
SEVERAL PROBLEMS IN OPERATOR THEORY

WILLIAM ARVESON

1. Introduction

We discuss some problems and conjectures in higher dimensional operator
theory. These all have something to do with the basic problem of developing
an effective Fredholm theory of d-contractions, and completing the index
theorem that was partially established in Theorem B of [Arv02], following up
on [Arv00]. My opinion is that good progress on any one of these problems
will be a significant advance, if not a breakthrough.

Most of what follows is an exposition of the theory of Dirac operators,
Fredholmness, and index from scratch, in a form accessible to anyone with
a good basic knowledge of operators on Hilbert spaces. The conjectures and
problems will be found in Section 4.

2. Dirac Operators in dimension d

Let T̄ = (T1, . . . , Td) be a multioperator of complex dimension d, that
is to say, a d-tuple of mutually commuting bounded operators acting on a
common Hilbert space H. All geometric properties of T̄ are reflected in
properties of its associated Dirac operator, and we begin by recalling the
basic facts about Dirac operators from [Arv02].

The Dirac operator associated with a d-dimensional multioperator T̄ is
constructed as follows. Let Z be a complex Hilbert space of dimension d,
which of course we may take as Cd. The exterior algebra over Z is defined
as the direct sum of Hilbert spaces

ΛZ = Λ0Z ⊕ Λ1Z ⊕ · · · ⊕ ΛdZ,

where ΛkZ denotes the kth exterior power of Z. By definition, Λ0Z = C,
and the last summand ΛdZ is also isomorphic to C. ΛZ is a 2d-dimensional
Hilbert space, and ΛkZ is spanned by vectors of the form z1 ∧ z2 ∧ · · · ∧ zk,
where the inner product on ΛkZ is determined by

〈z1 ∧ · · · ∧ zk, w1 ∧ · · · ∧ wk〉 = det(〈zi, wj〉)
the right side denoting the determinant of the k×k matrix of inner products
〈zi, wj〉. For each z ∈ Z, there is a creation operator C(z) that maps ΛkZ

to Λk+1Z, and acts on generators as follows

C(z)x1 ∧ · · · ∧ xk = z ∧ x1 ∧ · · · ∧ xk.
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C becomes a linear map of Z into B(ΛZ) that gives rise to an irreducible
representation of the canonical anticommutation relations; more explicitly,
C(Z) is an irreducible set of operators such that for all z, w ∈ Z one has

C(z)C(w) + C(w)C(z) = 0, C(z)C(w)∗ + C(w)∗C(z) = 〈z, w〉1.

In a less coordinate-free form, one can choose an orthonormal basis e1, . . . , ed

for Z, set ck = C(ek) for 1 ≤ k ≤ d, and one finds that

cicj + cjci = 0, cic
∗
j + c∗jci = δij1.

An elementary discussion of these facts can be found in [Arv01].
Given a d-dimensional multioperator T̄ acting on a Hilbert space H, we

can form the somewhat larger Hilbert space

H̃ = H ⊗ ΛZ = (H ⊗ Λ0Z)⊕ · · · ⊕ (H ⊗ Λd),

and the operator B defined on it by

B = T1 ⊗ c1 + · · ·+ Td ⊗ cd,

where ck = C(ek) is as above. The fact is that B does not depend on the
choice of basis in the sense that an operator B′ associated with a different
basis e′1, . . . , e

′
d for Z must be naturally isomorphic to B (see [Arv02] for

more detail). For purposes of these notes, we define the Dirac operator of T̄
to be the bounded self-adjoint operator D = B + B∗. When it is necessary
to refer to the underlying multioperator in the notation for Dirac operators
we will do that by writing DT̄ rather than D.

We point out that this definition of Dirac operator is less comprehensive
than the one in [Arv02], since we have not been careful to state the precise
relations that exist between B (and therefore D) and the the anticommuting
operators 1H⊗c1, . . . ,1H⊗cd. This is discussed in Section 2 of [Arv02]. But
for our purposes here, the shorter definition given above will suffice. At the
same time, one should keep in mind that with a more comprehensive defini-
tion of Dirac operator, the theory of d-dimensional multioperators becomes
identical with the theory of d-dimensional Dirac operators in the sense that
every abstract Dirac operator is associated with a multioperator, and two
multioperators S̄ and T̄ are unitarily equivalent iff their Dirac operators DS̄

and DT̄ are isomorphic (see Theorem A of [Arv02]).

3. Fredholm Multioperators and index

A multioperator T̄ = (T1, . . . , Td) is said to be Fredholm if its Dirac
operator D is a Fredholm operator. Since D is self-adjoint, this simply
means that the range of D is closed and its kernel is finite-dimensional. The
index of a self-adjoint Fredholm operator is of course zero; but in this case
there is additional structure available that allows one to make a more subtle
definition of index that will be essential in what follows. We now discuss
these issues.

Suppose that the operators T1, . . . , Td act on a Hilbert space H, so that
D acts on H̃ = H ⊗ ΛZ. There is a natural Z2-grading of H̃ that makes
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D into an operator of odd degree, and which is defined as follows. Consider
the two subspaces of H̃ defined by

H̃+ =
∑

k even

H ⊗ ΛkZ, H̃− =
∑

k odd

H ⊗ ΛkZ.

These spaces are mutually orthogonal and sum to H̃, hence they provide
H̃ with a Z2-grading. Elements of H̃+ (resp. H̃−) are called even vectors
(resp. odd vectors). Since both B and its adjoint map even vectors to odd
ones and odd ones to even ones, it follows that D does the same, and in
particular the restriction D+ of D to H̃+ defines a bounded operator from
H̃+ to H̃−. The orthogonal decomposition H̃ = H̃+ ⊕ H̃− gives rise to a
2× 2 matrix representation

D =
(

0 D∗
+

D+ 0

)
.

It is an instructive exercise to show when D is a Fredholm operator, the
range of D+ is a closed subspace of H̃− of finite codimension, so that D+

can be regarded as a Fredholm operator from H̃+ to H̃−. We can now define
the index of D as follows

ind D = dim ker D+ − dim coker D+ = dim(H̃+ ∩ ker D)− dim(H−/DH+).

The index is an important integer invariant for Fredholm multioperators.
By analogy with the work of Atiyah and Singer, one might hope that the
computation of the index of Fredholm multioperators will lead to important
relations between the geometric and analytic properties of multioperators,
and perhaps even feed back into basic issues of algebraic geometry. Thus, one
would like to have sharp tools for a) determining when a given Dirac operator
is Fredholm and b) computing the index in terms of concrete geometric
properties of its underlying multioperator.

Some progress has been made in the direction of b), and we will describe
that below. However, the problem a) of proving that natural examples of
multioperators are Fredholm remains largely open. It is the latter problem
that we want to discuss here in more detail.

Here is a simple and useful sufficient condition.

Proposition 3.1. Let T̄ = (T1, . . . , Td) be a multioperator with the following
two properties:

(i) T̄ is essentially normal in that all self-commutators TkT
∗
j −T ∗

j Tk are
compact, 1 ≤ j, k ≤ d.

(ii) T1T
∗
1 + · · ·+ TdT

∗
d is a Fredholm operator.

Then the Dirac operator of T̄ is Fredholm.

Proof. Since D = D∗, it suffices to show that D2 is a Fredholm operator.
To that end, consider B = T1 ⊗ c1 + · · ·+ Td ⊗ cd. Since Tj commutes with
Tk and cj anticommutes with ck, a straightforward computation shows that
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B2 = 0. Hence

D2 = (B + B∗)2 = B∗B + BB∗ =
d∑

k,j=1

T ∗
k Tj ⊗ c∗kcj +

d∑
k,j=1

TjT
∗
k ⊗ cjc

∗
k.

Using the anticommutation relations cjc
∗
k = δjk1 − c∗kci, we can write the

second term on the right as

A⊗ 1−
d∑

k,j=1

TjT
∗
k ⊗ c∗kcj ,

where A = T1T
∗
1 + · · ·+ TdT

∗
d , so that

D2 = A⊗ 1 +
d∑

k,j=1

(T ∗
k Tj − TjT

∗
k )⊗ c∗kcj .

Since A⊗1 is a Fredholm operator by (ii) and each summand in the second
term is compact by (i), it follows that D2 is invertible modulo compacts. �

Remark 3.2 (Commutativity vs. Noncommuativity). It has become fashion-
able these days to look in the most noncommutative directions for results
that generalize previously known commutative ones. The reader will note,
however, that we have used commutativity in an essential way in the preced-
ing proof to conclude that B2 = 0. In turn, the fact that B2 = 0 is critical
for developing the homology and cohomology of multioperators; indeed, B
is nothing other than the coboundary operator for the Koszul complex of
T̄ . If one gives up commutativity of the operators T1, . . . , Td then one must
also give up the fact that H ⊗ ΛZ is a complex.

4. Finite Rank d-contractions

Let d be a positive integer. A d-contraction is a multioperator T̄ =
(T1, . . . , Td) acting on a Hilbert space H that defines a row contraction in
the sense that

T1T
∗
1 + · · ·+ TdT

∗
d ≤ 1.

The rank of T̄ is the rank of the defect operator 1− T1T
∗
1 − · · · − TdT

∗
d , and

T̄ is said to be pure if the completely positive operator map defined by

φ(X) = T1XT ∗
1 + · · ·+ TdXT ∗

d , X ∈ B(H)

satisfies φn(1) ↓ 0 as n →∞.
A principal theme of [Arv98], [Arv00], and [Arv02] has been to understand

the nature of pure finite rank d-contractions. In particular, we have focused
on the following three related questions. When is such a T̄ Fredholm? How
does one compute the index of DT̄ ? How is the index related to concrete
geometric properties of T̄? The papers [Arv00] and [Arv02] give various
partial answers to the second two of these three questions. However, they do
not address the first, and that is the question we want to discuss here: Which
pure finite rank d-contractions are Fredholm? While it is conceivable that



PROBLEMS 5

they all are, approaching the question in that generality appears today to be
well out of reach. Instead, we fix attention on certain sub-questions which
seem accessible, which have a genuine connection with algebraic geometry,
and for which there is evidence that the answers are positive.

In order to discuss these issues, we first point out that finite rank pure
d-contractions can all be realized as compressions of finite-multiplicity d-
shifts to quotients (see [Arv98]). This is a significant reduction, since the
properties of such compressions can be approached in very concrete terms.
We now describe these examples of d-contractions in more detail.

Let Z be a d-dimensional Hilbert space. The symmetric Fock space over
Z will be denoted H2

d , since it can be identified with the completion of the
algebra of polynomials C[z1, . . . , zd] with respect to a natural inner prod-
uct. Choosing an orthonormal basis e1, . . . , ed for Z, one can form a row
contraction S̄ = (S1, . . . , Sd) of operators on H2

d , where Sk denotes sym-
metric tensoring by ek; equivalently, Sk can be interpreted as the operator
that multiplies polynomials by the kth coordinate variable zk. Let r be a
positive integer and let r ·H2

d be the direct sum of r copies of H2
d . There is a

natural way to define an action of S1, . . . , Sd on r ·H2
d simply by increasing

the multiplicity by a factor of r. We refer to that universal d-tuple as the
d-shift of multiplicity r.

Given any closed invariant subspace M ⊆ r · H2
d for the latter, one can

form a quotient Hilbert space H = (r · H2
d)/M and a d-contraction T̄ on

H by compressing the action of the d-shift or multiplicity r to the quotient
C[z1, . . . , zd]-module (r ·H2

d)/M . It is not hard to see that such a multiop-
erator T̄ is a pure d-contraction of rank at most r; indeed, the rank will be
r except in the presence of simple degeneracies. We are interested in deter-
mining whether such multioperators T̄ are Fredholm, for various classes of
invariant subspaces M .

The simplest versions of this general problem connect with algebraic ge-
ometry, and are described as follows. Let r be a positive integer. We may
consider r-tuples of polynomials as elements of r·H2

d , and in an obvious sense
such elements are vector-valued polynomials. Choose a finite set p1, . . . ,ps

of vector-valued polynomials in r · C[z1, . . . , zd], such that each pi is ho-
mogeneous of some degree ni - i.e., each of the r components of pi is a
homogeneous polynomial of the same degree ni. Let

M = [f1p1 + · · ·+ fsps : f1, . . . , fs ∈ C[z1, . . . , zd]]

be the invariant subspace of r ·H2
d generated by p1, . . . ,ps.

Conjecture 1. Let H = (r · H2
d)/M be the quotient Hilbert space, and

let T̄ = (T1, . . . , Td) be the d-contraction defined on H by compressing the
multiplicity r d-shift. Then the self-commutators TjT

∗
k −T ∗

k Tj , 1 ≤ j, k ≤ d,
belong to the Schatten-von Neumann class Lp for every p > d.

Remark 4.1 (Consequences of Conjecture 1). Assuming that Conjecture 1
is true, it follows that the Dirac operators of such multioperators T̄ are all
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Fredholm. Indeed, since T1T
∗
1 +· · ·+TdT

∗
d = 1−F where the defect operator

F is positive of rank at most r, and since all self-commutators are compact,
Proposition 3.1 applies in a straightforward manner.

In turn, the fact that DT̄ is Fredholm can be applied to strengthen the
index theorem proved in [Arv02] as follows. In [Arv00] we introduced a
curvature invariant K(T̄ ) that can be associated with any pure finite-rank
d-contraction T̄ , and showed that it occupies a position analogous to the
average Gaussian curvature of a compact oriented Riemannian manifold.
Thanks in part to work of Greene, Richter and Sundberg [GRS02], it is now
known that K(T̄ ) is always an integer. But what does that integer repre-
sent? It had been shown earlier in [Arv00] that K(T̄ ) frequently coincides
with the Euler characteristic of a certain finitely generated algebraic module
associated with T̄ , but it was also known that there are examples for which
K(T̄ ) is not the Euler characteristic of that module.

In [Arv02] a new approach was initiated, in which one sought to relate the
value of K(T̄ ) to the index of a Dirac operator. The results apply to graded
d-contractions - essentially, those associated with Conjecture 1. The key
formula is Theorem B of [Arv02], which makes the following assertion about
the d-contractions T̄ of Conjecture 1 and their associated Dirac operators
D: Both kerD+ and kerD∗

+ are finite dimensional, and

(4.1) (−1)dK(T̄ ) = dim kerD+ − dim kerD∗
+.

Unlike the earlier result that related K(T̄ ) to an Euler characteristic, there
are no known exceptions to this formula, even for nongraded d-contractions.

However, note that Theorem B makes no assertion about whether or not
the range of D+ is closed, and if the range of D+ is not closed then the
right side of (4.1) is unstable. But if Conjecture 1 is true, then the range of
D+ must be closed and the index formula (4.1) appears as a conventional
assertion about the index of a Fredholm operator. Such a strengthening of
Theorem B can now be seen as a full counterpart of the Gauss-Bonnet-Chern
formula in its modern dress as an index theorem [GM91].

There are other consequences as well, relating to the stability of the cur-
vature invariant under compact perturbations and homotopy, that we will
not describe here. See Section 4 of [Arv02].

Remark 4.2 (Evidence for the truth of Conjecture 1). All concrete examples,
for which the truth of Conjecture 1 can be decided, support it. A variety
of such examples is described in [Arv02]. In this remark we describe an-
other family of examples that also support Conjecture 1. These results are
unpublished, and we give no details beyond pointing out the existence of
such examples. Though this class of examples has little geometric interest
(their associated algebraic varieties are trivial), the conclusion is significant
from the point of view of operator theory. A monomial in C[z1, . . . , zd] is a
homogeneous polynomial of the particular form

p(z1, . . . , zd) = zk1
1 zk2

2 · · · zkd
d
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where k1, . . . , kd are nonnegative integers. A vector-valued monomial is an
element p of r·C[z1, . . . , zk] of the form (p1, p2, . . . , pr) where each component
pi is a scalar multiple of the same monomial zk1

1 · · · zkd
d . The positive result

that we want to report is that Conjecture 1 is true provided that each of the
generators p1, . . . ,ps of M is a vector-valued monomial.

Moving on to more general conjectures, we propose:

Conjecture 2. Let p1, . . . ,ps be a finite set of vector polynomials in
r ·C[z1, . . . , zd], not necessarily homogeneous, let M be the closed invariant
subspace of r ·H2

d that they generate, and let T̄ be the compression of the
multiplicity r shift to the quotient Hilbert space (r · H2

d)/M . Then the
self-commutators TjT

∗
k − T ∗

k Tj are all compact.

Assuming that this conjecture is true, the argument given above shows
that all such compressed d-tuples T̄ are Fredholm. Such examples are not
“graded” as were the ones discussed in the context of Conjecture 1, and we
do not know if the index formula (4.1) holds for ungraded Hilbert modules.
But there is enough evidence to lead us to:

Conjecture 3. Assuming that Conjecture 2 is true, then the index for-
mula (4.1) holds in that setting as well.

Finally, let us skip directly to the most general question, about which we
have the least evidence. It is conceivable (perhaps even likely) that for some
invariant subspaces M ⊆ H2

d , the compression of the d-shift to H2
d/M does

not have compact self-commutators. While this would be unfortunate, the
index theory can be salvaged if the answer to the following question is yes.

Problem 4. Is the Dirac operator of every pure finite-rank d-contraction
a Fredholm operator?
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