GENERATORS OF NONCOMMUTATIVE DYNAMICS
WILLIAM ARVESON

ABSTRACT. For a fixed C*-algebra A, we consider all noncommutative
dynamical systems that can be generated by A. More precisely, an A-
dynamical system is a triple (¢, B, «) where « is a *-endomorphism of a
C*-algebra B, and ¢ : A C B is the inclusion of A as a C*-subalgebra
with the property that B is generated by AU (A)Ua?(A)U---. There
is a natural hierarchy in the class of A-dynamical systems, and there
is a universal one that dominates all others, denoted (i, PA,a). We
establish certain properties of (i, PA, ) and give applications to some
concrete issues of noncommutative dynamics.

For example, we show that every contractive completely positive lin-
ear map ¢ : A — A gives rise to to a unique A-dynamical system (i, B, @)
that is “minimal” with respect to ¢, and we show that its C*-algebra B
can be embedded in the multiplier algebra of A ® K.

1. GENERATORS

The flow of time in quantum theory is represented by a one-parameter
group of x-automorphisms {«a; : t € R} of a C*-algebra B. There is often
a C*-subalgebra A C B that can be singled out from physical considera-
tions which, together with its time translates, generates B. For example,
in nonrelativistic quantum mechanics the flow of time is represented by a
one-parameter group of automorphisms of B(H), and the set of all bounded
continuous functions of the configuration observables at time 0 is a com-
mutative C*-algebra A. The set of all time translates a;(A) of A generates
an irreducible C*-subalgebra B of B(H). In particular, for different times
t1 # ta, the C*-algebras oy, (A) and oy, (A) do not commute with each other.
Indeed, no nontrivial relations appear to exist between oy, (4) and ay,(A)
when t1 # to.

In this paper we look closely at this phenomenon, in a simpler but anal-
ogous setting. Let A be a C*-algebra, fixed throught.

Definition 1.1. An A-dynamical system is a triple (i, B, «) consisting of a -
endomorphism « acting on a C*-algebra B and an injective x-homomorphism
i: A — B, such that B is generated by i(A) U a(i(A)) Ua?(i(A)U---.

We lighten notation by identifying A with its image i(A) in B, thereby
replacing i with the inclusion map ¢ : A C B. Thus, an A-dynamical
system is a dynamical system (B, «) that contains A as a C*-subalgebra in
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a specified way, with the property that B is the norm-closed linear span of
finite products of the following form

B = span{a™ (a1)a™ (az) - a™ (a))} (1)

where nq,...,nr >0, a1,...,a. € A, k=1,2,...

Our aim is to say something sensible about the class of all A-dynamical
systems, and to obtain more detailed information about certain of its mem-
bers. The opening paragraph illustrates the fact that in even the simplest
cases, where A is C'(X) or even a matrix algebra, the structure of individual
A-dynamical systems can be very complex.

There is a natural hierarchy in the class of all A-dynamical systems, de-
fined by (i1, B1, 1) > (i2, Bo, ag) iff there is a *-homomorphism 6 : B; — Bs
satisfying § o a1 = ap 00 and 0(a) = a for a € A. Since 0 fixes A, it follows
from (1) that # must be surjective, §(B1) = Bs, hence (iz, By, a2) is a quo-
tient of (i1, B1,1). Two A-dynamical systems are said to be equivalent if
there is a map 6 as above that is an isomorphism of C*-algebras. This will
be the case iff each of the A-dynamical systems dominates the other. One
may also think of the class of all A-dynamical systems as a category, whose
objects are A-dynamical systems and whose maps 6 are described above.

There is a largest equivalence class in this hierarchy, whose representa-
tives are called universal A-dynamical systems. We exhibit one as follows.
Consider the free product of an infinite sequence of copies of A,

PA=AxAx---.

Thus, we have a sequence of x-homomorhisms 6y, 601,... of A into the C*-
algebra PA such PA is generated by 0y(A) U 61(A) U --- and such that
the following universal property is satisfied: for every sequence mg, w1, ...
of *-homomorphisms of A into some other C*-algebra B, there is a unique
x-homomorphism p : PA — B such that m; = po b, k =0,1,.... Nonde-
generate representations of PA correspond to sequences ™ = (mg, 71, ... ) of
representations 7, : A — B(H) of A on a common Hilbert space H, subject
to no condition other than the triviality of their common nullspace

SEHv Wk(A)fz{O}v k:0317:>§:0

A simple argument establishes the existence of P A by taking the direct sum
of a sufficiently large set of such representation sequences 7.

This definition does not exhibit PA in concrete terms (see §3 for that),
but it does allow us to define a universal A-dynamical system. The universal
property of PA implies that there is a shift endomorphism o : PA — PA
defined uniquely by o 0 8, = 0x41, £ = 0,1,.... It is quite easy to verify
that 8y is an injective *-homomorphism of A in PA, and we use this map
to identify A with 6p(A) C PA. Thus the triple (i, PA, o) becomes an A-
dynamical system with the property that every other A-dynamical system is
subordinate to it.

Before introducing a-expectations, we review some common terminology
[Ped79]. Let A C B be an inclusion of C*-algebras. For any subset S of B



GENERATORS OF NONCOMMUTATIVE DYNAMICS 3

we write [S] for the norm-closed linear span of S. The subalgebra A is said
to be essential if the two-sided ideal [BAB] it generates is an essential ideal

x€B, zBAB={0} = z=0.
It is called hereditary if for a € A and b € B, one has
0<b<a = be A

The hereditary subalgebra of B generated by a subalgebra A is the closed
linear span [ABA] of all products azb, a,b € A, * € B, and in general
A C [ABA]. A corner of B is a hereditary subalgebra of the particular form
A = pBp where p is a projection in the multiplier algebra M (B) of B.

We also make essential use of conditional expectations £ : B — A. A
conditional expectation is an idempotent positive linear map with range A,
satisfying F(ax) = aE(z) for a € A, x € B. When A = pBp is a corner
of B, the map E(x) = pxp, defines a conditional expectation of B onto
A. On the other hand, many of the conditional expectations encountered
here do not have this simple form, even when A has a unit. Indeed, if A is
subalgebra of B that is not hereditary, then there is no natural conditional
expectation F : B — A. In general, conditional expectations are completely
positive linear maps with || E|| = 1.

Definition 1.2. Let (i, B, @) be an A-dynamical system. An a-expectation
is a conditional expectation ' : B — A having the following two properties:

E1l. Equivariance: Foa=FoaoFE.
E2. The restriction of E to the hereditary subalgebra generated by A is
multiplicative, E(zy) = E(z)E(y), x,y € [ABA].

Note that an arbitrary conditional expectation E : B — A gives rise to
a linear map ¢ : A — A by way of p(a) = E(a(a)), a € A. Such a ¢ is a
completely positive map satisfying ||¢|| < 1. Axiom E1 makes the assertion

Eoa=¢poFE. (2)

where ¢ = F o « [ 4 is the linear map of A associated with E.

Property E2 is of course automatic if A is a hereditary subalgebra of B.
It is a fundamentally noncommutative hypothesis on B. For example, if Y
is a compact Hausdorff space and B = C(Y), then every unital subalgebra
A C C(Y) generates C(Y) as a hereditary algebra. Thus the only linear
maps E : C(Y) — A satisfying E2 are x-endomorphisms of C(Y’). The key
property of the universal A-dynamical system (i, PA, o) follows.

Theorem 1.3. For every completely positive contraction ¢ : A — A, there
is a unique o-expectation E : PA — A satisfying

pla) = E(o(a)),  acA (3)

Both assertions are nontrivial. We prove uniqueness in the following sec-
tion, see Theorem 2.3. Existence is taken up in §3, see Theorem 3.2.
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2. MOMENT POLYNOMIALS

This theory of generators rests on properties of certain noncommutative
polynomials that are defined recursively as follows.

Proposition 2.1. Let A be an algebra over a field F. For every linear map
p: A — A, there is a unique sequence of multilinear mappings from A to
itself, indexed by the k-tuples of nonnegative integers, k = 1,2,..., where
for a fized k-tuple n = (nq1,...,ng)
ai,...,ax € A—[Ajaq,...,a5) € A

is a k-linear mapping, all of which satisfy

MP1. ¢([n;a1,...,ag)) =[n1+ L,no+1,...,nk + L;a1,...,ax].

MP2. Given a k-tuple for which ny = 0 for some £ between 1 and k,

[ﬁa aiy ..., ak] - [n17 ceesNy—150G1, .-+, af*l]af[ne+17 s MR QP - 7a']€]'
Remark 2.2. The proofs of both existence and uniqueness are straightfor-
ward arguments using induction on the number k of variables, and we omit
them. Note that in the second axiom MP2, we make the natural conventions
when ¢ has one of the extreme values 1, k. For example, if £ = 1, then MP2
should be interpreted as

[O,ng,...,nk;al,.. . ,ak] = al[ng,... ,nk;ag,...,ak].
In particular, in the linear case k£ = 1, MP2 makes the assertion
[0;a] = a, a € A;
and after repeated applications of axiom MP1 one obtains
[n;al = ¢"(a), ac€A, n=0,1,....

One may calculate any particular moment polynomial explicitly, but the
computations quickly become a tedious exercise in the arrangement of paren-
theses. For example,

[2,6,3,4;0,b, ¢, d] = ¢*(ap(p*(D)cp(d))),
[6,4,2,3;a,b, ¢, d] = ¢* (¢ (¢*(a)b)cyp(d)).
Finally, we remark that when A is a C*-algebra and ¢ : A — A is a

linear map satisfying ¢(a)* = p(a*), a € A, then its associated moment
polynomials obey the following symmetry

N1, ng;an, .. ak]” = [Nk, ... n1sag, ..., a7 (4)
Indeed, one finds that the sequence of polynomials [[-;-]] defined by
[ni,....ng;a1,...,a5]] = [ng,y ... na;ag, ... ai]”

also satisfies axioms MP1 and MP2, and hence must coincide with the mo-
ment polynomials of ¢ by the uniqueness assertion of Proposition 2.1.

These polynomials are important because they are the expectation values
of certain A-dynamical systems.
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Theorem 2.3. Let ¢ : A — A be a completely positive map on A, satisfying
llpll < 1, with associated moment polynomials [nq,...,ng;aq,...,ax.

Let (i, B,a) be an A-dynamical system and let E : B — A be an «a-
expectation with the property E(a(a)) = ¢(a), a € A. Then

E(a™(a1)a™(az) -+ o™ (ag)) = [n1,...,ng; a1, ..., ak. (5)
for every k = 1,2,..., np > 0, ap € A. In particular, there is at most one
a-expectation E : B — A satisfying E(a(a)) = ¢(a), a € A.

Proof. One applies the uniqueness of moment polynomials as follows.

Properties E1 and E2 of Definition 1.2 imply that the sequence of polyno-
mials [[-;-]] defined by

[[n1,...,nk; a1, ..., a)] = E(@™(a1) -+ " (ag))
must satisfy the two axioms MP1 and MP2. Notice here that E2 implies
E(zay) = E(z)aE(y) r,y € B, acA, (6)

since for an approximate unit e,, for A we can write E(zay) as follows:
lim e, E(zae,y)e, = lim E(eyzaeyye,) = lim E(e,xa)E(enyen)
n—oo n—oo n—oo
= lim e, E(z)ae, E(y)e, = E(z)aE(y).
n—oo

Thus formula (5) follows from the uniqueness assertion of Proposition 2.1.
The uniqueness of the a-expectation associated with ¢ is now apparent from
formulas (5) and (1). O

3. EXISTENCE OF a-EXPECTATIONS

In this section we show that every completely positive map ¢ : A — A,
with [[¢]] < 1, gives rise to a o-expectation £ : PA — A that is related
to the moment polynomials of ¢ as in (5). This is established through a
construction that exhibits PA as the enveloping C*-algebra of a Banach -
algebra 1(X), in such a way that the desired conditional expectation appears
as a completely positive map on ¢}(X). The details are as follows.

Let S be the set of finite sequences 7 = (n1,ng,...,ni) of nonnegative
integers, k = 1,2,... which have distinct neighbors,

N1 # N2, Mg 7 N3y .oy N1 7 N
Multiplication and involution are defined in .S as follows. The product of two
elements m = (my,...,mg), 7 = (n1,...,ng) € S is defined by conditional
concatenation
m-n=

o (Mma,...,mg,n1,...,Ng), if my # nq,
(m1,...,mg,na,...,ng), if my, = nq,

where we make the natural conventions when 7 = (q) is of length 1, namely

m-(q) = (my,...,mg,q) if mp # q, and m - (q) = m if my = ¢q. The
involution in S is defined by reversing the order of components

(my,...,mg)* = (Mp,...,mq).
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One finds that S is an associative *-semigroup.
Fixing a C*-algebra A, we attach a Banach space ¥, to every k-tuple
v=(ny,...,ng) €S as follows
Y, =A® - ®A,
———
k times
the k-fold projective tensor product of copies of the Banach space A. We
assemble the Y, into a family of Banach spaces over S, p: ¥ — S, by way
of X={(v,§):ve S, € E}, p(v,§) =v.
We introduce a multiplication in ¥ as follows. Fix p = (my,...,my) and
v = (ni,...,ng) in S and choose £ € ¥,,, n € ¥,. If my, # ny then -7 is
defined as the tensor product { ®n € X,,.,. If m;, = ng then we must tensor
over A and make the obvious identifications. More explicitly, in this case
there is a natural map of the tensor product ¥, ® 4 ¥, onto X,,., by making
identifications of elementary tensors as follows:

(1@ @a) @A D1 @ - Rb) ~a1 @ @ ap_1 @ agh; @by @ -+ @ by.
With this convention £ - 7 is defined by
5’77:€®A7]62u-1/'

This defines an associative multiplication in the family of Banach spaces X.

There is also a natural involution in 3, defined on each ¥, it = (mq,...,my)
as the unique antilinear isometry to X+ satisfying
(M1 )01 @ @ ag)* = (M), af @ - @ ).

This defines an isometric antilinear mapping of the Banach space ¥, onto
Y+, for each p € S, and thus the structure X becomes an involutive *-
semigroup in which each fiber X, is a Banach space.

Let £1(2) be the Banach *-algebra of summable sections. The norm and
involution are the natural ones || f|| = > e, [ f (W], f*(1) = f(u*)*. Noting
that ¥y - £, C ¥y, the multiplication in ¢}(X) is defined by convolution

Frgw)= Y fN)-g(w),
A-pu=v
and one easily verifies that £}(X) is a Banach *-algebra.
For = (my,...,mg) € S and aq,...,a € A we define the function
Oy a1 ® -+ @ ag A

to be zero except at p, and at p it has the value a1 ® - - ® a;, € X,. These
elementary functions have ¢!(X) as their closed linear span. Finally, there
is a natural sequence of *-homomorphisms 6,61, --: A — ¢}(X) defined by

Qk(a)zé(k)-a, ac€A, k=0,1,...,
and these maps are related to the generating sections by

5(n1,‘..,nk) a1 Q- Qag = 0n1 (a1)9n2 (a2) T an (ak)'
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The algebra ¢!(X) fails to have a unit, but it has the same representation
theory as PA in the following sense. Given a sequence of representations
e A— B(H), k=0,1,..., fix v = (nyg,...,n) € S. There is a unique
bounded linear operator L, : ¥, — B(H) of norm 1 that is defined by its
action on elementary tensors as follows

Ll,(al R ak) = Tp, (al) C Ty, (ak)
Thus there is a bounded linear map 7 : 1(X) — B(H) defined by

7(f) = Lu(f(w),  fel(D).

HES

One finds that 7 is a *-representation of £}(X) with ||7|| = 1. This repre-

sentation satisfies 7o 0, = mp, k = 0,1,2,,.... Conversely, every bounded
s-representation 7 of ¢}(¥) on a Hilbert space H is associated with a se-
quence of representations 7y, w1, ... of A on H by way of m = 7 o 0.

The results of the preceding discussion are summarized as follows:

Proposition 3.1. The enveloping C*-algebra C* (£} (X)), together with the
sequence of homomorphisms 0g,0y,---: A — C*(£*(X)) defined by the maps
00,01, : A — (1(X), has the same universal property as the infinite free
product PA = Ax Ax---, and is therefore isomorphic to PA.

Notice that the natural shift endomorphism of ¢!(X) is defined by
o 5(“1,...,7%) : f = 5(n1+1,...,nk+1) ' 57 v= (n17 s 7nk) € 27 € € 2V

and it promotes to the natural shift endomorphism of PA = C*(¢}(X)). The
inclusion of A in £!(X) is given by the map fy(a) = g)a € £*(X), and it too
promotes to the natural inclusion of A in PA.

Finally, we fix a contractive completely positive map ¢ : A — A, and
consider the moment polynomials associated with it by Proposition 2.1. A
straightforward argument shows that there is a unique bounded linear map
Eq : 11(X) — A satisfying

EO((S(nl,.‘.,nk) ca; Q- ®ak) = [nlv ceey NE; A1, .. 'aak]7

for (n1,...,nx) € S, ar,...,ap € A, k = 1,2,..., and ||[Ep|| = |l¢] < 1.
Using the axioms MP1 and MP2, one finds that the map Ejy preserves the
adjoint (see Equation (4)), satisfies the conditional expectation property
Eo(af) = aFy(f) for a € A, f € £1(X), that the restriction of Ey to the
“hereditary” *-subalgebra of ¢!(X) spanned by 6g(A)¢'(X)0g(A) is multi-
plicative, and that it is related to ¢ by Eyoo = po Ey and Ey(o(a)) = ¢(a),
a € A. Thus, Ej satisfies the axioms of Definition 1.2, suitably interpreted
for the Banach x-algebra ¢!(X).

In view of the basic fact that a bounded completely positive linear map
of a Banach x-algebra to A promotes naturally to a completely positive map
of its enveloping C*-algebra to A, the critical property of Ey reduces to:
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Theorem 3.2. For everyn > 1, a1,...,a, € A, and f1,..., fn € (1(X), we

have
n

> @i Eo(f; fi)ai = 0.
ij=1
Consequently, Ey extends uniquely through the completion map ¢*(X) — PA
to a completely positive map E, : PA — A that becomes a o-expectation
satisfying Equation (3).
We sketch the proof of Theorem 3.2, detailing the critical steps. Using
the fact that ¢1(X) is spanned by the generating family

G:{(S(nl’_..mk)-a1®---®ak:(nl,...,nk)ES, a,...,ar € A, k>1}

one easily reduces the proof of Theorem 3.2 to the following more concrete
assertion: for any finite set of elements ui,...,u, in G, the n X n matrix
(aij) = (Eo(uju;)) € My (A) is positive.

The latter is established by an inductive argument on the “maximum
height” max(h(u1), ..., h(u,)), where the height of an element u = (., . )"
a1 ®---®ay in G is defined as h(u) = max(ny,...,n). The general case eas-
ily reduces to that in which A has a unit e, and in that setting the inductive
step is implemented by the following.

Lemma 3.3. Choose u1,...,u, € G such that the mazximum height N =
max(h(ui),...,h(uy)) is positive. For k = 1,...,n there are elements
b, cr € A and v € G such that h(vg) < N and

Eo(ujui) = bip(Eo(vjvi))bi + cj(e — ¢(e))ci, 1<i,j<n. (7)

Remark 3.4. Note that if an inductive hypothesis provides positive n X n
matrices of the form (Eo(v;v;)) whenever vy, ..., v, € G have height < N,
then the n x n matrix whose ijth term is the right side of (7) must also
be positive, because ¢ is a completely positive map and 0 < ¢(e) < e. It
follows from Lemma 3.3 that (Eo(uju;)) must be a positive n x n matrix
whenever uq,...,u, € G have height < N.

proof of Lemma 3.5. We identify the unit e of A with its image J(g)-e € G.
Fix i, 1 <1 < n, and write uje = (.. n,) a1 ® - ®ag. Note that ny must
be 0 because u; has been multiplied on the right by e.

If n1 > 0 we choose ¢, 1 < £ < k such that ni,ne,...,n, are positive and
nep1 = 0. Setting v; = d(ny 1, np—1) - @1 @ - @ ag and w; = O(nyy iy
agy1 ® -+ - @ ag, we obtain a factorization u; = o(v;)w;, and we define b; and
¢i by by = Eo(w;), ¢; = 0. If n; = 0 then u;e cannot be factored in this way;
still, we set v; = e, and b; = ¢; = Ep(u;). This defines b;, ¢; and v;.

One now verifies (7) in cases: where both u;e and u;e factor into a product
of the form o(v)w, when one of them so factors and the other does not, and
when neither does. For example, if u;e = o(v;)w; and uje = o(vj)w; both
factor, then we can make use of the formulas Ey(f) = eEy(f)e = Ep(efe) for
fet'(2), Eo(fg) = Eo(f)Eo(g) for f,g € [ALY(2)A], and Eg oo = po Ey,
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to write

Eo(u;fui) = Eo(eu;uie) = Eo((uje)*ue) = Eo(wja(v;vi)wi)

= b;Eo(a(v;fvi))bi = b;ng(Eo(U;fvi))bi.
If u;e = o(v;)w; so factors and uje = euje does not, then we write
Eo(u;‘uz) = EO((uje)*uie) = Eo(Uje)*Eo(U(Ui)wi) = bon(U(Ul))bz
= bjp(Eo(vi))b; = b} (p(Eo(vjvi))bi,

noting that in this case v; = e. A similar string of identities settles the case
uje = euge, uje = o(v;)w;.

Note that in each of the preceding three cases, the terms cj(e — ¢(e))c;
were all 0.

In the remaining case where w;e = eu;e and uje = euje, we can write
Eo(uju;) = Eo(eujue) = Ep((euje)*eue) = Ep(euje)*Ep(euze) = bib;.
Formula (7) persists for this case too, since v; = v; = e and we can write

bibi = bip(e)bi +bj(e — p(e))bi = bip(Eo(vjvi))bi + cj(e — ¢(e))e;. O

4. THE HIERARCHY OF DILATIONS

Let (A, ) be a pair consisting of an arbitrary C*-algebra A and a com-
pletely positive linear map ¢ : A — A satisfying ||| < 1.

Definition 4.1. A dilation of (A4, ¢) is an A-dynamical system (i, B, a) with
the property that there is an a-expectation E : B — A satisfying

E(a(a)) = ¢(a), a€ A

Notice that the a-expectation E : B — A associated with a dilation of
(A, ¢) is uniquely determined, by Theorem 1.3. The class of all dilations
of (A, ¢) is contained in the class of all A-dynamical systems, and it is
significant that it is also a subcategory. More explicitly, if (i1, B1,a1) and
(i1, Ba, ag) are two dilations of (A, ), and if § : By — Bs is a homomorphism
of A-dynamical systems, then the respective a-expectations E1, Fs must also
transform consistently

Eyo00 = Ej. (8)

This follows from Theorem 2.3, since both E7 and E5 o6 are aq-expectations
that project aq(a) to p(a), a € A.

Theorem 1.3 implies that every pair (A, ¢) can be dilated to the universal
A-dynamical system (i, PA,0). Let E, : PA — A be the o-expectation
satisfying Fy,(o(a)) = ¢(a), a € A. The preceding remarks imply that for
every other dilation (i, B, «), there is a unique surjective *-homomorphism
§ : PA — B such that oo = awof, Eof = E,, and which fixes A
elementwise. Thus, (i, PA, o) is a universal dilation of (A, ¢). The universal
dilation is obviously too large, since its structure bears no relation to ¢. Thus
it is significant that there is a smallest (A, ) dilation, whose structure is
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more closely tied to . We now discuss the basic properties of this minimal
dilation; we examine its structure in section 5.

In general, every completely positive map of C*-algebras F : By — Bs
gives rise to a norm-closed two-sided ideal ker E' in B; as follows

ker E = {z € By : E(bxc) =0, forallb,ce B;}.

In more concrete terms, if By C B(H) acts concretely on some Hilbert space
and F(z) = V*r(z)V is a Stinespring decomposition of E, where 7 is a
representation of By on some other Hilbert space K and V : H — K is a
bounded operator such that 7(B1)V H has K as its closed linear span, then
one can verify that

ker E = {z € By : m(z) = 0}. 9)

Notice too that ker E = {0} iff E is faithful on ideals in the sense that for
every two-sided ideal J C B, one has E(J) = {0} = J = {0}.
Proposition 4.2. Let (i, B, ) be an A-dynamical system andlet E: B — A
be an a-expectation. Then ker E is an a-invariant ideal with the property
Anker E = {0}.

If (i1, B1, 1) and (ia, By, a9) are two dilations of (A, ) and 6 : B — By
is a homomorphism of A-dynamical systems, then

ker By = {z € By : 0(x) € ker Ey}. (10)

Proof. That Anker E = {0} is clear from the fact that if « € ANker E then
AaA = E(AaA) = {0}, hence a = 0. Relation (10) is also straightforward,
since #(By) = By and Es 0 § = E;. Indeed, for each = € By, we have

EQ(BQH(.%’)BQ) = E2(0(31)9($)9(31)) = EQ(H(BIxBl)) = El(BlfL‘Bl),
from which (10) follows.

To see that a(ker E) C ker E, choose k € ker E. Since B is spanned by all
finite products of elements o™ (a), a € A, n =0,1,..., it suffices to show that
E(ya(k)x) =0 for all y € B and all = of the form z = a™(ay) - - - a™* (ay).
Being a completely positive contraction, E satisfies the Schwarz inequality

E(ya(k)x) E(ya(k)r) < E(z*a(k )y ya(k)z) < |ly|* B a(k k)z);
hence it suffices to show that E(z*a(k*k)x) = 0. To prove the latter, one

can argue cases as follows. Assuming that m; > 0 for all i, then z = a(xq)
for some z¢ € B, and using E o a = ¢ o E one has

E(z*a(k*k)x) = E(a(zok™kxo)) = @(E(x5k™kzg)) = 0.

For the remaining case where some m; = 0, notice that x must have one
of the forms z = a € A (when all m; are 0), or x = axg with xyg € B
(when m1 = 0 and some other m; is positive), or a(x1)axe with a € A,
x1,22 € B (when m; > 0,...,m,—1 > 0 and m, = 0), and in each case
E(z*a(k*k)z) = 0. If x = a(z1)axs, for example, then we make use of
Formula (6) to write

E(x*a(k™k)x) = E(z5a*a(z]k™kxy)aze) = E(xe) a* E(a(xik™kz1)aE (z2).
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The term on the right vanishes since E(a(zik*kz1) = @(E(x{k*kz1)) = 0.
The other cases are dealt with similarly, and a(ker E') C ker F follows. O

We deduce the existence of minimal dilations and their basic character-
ization as follows. Fix a pair (A, ), where ¢ : A — A is a completely
positive contraction, let o be the shift on PA, and let E, : PA — A be
the unique o-expectation satisfying E,(0(a)) = ¢(a), a € A. Proposition
4.2 implies that o leaves ker E, invariant, thus it can be promoted to an
endomorphism ¢ of the quotient C*-algebra PA/ker E,. Moreover, since
Anker E, = {0}, the inclusion of A in PA promotes to an inclusion of A in
PA/ker E,. Thus we obtain an A-dynamical system (i, PA/ ker E, &) hav-
ing a natural -expectation E defined by E(z + ker E,) = E,(x) + ker E,,
which satisfies F(&(a)) = ¢(a), a € A. It is called the minimal dilation of
(A, ) in light of the following:

Corollary 4.3. The dilation (i, PA/ker E,, ) of (A,¢) has the following
properties.

(1) (i,PA/ker E,, o) is subordinate to all other dilations of (A, ).
(2) The ¢-eapectation E of (i, PA/ ker E,, &) satisfies ker E = {0}.
(3) Ewvery dilation (i,B,«a) of (A, ) whose a-expectation E satisfies
ker E = {0} is isomorphic to (i, PA/ker E,, ).
Proof. (2) follows by construction of (i, PA/ker E, &), since the kernel
ideal of its d-expectation has been reduced to {0}.

To prove (1), let (i, B,a) be an arbitrary dilation of (A4,¢). By the
universal property of (i, PA, o) there is a surjective *-homomorphism 6 :
PA — B satisfying § o 0 = a0 6; and by (8) one has F o § = E,. Formula
(10) implies that ker £, contains ker #, hence we can define a morphism of
C*-algebras w : B — PA/ker E, by way of w(§(x)) = = + ker E,,, for all
x € PA. Obviously, w is a homomorphism of A-dynamical systems, and we
conclude that (i, B,a) > (i, PA/ ker E,, ¢).

For (3), notice that if (i, B, «) is a dilation of (A, ¢) whose a-expectation
E : B — A satisfies ker E = {0} and 6 : PA — B is the homomorphism
of the previous paragraph, then Formula (10) implies that ker F, = ker 6.
Thus w : B — PA/ker E, has trivial kernel, hence it must implement an
isomorphism of A-dynamical systems (i, B, ) = (i, PA/ ker E,, 7). O

9. STRUCTURE OF MINIMAL DILATIONS

Corollary 4.3 implies that minimal dilations of (A, ¢) exist for every con-
tractive completely positive map ¢ : A — A, and that they are characterized
by the fact that their a-expectations are faithful on ideals. The latter im-
poses strong requirements on the structure of minimal dilations, and we
conclude by elaborating on these structural issues.

Definition 5.1. A standard dilation of (A, ¢) is a dilation (i, B, ) such that
A = pBp is an essential corner of B whose projection p € M (B) satisfies
pa(z)p = ¢(prp), © € B.
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In such cases, F(x) = pzp is the a-expectation of B on A. Standard
dilations are most transparent in the special case where A has a unit e and
p(e) = e. To illustrate that, let B be a C*-algebra containing A and let «
be an endomorphism of B with the following property:

v(a) = eala)e, ac A, (11)

e denoting the unit of A. We may also assume that B is generated by
AUa(A)Ua?(A)U---, so that (i, B, a) becomes an A-dynamical system.

Proposition 5.2. The projection e € B satisfies a(e) > e, A = eBe is a
hereditary subalgebra of B, and the map E(x) = exe defines an a-expectation
from B to A. If, in addition, A is an essential subalgebra of B, then (i, B, «)
is a standard dilation of (A, p).

Sketch of proof. Formula (11) implies that ea(e)e = ¢(e) = e, hence
a(e) > e. It follows immediately that ea(exe)e = ea(x)e for x € B.

At this point, a simple induction establishes ea™(a)e = ¢"(a), a € A,
n=20,1,2,.... An argument similar to the proof of Theorem 2.3 allows one
to evaluate more general expectation values as in (5)

ea" (a1)a™(ag) -+ - a"*(ax)e = [n1,...,ng; a1, ..., a,

which implies eBe C A. Hence A = eBe is a hereditary subalgebra of B.
With these formulas in hand one finds that the conditional expectation

E(z) = exe satisfies axioms E1 and E2 of Definition 4.1. Hence (i, B, «) is a

standard dilation of (A, ¢) whenever A is an essential subalgebra of B. [

We remark that the converse is also true: given (A, ) for which A has
a unit e and @p(e) = e, then every standard dilation has the properties of
Proposition (5.2). The description of standard dilations in general, where A
is unital and ||¢|| < 1 or is perhaps nonunital, becomes more subtle.

The universal dilation (i, PA, o) of (A, ¢) is not a standard dilation. For
example, when A has a unit e one can make use of the universal property
of PA = A% Ax--- to exhibit representations = : PA — B(H) such that
m(e) and m(o(e)) are nontrivial orthogonal projections. Hence o(e) # e.
Moreover, A is not a hereditary subalgebra of PA, and the conditional
expectation of Theorem 1.3 is never of the form x +— exe.

On the other hand, we now show that minimal dilations of (A, ¢) must be
standard. This is based on the following characterization of essential corners
in terms of conditional expectations.

Proposition 5.3. For every inclusion of C*-algebras A C B, the following
are equivalent.

(i) A is an essential corner pBp of B.
(ii) There is a conditional expectation E : B — A whose restriction to
[ABA| is multiplicative, and which satisfies ker E = {0}.
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Moreover, the conditional expectation E : B — A of (ii) is the compression
map E(x) = pxp, and it is unique. The projection p € M(B) satisfies

lim |xze, — xp| =0, x € B,
n—oo

where e, is any approrimate unit for A, and it defines the closed left ideal
generated by A as follows: [BA| = Bp.

Proof. The implication (i) = (ii) is straightforward, since the compres-
sion map E(z) = pxp obviously defines a conditional expectation of B on
A = pBp that is multiplicative on [ABA]. If z € B satisfies E(BxB) = {0}
then pBx*xBp = {0}, hence xtBA = xBpBp = {0}, and therefore x = 0
because [BAB] is assumed to be an essential ideal in (i).

(il) = (i). Given a conditional expectation E : B — A satisfying (ii),
we may assume that A C B(H) acts nondegenerately on some Hilbert space
(e.g., represent B faithfully on some Hilbert space and take H to be the
closed linear span of the ranges of all operators in A). Thus £ : B — B(H)
becomes an operator-valued completely positive map of norm 1, having a
Stinespring decomposition E(x) = V*r(x)V, with 7 a representation of B
on a Hilbert space K, and V : H — K a contraction with [7(B)VH] = K.

Let P be the projection on [r(A)K]. We claim that V is an isometry
with VV* = P. To prove that, choose ¢« € A, b € B, and let e, be an
approximate unit for A. Since E is multiplicative on [ABA] we can write

Vir(0*a™)(VV* = 1)m(ab)V* = E(b*a)E(ab) — E(b*a*ab) =
li}ln en(E(b*a*)E(ab) — E(b*a*ab))e, =
liTILn(E(enb*a*)E(aben) — E(epb*a™abey)) = 0.

It follows that V'V* — 1 vanishes on the closed linear span of w(A)r(B)V H,
namely [7(A)K]; hence VV* > P. On the other hand, for a € A we have
Va=VE() =VV*r(a)V = 7n(a)V. Thus VH C [VAH] = [r(A)VH] C
PK; hence VV* < P. That V is an isometry follows from the fact that for
a€ A VVa=V*VE(a) =V*VV*r(a)V = V*r(a)V = E(a) = a, and by
nondegeneracy H is the closed linear span of {a :a € A, £ € H}.

We claim that P = VV™* belongs to the multiplier algebra of 7(B). For
that, choose an approximate unit e, for A. Since both 7(e,) and VV* are
self-adjoint, it suffices to show that for every b € B, w(b)n(e,) — w(b)VV*
in norm as n — oo. Using VV*r(ey,) = m(e,)VV* = 7(e,), we can write

7 () (m(en) = VVII? = [[(m(en) = VV)m(b) (m(en) = VVF)| =
[VV*(7t(enb*ben) — m(enb*d) — m(b*bey) + w(b*b))VV*|| =

IV (E(enb*ben) — E(enb*d) — E(b*bey) + E(b*b))V*|| <

len E(b*b)en — enE(b*b) — E(b*b)en + E(b*D)]],

and the last term tends to 0 as n — oo because e, is an approximate unit

for A and E(b*b) € A. It follows that m(B)VV* = w(A)P is the closed left
ideal in 7(B) generated by m(A).
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We claim next that 7(A) = Pn(B)P is a corner of 7(B). Indeed,
VV*n(B)VV*=VE(B)V* =7(E(B)VV* =r(A)VV* = x(A).

It is essential because for any operator 7' € B(K) for which T'r(BA) = {0}

we must have T'm(BA)VV* = {0}. But since K is spanned by vectors of the

form 7(b)Va& = w(b)w(a)VE for a € A, b € B, the only possibility is T = 0.
Finally, 7 must be a faithful representation because 7(z) = 0 implies

E(BzB) = V*n(B)r(z)r(B)V = {0},

and the latter implies = 0 by hypothesis (ii). The preceding assertions can
now be pulled back through the isomorphism 7 : B — m(B) to give (i). O

Combining Corollary 4.3 with Proposition 5.3, we obtain:

Theorem 5.4. For every (A, ) as above, the minimal dilation of (A, ) is
a standard dilation satisfying the assertions of Proposition 5.5. All standard
dilations of (A, ) are equivalent to the minimal one.

We remark that Theorem 5.4, together with a theorem of Larry Brown
[Bro77], implies that the C*-algebra B of the minimal dilation (i, B, «) of
(A, ¢) can be embedded in the multiplier algebra of A ® K.

Concluding Remarks. It is appropriate to review some highlights of the
literature on noncommutative dilation theory, since it bears some relation-
ship to the contents of §§4-5. Several approaches to dilation theory for
semigroups of completely positive maps have been proposed since the mid
1970s, including work of Evans and Lewis [EL77], Accardi et al [AL82],
Kimmerer [Kiim85], Sauvageot [Sau86], and many others. Our atten-
tion was drawn to these developments by work of Bhat and Parthasarathy
[BP94], in which the first dilation theory for CP semigroups acting on
B(H) emerged that was effective for our work on Ey-semigroups [Arv97],
[Arv00]. SeLegue [SeL97] showed how to apply multi-operator dilation
theory to obtain the Bhat—Parthasarathy results, and he calculated the ex-
pectation values of the n-point functions of such dilations. Recently, Bhat
and Skeide [BS00] have initiated an approach to the subject that is based
on Hilbert modules over C*-algebras and von Neumann algebras.

We intend to take up applications to semigroups of completely positive
maps elsewhere.
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