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Abstract. Normal endomorphisms of von Neumann algebras need not
be extendable to automorphisms of a larger von Neumann algebra, but
they always have asymptotic lifts. We describe the structure of endo-
morphisms and their asymptotic lifts in some detail, and apply those
results to complete the identification of asymptotic lifts of unital com-
pletely positive linear maps on von Neumann algebras in terms of their
minimal dilations to endomorphisms.

1. Introduction

We work in the category whose objects are pairs (M, α) consisting of a
normal unit-preserving ∗-endomorphism α : M → M of a von Neumann
algebra M , and whose maps are equivariant normal ∗-homomorphisms that
map unit to unit. The isomorphisms of this category are conjugacies, in
which α1 : M1 → M1 is said to be conjugate to α2 : M2 → M2 if there is a
∗-isomorphism θ : M1 → M2 satisfying θ ◦ α1 = α2 ◦ θ.

Consider the problem of extending an endomorphism α : M → M to
a ∗-automorphism of a larger von Neumann algebra, assuming that the
necessary condition ker α = {0} is satisfied. In that case α is an isometric
∗-endomorphism of M , and a straightforward construction produces a unital
C∗-algebra N ⊇ M and a ∗-automorphism β of N that restricts to α on M .
This extension of α to an automorphism of a larger C∗-algebra is unique
up to natural isomorphism provided one assumes that it is minimal in the
sense that M ∪ β−1(M) ∪ β−2(M) ∪ · · · is norm-dense in N .

This procedure is effective for extending endomorphisms of C∗-algebras.
But it is poorly suited to this category since there is no natural way1 of
completing the C∗-algebra N to a von Neumann algebra so as to obtain a
W ∗-dynamical system that extends α except in special circumstances - the
most natural circumstance being that in which α preserves a faithful normal
state of M . More serious problems arise when ker α �= {0}, since in that case
even extensions to C∗-algebraic automorphisms cannot exist. The proper
way to associate a W ∗-dynamical system to an endomorphism involves the
notion of lifting, a concept introduced in [Arv06] for the broader category of
unital completely positive maps, and which will be described momentarily.

1991 Mathematics Subject Classification. 46L55, 46L09.
1It is always possible to carry out such a completion, but that construction does not

give rise to a functor from injective endomorphisms to W∗-dynamical systems. [AK92]
addresses the existence issue for E0-semigroups acting on von Neumann algebras.
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While liftings are typically much “smaller” than the extensions of isometric
endomorphisms described above, they always exist within the category and
they enjoy good functorial properties.

We were led to these issues by a problem involving the broader category
of normal unit-preserving completely positive linear maps φ : M → M of
von Neumann algebras M (UCP maps). It was shown in [Arv06] that every
UCP map φ : M → M has an asymptotic lift, which is unique up to natural
isomorphism. Naturally, one wants to identify the asymptotic lift of φ in
concrete terms. In [Arv06], the asymptotic lift of φ was identified as the tail
flow of the minimal dilation of φ in “most” cases - namely those cases in
which the tail flow of the dilated endomorphism has trivial kernel. But in
general, the minimal dilation of φ to an endomorphism can have a nontrivial
kernel, and the identification problem was left open in those cases.

The purpose of this note is to identify asymptotic lifts of UCP maps on
von Neumann algebras in general. That is accomplished by first giving a
description of lifts of endomorphisms, in the course of which we obtain a
basic result on the structure of surjective endomorphisms of von Neumann
algebras that appears to have been overlooked (Theorem 3.1). We apply
these results to identify the asymptotic lift of an arbitrary UCP map in
terms of its minimal dilation to an endomorphism of a larger von Neumann
algebra (Theorem 4.1), thereby completing Theorem 7.1 of [Arv06].

In related work [AS06], the notion of asymptotic lift was generalized
to normal positive linear maps acting on von Neumann algebras (also see
[Stø06]). It is significant that since there is no dilation theory for positive
linear maps that are not completely positive, the identification problem be-
comes a significant issue in such cases and has been only partially solved.
Further discussion can be found in [AS06].

2. Lifting endomorphisms

Throughout this section, α : M → M will denote an endomorphism acting
on a von Neumann algebra M . By a W ∗-dynamical system we mean a pair
(N, β), where β is a ∗-automorphism of a von Neumann algebra N .

Definition 2.1. A lifting of α : M → M is a triple (N, β, E) where (N, β)
is a W ∗-dynamical system and E : N → M is a unit-preserving normal
∗-homomorphism satisfying E ◦ β = α ◦ E.

Note first that for every lifting (N, β, E) of α, we have

(2.1) E(N) ⊆ M ∩ α(M) ∩ α2(M) ∩ · · · .

Indeed, every element y = E(x) in the range of E can be written in the
form y = αn(E(β−n(x)) ∈ αn(M) for every n = 0, 1, 2, . . . , from which the
assertion is evident.
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Remark 2.2 (Nondegeneracy). A lifting (N, β, E) of α is said to be nonde-
generate if for every x ∈ N ,

E(βn(x)) = 0, n ∈ Z =⇒ x = 0.

In general, the set

K = {x ∈ N : E(βn(x)) = 0, ∀ n ∈ Z}
is a weak∗-closed two-sided ideal in N satisfying β(K) = K. Hence there
is a β-fixed central projection c ∈ N such that K = cN . It follows that N
decomposes into a sum N = K ⊕ N0, where (N0, β �N0 , E �N0) is a nonde-
generate lift of α and E(βn(K)) = {0} for every n ∈ Z. In particular, every
lift (N, β, E) of α can be reduced to a nondegenerate lift without affecting
the range of the homomorphism E.

Let α : M → M be an endomorphism of a von Neumann algebra. The
sequence of von Neumann algebras M, α(M), α2(M), . . . decreases as n in-
creases, and their intersection

M∞ =
∞⋂

n=1

αn(M)

is called the tail algebra of α. The restriction of α to the tail algebra is a
surjective endomorphism; it is an automorphism iff kerα ∩ M∞ = {0}.
Proposition 2.3. Let α : M → M be an endomorphism. For every lifting
(N, β, E) of α, the following are equivalent.

(i) For every normal linear functional ρ ∈ M∗, one has

(2.2) lim
n→∞

‖ρ ◦ αn‖ = ‖ρ ◦ E‖.

(ii) E(N) = M∞.

Proof. Since E is a ∗-homomorphism of von Neumann algebras, it maps the
unit ball of N onto the unit ball of its range. Hence (ii) is equivalent to

E(ballN) = ballM∞ =
∞⋂

n=1

αn(ballM).

The equivalence (i) ⇐⇒ (ii) now follows from the more general assertion of
Lemma 3.6 of [Arv06]. �
Definition 2.4. An asymptotic lift of an endomorphism α : M → M is a
nondegenerate lifting (N, β, E) satisfying the conditions of Proposition 2.3.

Remark 2.5 (Relation to asymptotic lifts of UCP maps). In [Arv06], the
term asymptotic lift refers to a related concept that was introduced for the
broader category of UCP maps on dual operator systems. It is significant
that an asymptotic lift in the sense of Definition 2.4 is also an asymptotic
lift in the broader sense of Definition 3.1 of [Arv06].

To prove that assertion, it suffices to show that if a lifting (N, β, E) of
an endomorphism α : M → M satisfies the equivalent properties (i) and
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(ii) of Proposition 2.3, then those properties persist throughout the matrix
hierarchy over M . Indeed, for each n = 1, 2, . . . , the lifting (N, β, E) of
α : M → M induces a natural lift (Mn ⊗ N, idn ⊗β, idn ⊗E) of the endo-
morphism idn ⊗α : Mn ⊗ M → Mn ⊗ M , and by examining matrix entries
one finds that property (ii) persists at level n. Hence property (i) holds as
well for every n = 1, 2, . . . , and (N, β, E) satisfies Definition 3.1 of [Arv06].

Two liftings (Nk, βk, Ek), k = 1, 2, of an endomorphism α : M → M are
said to be isomorphic if there is an isomorphism of von Neumann algebras
γ : N1 → N2 satisfying γ ◦ β1 = β2 ◦ γ and E2 ◦ γ = E1.

Theorem 2.6. Every endomorphism α : M → M of a von Neumann algebra
has an asymptotic lifting that is unique up to isomorphism.

Proof. The proof of Theorem 3.2 of [Arv06] explicitly constructs an asymp-
totic lift of a UCP map of that category in terms of the space of inverse
sequences of that map. Since in the present context the map is an endomor-
phism α : M → M , one sees by inspection that the constructed asymptotic
lift (N, β, E) has the following properties: the space N of inverse sequences
is closed under multiplication, β is a ∗-automorphism of that von Neumann
algebra, and E : N → M is a normal ∗-homomorphism. Hence (N, β, E) is
an asymptotic lift in the sense of Definition 2.4. The proof of uniqueness
involves similar observations. �

3. Structure of surjective endomorphisms

In this section we prove that in general, a surjective endomorphism of a
von Neumann algebra admits a natural decomposition into the direct sum
of a W ∗-dynamical system and an endomorphism of a particularly simple
kind, called a backward shift, that depends only on kerα. That allows us to
identify asymptotic lifts of endomorphisms in very concrete terms.

Let K be a von Neumann algebra and consider the von Neumann algebra
�∞(N, K) of all singly-infinite bounded sequences

x = (x1, x2, . . . ), xk ∈ K.

Define an endomorphism σ+ of �∞(N, K) as follows

(3.1) σ+(x1, x2, . . . ) = (x2, x3, . . . ), (x1, x2, . . . ) ∈ �∞(N, K).

Obviously, σ+ is a normal surjective unit-preserving endomorphism, and

kerσ+ = K ⊕ 0 ⊕ 0 ⊕ · · · ∼= K.

Such an endomorphism σ+ is called the backward shift based on K.
We can modify the backward shift σ+ based on K in a nontrivial way by

choosing an automorphism β of another von Neumann algebra P and letting
β ⊕ σ+ be the endomorphism of P ⊕ �∞(N, K) defined by

(3.2) β ⊕ σ+ : x ⊕ y ∈ P ⊕ �∞(N, K) �→ β(x) ⊕ σ+(y).

This is a surjective endomorphism whose kernel is isomorphic to K, but it
has a summand P on which it restricts to an automorphism.
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Theorem 3.1. Every normal surjective endomorphism α of a von Neumann
algebra M is conjugate to one of the form (3.2), where σ+ is the backward
shift based on K = kerα, and where β is the ∗-automorphism defined by
restricting α to P = (1 − c)M , c being the α-fixed central projection

(3.3) c = lim
n→∞

cn,

where c1 ≤ c2 ≤ · · · is the sequence of central projections ker αn = cnM .

Proof. Since kerαn is a weak∗-closed ideal in M for every n = 1, 2, . . . , it has
the form cnM where cn is a central projection; and since kerαn ⊆ ker αn+1,
it follows that cn ≤ cn+1.

We claim: α(cn+1) = cn, for every n = 1, 2, . . . . Since kerαk = ckM
and α(M) = M , this is equivalent to the assertion α(kerαn+1) = kerαn.
Obviously, x ∈ kerαn+1 =⇒ α(x) ∈ kerαn. For the opposite inclusion,
choose y ∈ ker αn. Since M = α(M), we can find x ∈ M such that y = α(x).
This x must satisfy αn+1(x) = αn(α(x)) = αn(y) = 0, hence x ∈ ker αn+1,
and therefore y = α(x) ∈ α(kerαn+1). These formulas α(cn+1) = cn clearly
imply that the limit c of (3.3) is an α-fixed central projection.

Let P = (1 − c)M . Note that α(P ) = α(1 − c)α(M) = (1 − c)M = P .
Since the kernel of α is c1M ⊆ cM we have P ∩ker α = {0}, hence α restricts
to a ∗-automorphism of P .

Turning now to the summand cM , we claim that for every n ≥ 2, αn−1

restricts to an isomorphism of von Neumann algebras

αn−1 : (cn − cn−1)M ∼= ker α = c1M.

Indeed, the restriction of αn−1 to (cn−cn−1)M is injective because ker αn−1 =
cn−1M intersects trivially with the algebra on the left. It is surjective be-
cause after iterating the formulas α(ck+1) = ck we find that

αn−1((cn − cn−1)M) = αn−1(cnM) = αn−1(cn)M = αn−2(cn−1)M

= · · · = α(c2)M = c1M.

Now consider the von Neumann algebra �∞(N, kerα), the algebra of all
uniformly bounded sequences y = (y1, y2, . . . ) with yk ∈ kerα for k ≥ 1.
Every element x ∈ cM admits a unique decomposition into a bounded se-
quence of mutually orthogonal central slices x = x1 + x2 + x3 + · · · , where
x1 = c1x and xk = (ck − ck−1)x for k ≥ 2. Moreover, the preceding para-
graph implies that αk−1(xk) ∈ kerα for every k ≥ 2. Thus we can define a
normal homomorphism of von Neumann algebras θ : cM → �∞(N, ker α) by

θ(x) = (x1, α(x2), α2(x3), . . . ), x ∈ cM.

We have also seen that for each k ≥ 2, αk−1 restricts to an isomorphism from
(ck −ck−1)M to kerα; and since cM = c1M ⊕ (c2−c1)M ⊕ (c3−c2)M ⊕· · · ,
it follows that θ is an isomorphism of von Neumann algebras.

One can now directly verify that θ ◦ α = σ+ ◦ θ, where σ+ denotes the
backward shift on �∞(N, kerα). We conclude that θ implements a conjugacy
of the restriction of α to cM and the backward shift based on kerα. �
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The W ∗-dynamical system (P, α �P ) is called the automorphic summand
of α. It is clear from the preceding proof that two surjective endomorphisms
are conjugate iff their automorphic summands are conjugate W ∗-dynamical
systems and their kernels are isomorphic von Neumann algebras.

Theorem 3.1 leads to the following description of the asymptotic lifts of
arbitrary endomorpisms of von Neumann algebras.

Corollary 3.2. Let α : M → M be an endomorphism with tail algebra
M∞ = ∩n≥1α

n(M). Let K = kerα ∩ M∞, let σ+ be the backward shift
acting on �∞(N, K), and let (P, β) be the automorphic summand of α �M∞.

By Theorem 3.1, there is an isomorphism of von Neumann algebras

θ : P ⊕ �∞(N, K) → M∞

that satisfies θ ◦ (β ⊕ σ+) = α ◦ θ. Let σ be the bilateral shift acting on
the von Neumann algebra �∞(Z, K) by way of σ(xn) = (xn+1), and define a
homomorphism E : P ⊕ �∞(Z, K) → M∞ by

E(p ⊕ (xn)) = θ(p ⊕ (x1, x2, . . . )), p ∈ P, (xn) ∈ �∞(Z, K).

Then (P ⊕ �∞(Z, K), β ⊕ σ, E) is the asymptotic lift of α : M → M .

Proof. It is obvious that (P ⊕ �∞(Z, K), β ⊕ σ) is a W∗-dynamical system
and that E is a homomorphism of von Neumann algebras with range

E(P ⊕ �∞(Z, K)) = θ(P ⊕ �∞(N, K)) = M∞.

Moreover,

E ◦ (β ⊕ σ)(p ⊕ (xn)) = E(β(p) ⊕ (xn+1)) = θ(β(p) ⊕ (x2, x3, . . . ))

= θ(β(p) ⊕ σ+(x1, x2, . . . )) = α ◦ θ(p ⊕ (x1, x2, . . . ))

= α ◦ E(p ⊕ (xn)),

hence E ◦ (β ⊕ σ) = α ◦ E. We conclude that (P ⊕ �∞(Z, K), β ⊕ σ, E) is a
lifting of α that satisfies condition (ii) of Proposition 2.3; and it remains only
to show that this lifting is nondegenerate. But if p ∈ P and (xn) ∈ �∞(Z, K)
are such that E((β ◦ σ)k(p ⊕ (xn)) = θ(βk(p) ⊕ (xk+1, xk+2, . . . )) = 0 for
every k ∈ Z, then βk(p) = 0 and xk+1 = 0 for every k ∈ Z. The desired
formula p ⊕ (xn) = 0 follows. �

4. Application to UCP maps on von Neumann algebras

Let φ : M → M be a UCP map acting on a von Neumann algebra M . In
this section we identify the asymptotic lift of φ in terms of its minimal dila-
tion to an endomorphism of a larger von Neumann algebra. This solves the
identification problem in general by strengthening Theorem 7.1 of [Arv06]
that was restricted to the case in which the minimal dilation has trivial
kernel. Indeed, the following result applies to dilations of φ that are not
necessarily minimal (see Chapter 8 of [Arv03]).
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Theorem 4.1. Let α : N → N be an endomorphism of a von Neumann
algebra and let p ∈ N be a projection that satisfies α(p) ≥ p and αn(p) ↑ 1
as n ↑ ∞. Let M = pNp and let φ : M → M be the UCP map defined by

φ(x) = pα(x)p, x ∈ M = pNp.

Let (Ñ , α̃, E) be the asymptotic lift of α described in Corollary 3.2. Then
the asymptotic lift of φ is (Ñ , α̃, Ẽ) where Ẽ : Ñ → M is the UCP map

(4.1) Ẽ(x) = pE(x)p, x ∈ Ñ .

Proof. Obviously Ẽ : Ñ → M is a UCP map and we claim φ ◦ Ẽ = Ẽ ◦ α̃.
Indeed, we can use pα(p) = α(p)p = p and α ◦ E = E ◦ α̃ to write

φ(Ẽ(x)) = pα(Ẽ(x))p = pα(p)α(E(x))α(p)p = pE(α̃(x))p = Ẽ ◦ α̃(x).

Hence (Ñ , α̃, Ẽ) is a lifting of φ. To see that it is nondegenerate, choose
x ∈ Ñ such that Ẽ(α̃k(x)) = 0, k ∈ Z. Then for n ≥ 1 we can apply αn to
Ẽ(α̃−n(x)) = 0 and use α ◦ E = E ◦ α̃ to obtain

0 = αn(Ẽ(α̃−n(x))) = αn(p)αn(E(α̃−n(x)))αn(p) = αn(p)E(x)αn(p).

Since αn(p) ↑ 1 as n ↑ ∞, it follows that E(x) = 0. Replacing x with α̃k(x),
k ∈ Z, and using nondegeneracy of (Ñ , α̃, E), we conclude that x = 0.

We claim that for every ρ ∈ M∗,

(4.2) lim
n→∞

‖ρ ◦ φn‖ = ‖ρ ◦ Ẽ‖.

To prove (4.2), fix ρ and define a normal functional ρ̄ ∈ N∗ by ρ̄(y) = ρ(pyp).
For every x ∈ Ñ we have ρ ◦ Ẽ(x) = ρ(pE(x)p) = ρ̄ ◦ E(x), and as in the
proof of formula (7.2) of [Arv06], we obtain the following formulas for n ≥ 1

(4.3) ‖ρ ◦ φn‖ = ‖ρ̄ ◦ αn‖, ‖ρ ◦ Ẽ‖ = ‖ρ̄ ◦ E‖.
Since (Ñ , α̃, E) is the asymptotic lift of α : N → N , ‖ρ̄ ◦ αn‖ converges
to ‖ρ̄ ◦ E‖ as n → ∞, and (4.2) follows. Similarly, one can promote (4.2)
throughout the matrix hierarchy over M exactly as in the proof of Theorem
7.1 of [Arv06] to complete the proof of Theorem 4.1. �
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