ON THE EXISTENCE OF Ej,-SEMIGROUPS

WILLIAM ARVESON

ABSTRACT. Product systems are the classifying structures for semi-
groups of endomorphisms of B(H), in that two Ep-semigroups are co-
cycle conjugate iff their product systems are isomorphic. Thus it is im-
portant to know that every abstract product system is associated with
an Fo-semigrouop. This was first proved more than fifteen years ago by
rather indirect methods. Recently, Skeide has given a more direct proof.
In this note we give yet another proof by a very simple construction.

1. INTRODUCTION, FORMULATION OF RESULTS

Product systems are the structures that classify Ey-semigroups up to co-
cycle conjugacy, in that two Ep-semigroups are cocycle conjugate iff their
concrete product systems are isomorphic [Arv89]. Thus it is important to
know that every abstract product system is associated with an Fy-semigroup.
There were two proofs of that fact [Arv90], [Lie03] (also see [Arv03]), both
of which involved substantial analysis. In a recent paper, Michael Skeide
[Ske06] gave a more direct proof. In this note we present a new and simpler
method for constructing an Ey-semigroup from a product system.

Our terminology follows the monograph [Arv03]. Let £ = {E(t) : t > 0}
be a product system and choose a unit vector e € E(1). e will be fized
throughout. We consider the Fréchet space of all Borel - measurable sections
t € (0,00) — f(t) € E(t) that are locally square integrable

T
(1.1) /0 IFOV)?Pdr <00, T >0.

Definition 1.1. A locally L? section f is said to be stable if there is a A\g > 0
such that

JO+D) =fN) e A=A

Note that a stable section f satisfies f(A+mn) = f(\)-e" forall n > 1
whenever )\ is sufficiently large. The set of all stable sections is a vector
space S, and for any two sections f,g € S, (f(A+ n),g(A + n)) becomes
independent of n € N when A is sufficiently large. Thus we can define a
positive semidefinite inner product on S as follows

n+1 1
(12) (f,g) = lim [ (FA),g(\)dA = lim [ (F(A+n),g(A+n))dX.

n—oo n n—oo 0
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Let \V be the subspace of S consisting of all sections f that vanish eventually,
in that for some Ay > 0 one has f(A) = 0 for all A > Ag. One finds that
(f,fy=01iff f € N. Hence (-,-) defines an inner product on the quotient
S/N, and its completion becomes a Hilbert space H with respect to the
inner product (1.2). Obviously, H is separable.

There is a natural representation of £ on H. Fix v € E(t), t > 0. For
every stable section f € S, let ¢o(v)f be the section

v fA—1),  A>t,

(do(0) (V) = {0 0<a<t.

Clearly ¢o(v)S C S. Moreover, ¢g(v) maps null sections into null sections,
hence it induces a linear operator ¢(v) on S/N. The mapping (t,v),& €
E x S/N — ¢(v)§ € H is obviously Borel-measurable, and it is easy to
check that ||¢(v)€]|2 = ||v]|?- ||€]|? (see Section 2 for details). Thus we obtain
a representation ¢ of E on the completion H of S/N by closing the densely
defined operators ¢p(v)(f +N) = ¢o(v)f + N, v e E(t),t >0, f € S.

Theorem 1.2. Let o = {oy : t > 0} be the associated E-semigroup on B(H)
(1.3) (X)) = Z d(en(t)) X o(en(t))”, X eB(H), t>0,
n=1

where e1(t), ea(t),... is an orthonormal basis for E(t) for everyt > 0. Then
for every t > 0 one has oy (1) = 1.
2. PROOF OF THEOREM 1.2

The following observation implies that we could just as well have defined
the inner product of (1.2) by

(f,g) = lim (F(N), g(\)) dA.

T—oo JT

Lemma 2.1. For any two stable sections f, g, there is a A\g > 0 such that

T+1
(fq) = / (F(N),g(\) dA

T
for all real numbers T > \g.

Proof. For integer values of k, the integral

k+1
/k (F(N), g(0) dA

becomes independent of k when k is large. Thus, for sufficiently large T" and
the integer n = np satisfying T' < n < T + 1, it is enough to show that

T+1 n+l
(2.1) [ dongnan= [T o).g0) i

T n
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The integral on the left decomposes into a sum f}l + fnT 1 For A > 1T,
(), 9N ey = (F(N)-e,9(N) ) pire1) = (f(A+1),9(A+1)) grs1), hence
n+1

[ uongonan= [T g0+ myan= [ rog0) ax

T T T+1
It follows that

T+1 n+1 T+1
[ sovana=([ 4 [Hrm.e i

T T+1

n+1
- / (F(N),g(\)
and (2.1) is proved. O

To show that ¢ is a representation, we must show that for every ¢ > 0,
every v,w € E(t), and every f, g € S one has (¢o(v)f, ¢o(w)g) = (v,w)(f, ).
Indeed, for sufficiently large n € N we can write

n+1

(60(0)f, do(w)g) — / (Go(0) F(N), do(w)g(A)) dA

n

n+1
:/ (v-fA=t),w-g(A—1))dA
n+1
— (v,w) / (PO — 1), g(A — 1)) dA

n—t+1
— (v,w) / (), g(N) dA = (0,0} g),

—t
where the final equality uses Lemma 2.1.
It remains to show that ¢ is an essential representation, and for that, we
must calculate the adjoints of operators in ¢(F). The following notation
from [Arv03] will be convenient.

Remark 2.2. Fix s > 0 and an element v € E(s); for every ¢t > 0 we consider
the left multiplication operator ¢, : * € E(t) — v -2z € E(s +t). This
operator has an adjoint £} : E(s +t) — E(s), which we write more simply
as v'n = Oin, n € E(s +t). Equivalently, for s < ¢, v € E(s), y € E(t),
we write v*y for £y € E(s). Note that v*y is undefined for v € E(s) and
y € E(t) when t < s.

Given elements u € E(r), v € E(s), w € E(t), the “associative law”
(2.2) u(v-w) = (uv) - w

makes sense when r < s (¢t > 0 can be arbitrary), provided that it is suitably
interpreted when r = s. Indeed, it is true verbatim when r < s and ¢t > 0,
while if s = r and ¢ > 0, then it takes the form

(2.3) u*(v-w) = (v, u) gs) - W, u,v € E(s), w € E(t).
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Lemma 2.3. Choose v € E(t). For every stable section f € S, there is a
null section g € N such that

(Go(0)" f)(A) =v"fF(A+1) +9(F),  A>0.
Proof. A straightforward calculation of the adjoint of ¢g(v) : S — S with

respect to the semidefinite inner product (1.2). O
Lemma 2.4. Let 0 < s < t, let v1,ve,... be an orthornormal basis for E(s)
and let £ € E(t). Then

(o]
(2.4) > llogll* = gl

n=1

Proof. Forn > 1, & € E(t) — v, (v:€) € E(t) defines a sequence of mutually
orthogonal projections in B(E(t)). We claim that these projections sum
to the identity. Indeed, since E(t) is the closed linear span of the set of
products E(s)E(t — s), it suffices to show that for every vector in E(t) of
the form £ = n-( with n € E(s), ( € E(t—s), we have ) v,(v;:§) = & For
that, we can use (2.2) and (2.3) to write

Un(Up€) = vn (v (11 C)) = vn((v3n) - €) = (0, vn)n - €,

hence
Z un(vp€) = (Z<"7a Un)n) - C=1n-C=¢,
n=1 n=1
as asserted. (2.4) follows after taking the inner product with &. O

Proof of Theorem 1.2. Since the projections ay(1) decrease with ¢, it suffices
to show that a;(1) = 1; and for that, it suffices to show that for £ € H of
the form & = f + N where f is a stable section, one has

(2.5) (&€ =D llgo(oa) fI? = IF1* = ll€),
n=1
v1,v2, ... denoting an orthonormal basis for E(1). Fix such a basis (v,) for

E(1) and a stable section f. Choose \g > 1 so that f(A+1) = f()) - e for
A > Ap. For A > A\g we have A + 1 > 1, so Lemma 2.4 implies

Dol fOF DI = 1A+ DIP = 17 - el = [ F )%

n=1

It follows that for every integer N > Ag,

o N+1 N+1 o0
S /N [ f A+ 1) dA = / S Jlus O+ 1)]2 dA
n=1 n=1

N

N+1
- /N IR A= |1 + N2
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Lemma 2.3 implies that when N is sufficiently large, the left side is

9) N+1 o0
Z/ 1(Go(wa)* MNP dA =D lldo(wn) £,
n=1"N n=1
and (2.5) follows. O

Remark 2.5 (Nontriviality of H). Let L?((0,1]; E) be the subspace of L?(E)
consisting of all sections that vanish almost everywhere outside the unit
interval. Every f € L?((0,1]; E) corresponds to a stable section f € S by
extending it from (0, 1] to (0, 00) by periodicity

f) = f(A=n)-e", n<A<n+1, n=12,...,

and for every n = 1,2,... we have
n+l ) n+1 ) 1 )
[l = [T - an = /0 1FOV2 .

Hence the map f — f + AN embeds L?((0,1]; E) isometrically as a subspace
of H; in particular, H is not the trivial Hilbert space {0}.

Remark 2.6 (Purity). An Ep-semigroup a = {ay : t > 0} is said to be pure
if the decreasing von Neumann algebras a;(B(H)) have trivial intersection
C-1. The question of whether every Ey-semigroup is a cocycle perturbation
of a pure one has been resistant [Arv03]. Equivalently, is every product
system associated with a pure Eg-semigroup? While the answer is yes for
product systems of type I and I, and it is yes for the type 1] examples
constructed by Powers (see [Pow87] or Chapter 13 of [Arv03]), it is unknown
in general.

It is perhaps worth pointing out that we have shown that the examples
of Theorem 1.2 are not pure; hence the above construction appears to be
inadequate for approaching that issue. Since the proof establishes a negative
result that is peripheral to the direction of this note, we omit it.
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