every vector in $E(t)$ of the form $\xi=\eta \cdot \zeta$ with $\eta \in E(s), \zeta \in E(t-s)$, we have $\sum_{n} v_{n}\left(v_{n}^{*} \xi\right)=\xi$. For that, we can use (2.2) and (2.3) to write

$$
v_{n}\left(v_{n}^{*} \xi\right)=v_{n}\left(v_{n}^{*}(\eta \cdot \zeta)\right)=v_{n}\left(\left(v_{n}^{*} \eta\right) \cdot \zeta\right)=\left\langle\eta, v_{n}\right\rangle v_{n} \cdot \zeta,
$$

hence

$$
\sum_{n=1}^{\infty} v_{n}\left(v_{n}^{*} \xi\right)=\left(\sum_{n=1}^{\infty}\left\langle\eta, v_{n}\right\rangle v_{n}\right) \cdot \zeta=\eta \cdot \zeta=\xi
$$

as asserted. (2.4) follows after taking the inner product with ξ.
Proof of Theorem 1.2. Since the projections $\alpha_{t}(\mathbf{1})$ decrease with t, it suffices to show that $\alpha_{1}(\mathbf{1})=\mathbf{1}$; and for that, it suffices to show that for $\xi \in H$ of the form $\xi=f+\mathcal{N}$ where f is a stable section, one has

$$
\begin{equation*}
\left\langle\alpha_{1}(\mathbf{1}) \xi, \xi\right\rangle=\sum_{n=1}^{\infty}\left\|\phi_{0}\left(v_{n}\right)^{*} f\right\|^{2}=\|f\|^{2}=\|\xi\|^{2} \tag{2.5}
\end{equation*}
$$

v_{1}, v_{2}, \ldots denoting an orthonormal basis for $E(1)$. Fix such a basis $\left(v_{n}\right)$ for $E(1)$ and a stable section f. Choose $\lambda_{0}>1$ so that $f(\lambda+1)=f(\lambda) \cdot e$ for $\lambda>\lambda_{0}$. For $\lambda>\lambda_{0}$ we have $\lambda+1>1$, so Lemma 2.4 implies

$$
\sum_{n=1}^{\infty}\left\|v_{n}^{*} f(\lambda+1)\right\|^{2}=\|f(\lambda+1)\|^{2}=\|f(\lambda) \cdot e\|^{2}=\|f(\lambda)\|^{2} .
$$

It follows that for every integer $N>\lambda_{0}$,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \int_{N}^{N+1}\left\|v_{n}^{*} f(\lambda+1)\right\|^{2} d \lambda & =\int_{N}^{N+1} \sum_{n=1}^{\infty}\left\|v_{n}^{*} f(\lambda+1)\right\|^{2} d \lambda \\
& =\int_{N}^{N+1}\|f(\lambda)\|^{2} d \lambda=\|f+\mathcal{N}\|_{H}^{2}
\end{aligned}
$$

Lemma 2.3 implies that when N is sufficiently large, the left side is

$$
\sum_{n=1}^{\infty} \int_{N}^{N+1}\left\|\left(\phi_{0}\left(v_{n}\right)^{*} f\right)(\lambda)\right\|^{2} d \lambda=\sum_{n=1}^{\infty}\left\|\phi_{0}\left(v_{n}\right) f\right\|^{2}
$$

and (2.5) follows.
Remark 2.5 (Nontriviality of H). Let $L^{2}((0,1] ; E)$ be the subspace of $L^{2}(E)$ consisting of all sections that vanish almost everywhere outside the unit interval. Every $f \in L^{2}((0,1] ; E)$ corresponds to a stable section $\tilde{f} \in \mathcal{S}$ by extending it from $(0,1]$ to $(0, \infty)$ by periodicity

$$
\tilde{f}(\lambda)=f(\lambda-n) \cdot e^{n}, \quad n<\lambda \leq n+1, \quad n=1,2, \ldots,
$$

and for every $n=1,2, \ldots$ we have

$$
\int_{n}^{n+1}\|\tilde{f}(\lambda)\|^{2} d \lambda=\int_{n}^{n+1}\left\|f(\lambda-n) \cdot e^{n}\right\|^{2} d \lambda=\int_{0}^{1}\|f(\lambda)\|^{2} d \lambda .
$$

Hence the map $f \mapsto \tilde{f}+\mathcal{N}$ embeds $L^{2}((0,1] ; E)$ isometrically as a subspace of H; in particular, H is not the trivial Hilbert space $\{0\}$.
Remark 2.6 (Purity). An E_{0}-semigroup $\alpha=\left\{\alpha_{t}: t \geq 0\right\}$ is said to be pure if the decreasing von Neumann algebras $\alpha_{t}(\mathcal{B}(H))$ have trivial intersection $\mathbb{C} \cdot \mathbf{1}$. The question of whether every E_{0}-semigroup is a cocycle perturbation of a pure one has been resistant [Arv03]. Equivalently, is every product system associated with a pure E_{0}-semigroup? While the answer is yes for product systems of type I and $I I$, and it is yes for the type $I I I$ examples constructed by Powers (see [Pow87] or Chapter 13 of [Arv03]), it is unknown in general.

It is perhaps worth pointing out that we have shown that the examples of Theorem 1.2 are not pure; hence the above construction appears to be inadequate for approaching that issue. Since the proof establishes a negative result that is peripheral to the direction of this note, we omit it.

References

[Arv89] W. Arveson. Continuous analogues of Fock space. Memoirs Amer. Math. Soc., 80(3), 1989.
[Arv90] W. Arveson. Continuous analogues of Fock space $I V$: essential states. Acta Math., 164:265-300, 1990.
[Arv03] W. Arveson. Noncommutative Dynamics and E-semigroups. Monographs in Mathematics. Springer-Verlag, New York, 2003.
[Lie03] V. Liebscher. On the generators of quantum dynamical semigroups. 2003. arXiv:PR/0306365.
[Pow87] R.T. Powers. a non-spatial continuous semigroup of $*$-endomorphisms of $\mathcal{B}(H)$. Publ. RIMS (Kyoto University), 23(6):1054-1069, 1987.
[Ske06] M. Skeide. A simple proof of the fundamental theorem about Arveson systems. Inf. Dim. Anal. Quantum Prob. (to appear), 2006. arXiv:math.OA/0602014v1.

Department of Mathematics, University of California, Berkeley, CA 94720
E-mail address: arveson@mail.math.berkeley.edu

[^0]: 2000 Mathematics Subject Classification. 46L55, 46L09.

