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Abstract. In probability theory all nonatomic probability measures look the same.

That is because any two nonatomic separable measure algebras are isomorphic.
Quantum probability theory is different: two normal states of B(H) are conjugate
only when the eigenvalue lists of their density operators are the same. Suppose now
that one is given an increasing sequence M1 ⊆M2 ⊆ . . . of type I subfactors of B(H)

whose union is weak∗-dense in B(H). Common sense suggests that if one restricts a
normal state ρ of B(H) to Mn and considers its eigenvalue list Λn for large n, then
Λn should be close to the eigenvalue list of ρ when n is large.

We discuss some natural examples which show that this intuition is wrong, and
we attempt to explain the phenomemon by describing the correct asymptotic formula
when the sequence (Mn) is “stable”. Applications are not discussed here, but are
taken up in [1].

A tower is an increasing sequence of type I subfactors of B(H) M1 ⊆M2 ⊆ . . .
whose union is weak∗-dense in B(H). Here H is separable and infinite dimensional,
and the subfactors Mn may be finite-dimensional (i.e., isomorphic to full matrix
algebras) or isomorphic to B(H) itself. In order to sidestep trivialities we also
require that each Mn be of infinite codimension in B(H).

Let ρ be a normal state defined on a type I factor M (having separable predual).
We can associate an eigenvalue list with ρ as follows. Noting that M is ∗-isomorphic
to B(K) for some separable Hilbert space K we realize ρ as a normal state on B(K)
and write R for its density operator

ρ(A) = trace(RA), A ∈ B(K).

R is a positive operator of trace 1, whose eigenvalues including multiplicity may
be enumerated in decreasing order {λ1 ≥ λ2 ≥ . . . }. This sequence Λ(ρ) is called
the eigenvalue list of ρ. In case K is finite dimensional we may consider Λ(ρ) to
be an infinite ordered sequence by extending it out to infinity with zeros; thus,
eigenvalue lists of normal states of type I factors M are always infinite sequences
of nonnegative real numbers summing to 1, even when M is finite dimensional.

There is a natural metric defined on the space of eigenvalue lists, that is the
space of all decreasing sequences Λ = {λ1, λ2, . . . } of nonnegative real numbers
satisfying

∑
n λn = 1. For Λ = {λ1, λ2, . . . }, Λ′ = {λ′1, λ′2, . . . } we set

‖Λ− Λ′‖ =
∞∑
n=1

|λn − λ′n|.
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The space of eigenvalue lists is a closed subset of the unit ball of `1.
The basic properties of eigenvalue lists are summarized as follows
(1) If ωξ is a vector state of B(K) then Λ(ωξ) = {1, 0, 0, . . . }.
(2) If ρ and σ are normal states on M and N respectively which are conjugate

in the sense that there is a ∗-isomorphism θ : M → N such that σ ◦ θ = ρ,
then Λ(ρ) = Λ(σ).

(3) Weyl’s inequality: If ρ, σ are normal states of the same type I factor M
then

‖Λ(ρ)− Λ(σ)‖ ≤ ‖ρ− σ‖.

(4) If ρk is a normal state of a type I∞ factor Mk, k = 1, 2, then there is a
sequence of ∗-isomorphisms θk : M1 →M2 such that

‖Λ(ρ1)− Λ(ρ2)‖ = lim
n→∞

‖ρ1 − ρ2 ◦ θn‖.

Remarks. Together, properties (3) and (4) are essentially reformulations of the
following more familiar assertion about positive trace class operators A, B acting on
a separable infinite dimensional Hilbert space H. Let {λ1, λ2, . . . } and {µ1, µ2, . . . }
be the eigenvalue lists of A and B respectively, and let U(H) denote the unitary
group in B(H). Then

∞∑
n=1

|λn − µn| = inf
U∈U(H)

trace|A− UBU−1|.

Given a tower (Mn) in B(H) and a normal state ρ on B(H), we are interested
in the asymptotic behavior of the eigenvalue lists of the restrictions ρ �Mn when n
is large, and especially we want to compute limn Λ(ρ �Mn) when this limit exists.
There are many examples of towers for which such limits do not exist. The hy-
pothesis we require is formulated not in terms of the sequence Mn but rather the
sequence M ′n of commutants.

Definition. A tower (Mn) in B(H) is called stable if there is a normal state ω of
B(H) and an eigenvalue list Λ∞ such that

lim
n→∞

Λ(ω �M ′
n
) = Λ∞

in the metric of eigenvalue lists.

Notice that for any tower (Mn) in B(H) and for any two normal states ρ1 and
ρ2 of B(H), we must have

lim
n→∞

‖(ρ1 − ρ2) �M ′
n
‖ = ‖(ρ1 − ρ2) �C·1 ‖ = 0

since the commutants M ′n decrease to C · 1. By (3) above it follows that

lim
n→∞

‖Λ(ρ1 �M ′
n
)− Λ(ρ2 �M ′

n
)‖ = 0.

We conclude that the limit list Λ∞ is a uniquely defined asymptotic invariant of
stable towers in the following sense.
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Observation. Let (Mn) be a stable tower with limit list Λ∞. Then for any normal
state ρ of B(H) we have

lim
n→∞

Λ(ρ �M ′
n
) = Λ∞.

Examples. Our main examples come from dynamics, and the simplest of these
is as follows. Let α be an endomorphsim of B(H) (by that we mean a normal
∗-homomorphism of B(H) into itself for which α(1) = 1). For each n = 1, 2, . . .
let Mn be the commutant of αn(B(H)). It is obvious that M1 ⊆ M2 ⊆ . . . , and if
α is pure in the sense that ∩nαn(B(H)) = C · 1, then (Mn) is a tower. Suppose,
in addition, that there is a normal state ω of B(H) which is invariant under α:
ω ◦ α = ω. Notice that property (2) above implies that Λ(ω �M ′

n
) = Λ(ω) for every

n = 1, 2, . . . . We conclude that Mn = αn(B(H))′ defines a stable tower whenever
α is a pure endomorphism of B(H) with a normal invariant state.

In the analysis of interactions [1] one has a similar situation, but instead of a se-
quence (Mn) one has a one-parameter family of type I subfactors Mt = αt(B(H))′,
α = {αt : t ≥ 0} being a pure E0-semigroup. The basic problem reduces to estab-
lishing the existence of limits limt→∞ Λ(ρ �Mt) and calculating their values, where
ρ is a normal state of B(H). We now take up these issues in the somewhat simpler
case of stable towers.

The following result characterizes stability for towers in terms that can be related
to the above examples based on dynamics.

Proposition. Let (Mn) be an arbitrary tower in B(H). The following are equiva-
lent.

(1) (Mn) is stable.
(2) There is a normal state ω of B(H) and a sequence of endomorphisms

α1, α2, . . . of B(H) such that αn(B(H)) = M ′n and

lim
n→∞

‖ω ◦ αn − ω‖ = 0.

(3) There is an eigenvalue list Λ∞ with the following property. For every normal
state ω of B(H) with Λ(ω) = Λ∞ there is a sequence of endomorphisms
α1, α2, . . . of B(H) such that αn(B(H)) = M ′n and

lim
n→∞

‖ω ◦ αn − ω‖ = 0.

proof. The implications (3) =⇒ (2) and (2) =⇒ (1) are completely straightfor-
ward. We prove (1) =⇒ (3). Let Λ∞ be the limit list of a stable tower (Mn) in
B(H), and choose any normal state ω of B(H) with Λ(ω) = Λ∞. Since M ′n is a
type I∞ factor, there is a ∗-isomorphism πn of B(H) onto M ′n. By property (2) of
eigenvalue lists we have

‖Λ(ω ◦ πn)− Λ(ω)‖ = ‖Λ(ω �M ′
n
)− Λ∞‖ → 0

as n→∞. Property (4) of eigenvalue lists implies that there is a sequence θ1, θ2, . . .
of ∗-automorphisms of B(H) such that

‖ω ◦ πn − ω ◦ θn‖ ≤ ‖Λ(ω ◦ πn)− Λ(ω)‖+ 2−n

for every n = 1, 2, . . . , and the assertion (3) of the Theorem follows by taking
αn = πn ◦ θ−1

n and noting that ‖ω ◦ αn − ω‖ → 0 as n→∞.

Here is the main result on the convergence of eigenvalue lists along a tower.
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Theorem A. Let (Mn) be a stable tower in B(H) with limit list Λ∞. Then for
every normal state ρ of B(H),

lim
n→∞

Λ(ρ �Mn
) = Λ(ρ)⊗ Λ∞

in the metric of eigenvalue lists.

Remarks. The tensor product of two eigenvalue lists {λ1, λ2, . . . } and {µ1, µ2, . . . }
is the eigenvalue list obtained by rearranging the double sequence of products
{λkµj : k, j = 1, 2, . . . } into decreasing order.

One might expect that, since the sequence of subfactors Mn increases to B(H),
the eigenvalue lists of restrictions of ρ �Mn

should be close to the list of ρ itself
when n is large. Indeed, if the limit list Λ∞ happens to be the eigenvalue list of
a vector state, Λ∞ = {1, 0, 0, . . . }, then Λ(ρ) ⊗ Λ∞ = Λ(ρ), and hence Λ(ρ �Mn)
converges to Λ(ρ).

On the other hand, if Λ∞ has more than one nonzero element then Λ(ρ) ⊗
Λ∞ looks quite different from the eigenvalue list of ρ, and the above intuition is
misleading.

The proof of Theorem A follows exactly along the lines of the proof of Theorem
C of [1] (see pp. 14–19) by nothing more than a change in notation, and we do not
repeat it here.

References

1. Arveson, W., Interactions in noncommutative dynamics, preprint (Summer 1999).


