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Abstract. A CP -semigroup (or quantum dynamical semigroup) is a semigroup φ =
{φt : t ≥ 0} of normal completely positive linear maps on B(H), H being a separable

Hilbert space, which satisfies φt(1) = 1 for all t and is continuous in the natural

sense.
Let D be the natural domain of the generator L of φ, φt = exp tL. Since the maps

φt need not be multiplicative D is typically an operator space, but not an algebra.
However, we show that the set of operators

A = {A ∈ D : A∗A ∈ D, AA∗ ∈ D}

is a ∗-subalgebra of B(H), indeed A is the largest self-adjoint algebra contained in
D. Because A is a ∗-algebra one may consider its ∗-bimodule of noncommutative

2-forms Ω2(A) = Ω1(A) ⊗A Ω1(A), and any linear mapping L : A → B(H) has a

symbol σL : Ω2(A) → B(H), defined as a linear map by

σL(a dx dy) = aL(xy)− axL(y)− aL(x)y + axL(1)y, a, x, y ∈ A.

The symbol is a homomorphism of A-bimodules for any ∗-algebra A ⊆ B(H) and

any linear map L : A → B(H). When L is the generator of a CP -semigroup with
domain algebra A above, we show that the symbol is negative in that σL(ω∗ω) ≤ 0

for every ω ∈ Ω1(A) (−σL is in fact completely positive).
Examples are given for which the domain algebraA is, and is not, strongly dense in

B(H). We also relate the generator of a CP -semigroup to its commutative paradigm,

the Laplacian of a Riemannian manifold.

1. Basic properties of A. Let φ = {φt : t ≥ 0} be a CP -semigroup as defined in
the abstract. We first recall four characterizations of the domain of the generator
of φ.

Lemma 1. Let A ∈ B(H). The following are equivalent.
(i) The limit

L(A) = lim
t→0+

1
t
(φt(A)−A)

exists relative to the strong-∗ topology of B(H).
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(ii) the limit

L(A) = lim
t→0+

1
t
(φt(A)−A)

exists relative to the weak operator topology of B(H).
(iii)

sup
t>0

1
t
‖φt(A)−A‖ ≤ M < ∞.

(iv) There is a sequence tn → 0+ for which

sup
n

1
tn
‖φtn

(A)−A‖ ≤ M < ∞.

proof. The implications (i) =⇒ (ii) and (iii) =⇒ (iv) are trivial, and (ii) =⇒
(iii) is a straightforward consequence of the Banach-Steinhaus theorem.

proof of (iv) =⇒ (i). Since the unit ball of B(H) is weakly sequentially compact,
the hypothesis (iv) implies that there is a sequence tn → 0+ such that

1
tn

(φtn
(A)−A) → T ∈ B(H)

in the weak operator topology. We claim: for every s > 0,

(1.1)
∫ s

0

φλ(T ) dλ = φs(A)−A.

The integral on the left is interpreted as a weak integral; that is, for ξ, η ∈ H,∫ s

0

〈φλ(T )ξ, η〉 dλ = 〈φs(A)ξ, η〉 − 〈Aξ, η〉 .

To see that, fix λ > 0. Since φλ is weakly continuous on bounded sets in B(H)
we have

1
tn

(φλ+tn
(A)− φλ(A)) = φλ(

1
tn

(φtn
(A)−A)) → φλ(T )

in the weak operator topology, as n → ∞. By the bounded convergence theorem,
we find that for fixed ξ, η ∈ H,

lim
n→∞

1
tn

(
∫ s

0

〈φλ+tn
(A)ξ, η〉 d lambda−

∫ s

0

〈φλ(A)ξ, η〉 dλ) =
∫ s

0

〈φλ(T )ξ, η〉 dλ.

Writing ∫ s

0

f(λ + tn) dλ−
∫ s

0

f(λ) dλ =
∫ s+tn

s

f(λ) dλ−
∫ tn

0

f(λ) dλ,

the left side of the preceding formula becomes

lim
n→∞

(
1
tn

∫ s+tn

s

〈φλ(A)ξ, η〉 d lambda− 1
tn

∫ tn

0

〈φλ(A)ξ, η〉 dλ)
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which, because of continuity of φ in the time parameter, is 〈φs(A)ξ, η〉− 〈Aξ, η〉, as
asserted in (1.1).

To prove the strong-∗ convergence asserted in (i), fix ξ ∈ H and use (1.1) to
write

‖1
s
(φs(A)ξ −Aξ)− Tξ‖ =

1
s
‖

∫ s

0

φλ(T )ξ dλ−
∫ s

0

Tξ dλ‖

≤ 1
s

∫ s

0

‖φλ(T )ξ − Tξ‖ dλ ≤ (
1
s

∫ s

0

‖φλ(T )ξ − Tξ‖2 dλ)1/2.

The integrand of the last term expands as follows

‖φλ(T )ξ − Tξ‖2 = 〈φλ(T )∗φλ(T )ξ, ξ〉 − 2< 〈φλ(T )ξ, T ξ〉+ ‖Tξ‖2

≤ 〈φλ(T ∗T )ξ, ξ〉 − 2< 〈φλ(T )ξ, T ξ〉+ ‖Tξ‖2,

the last inequality by the Schwarz inequality for unital CP maps. Since φλ(T ∗T )
(resp. φλ(T )) tends weakly to T ∗T (resp. T ) as λ → 0+, it follows that

lim sup
s→0+

1
s

∫ s

0

‖φλ(T )ξ − Tξ‖2 dλ ≤ 〈T ∗Tξ, ξ〉 − 2 〈Tξ, T ξ〉+ ‖Tξ‖2 = 0,

and we conclude that 1
s (φs(A)−A) tends strongly to T as s → 0+.

Similarly, 1
s (φs(A)−A)∗ = 1

s (φs(A∗)−A∗) tends strongly to T ∗.

Definition. Let D be the set of all operators A ∈ B(H) for which the four condi-
tions of Lemma 1 are satisfied. L : D → B(H) denotes the generator of φ,

L(A) = lim
t→0+

1
t
(φt(A)−A), A ∈ D.

It is obvious that D is a self-adjoint linear subspace of B(H), that L(A∗) = L(A)∗

for A ∈ D, and a standard argument shows that D is dense in B(H) in the σ-strong
operator topology.

Lemma 2. For every operator A ∈ D we have

‖L(A)‖ = sup
t>0

1
t
‖φt(A)−A‖.

proof. The inequality ≤ is clear from the fact that L(A) is the weak limit of oper-
ators 1

t (φt(A)−A) near t = 0+, i.e.,

‖L(A)‖ ≤ lim sup
t→0+

1
t
‖φt(A)−A‖ ≤ sup

t>0

1
t
‖φt(A)−A‖.

For ≥, set T = L(A). Using (1.1), we can write for every t > 0

1
t
‖φt(A)−A‖ =

1
t
‖

∫ t

0

φλ(T ) dλ‖ ≤ 1
t

∫ t

0

‖φλ(T )‖ dλ ≤ ‖T‖,

since ‖φλ‖ ≤ 1 for every λ ≥ 0.
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Theorem A. A = {A ∈ D : A∗A ∈ D, AA∗ ∈ D} is a ∗-subalgebra of B(H).

proof. A is obviously a self-adjoint set of operators. We have to show that A is a
vector space satisfying A · A ⊆ A.

Fix t > 0. By Stinespring’s theorem we can write

(1.2) φt(X) = V ∗
t πt(X)Vt, X ∈ B(H)

where Vt is an isometry from H into some other Hilbert space Ht and where πt :
B(H) → B(Ht) is a normal ∗-homomorphism of von Neumann algebras. Pt = VtV

∗
t

is a self-ajoint projection in B(Ht).
For t > 0 we will consider the seminorms pt, qt defined on B(H) as follows

pt(X) = t−1‖φt(X)−X‖,

qt(X) = t−1/2‖Ptπt(X)− πt(X)Pt‖, X ∈ B(H).

Lemma 3. For every operator X ∈ B(H) we have the following characterizations.
(i) X ∈ D iff

sup
t>0

pt(X) < ∞,

and in that case ‖L(X)‖ = supt>0 pt(X).
(ii) X ∈ A iff both supt>0 pt(X) and supt>0 qt(X) are finite, and in that case

max(‖σL(dX∗ dX)‖1/2, ‖σL(dX dX∗)‖1/2) ≤ lim sup
t→0+

qt(X),

where σL(dX∗ dX) and σL(dX dX∗) are the operators in B(H) defined by

σL(dX∗ dX) = L(X∗X)−X∗L(X)− L(X∗)X,

σL(dX dX∗) = L(XX∗)−XL(X∗)− L(X)X∗

Remark. The second assertion of Lemma 3 requires clarification. By definition,
an operator X belongs to A iff all four operators X, X∗, X∗X, XX∗ belong to
the domain of the generator L of φ = {φt : t ≥ 0}. In that case both opera-
tors σL(dX∗ dX) and σL(dX dX∗) are well defined by the above formulas. The
“symbol” map σL will be discussed more fully in section 3.

proof of Lemma 3. The assertion (i) follows from Lemmas 1 and 2 above. In order
to prove (ii) we require the following more concrete expression for the seminorm qt,

qt(X) =

max(‖1
t
(φt(X∗X)− φt(X)∗φt(X))‖1/2, ‖1

t
(φt(XX∗)− φt(X)∗φt(X∗))‖1/2).

(1.3)

To prove (1.3) we decompose the commutator πt(X)Pt − Ptπt(X) into a sum

πt(X)Pt − Ptπt(X) = (1− Pt)πt(X)Pt − Ptπt(X)(1− Pt).
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Since the first term (1 − Pt)πt(X)Pt has initial space in PtHt and final space in
(1− Pt), and the second term has the opposite property, it follows that

‖πt(X)Pt − Ptπt(X)‖ = max(‖(1− Pt)πt(X)Pt‖, ‖Ptπt(X)(1− Pt)‖).

We have

‖(1− Pt)πt(X)Pt‖2 = ‖V ∗
t πt(X∗)(1− Pt)πt(X)Vt‖

= ‖V ∗
t πt(X∗X)Vt − V ∗

t πt(X∗)VtV
∗
t πt(X)Vt‖

= ‖φt(X∗X)− φt(X)∗φt(X)‖.

Similarly,

‖Ptπt(X)(1−Pt)‖2 = ‖V ∗
t πt(X)(1−Pt)πt(X∗)Vt‖ = ‖φt(XX∗)−φt(X)∗φt(X∗)‖,

and formula (1.3) follows from these two expressions.
Now if X ∈ A then all four operators X, X∗, X∗X, XX∗ belong to D, hence all

four limits

lim
t→0+

1
t
(φt(X∗X)−X∗X) = L(X∗X),

lim
t→0+

1
t
(φt(XX∗)−X∗X) = L(XX∗),

lim
t→0+

1
t
(φt(X)−X) = L(X),

lim
t→0+

1
t
(φt(X∗)−X∗) = L(X∗)

exist relative to the strong operator topology. Writing

φt(X∗X)− φt(X)∗φt(X) =

(φt(X∗X)−X∗X)−X∗(φt(X)−X)− (φt(X∗)−X∗)φt(X)(1.4)

and using strong continuity of multiplication on bounded sets, we find that the
limit

lim
t→0+

1
t
(φt(X∗X)−φt(X∗)φt(X)) = L(X∗X)−X∗L(X)−L(X∗)X = σL(dX∗ dX)

exists relative to the strong operator topology.
In the same way we deduce the existence of the strong limit

lim
t→0+

1
t
(φt(XX∗)−φt(X)φt(X∗)) = L(XX∗)−XL(X∗)−L(X)X∗ = σL(dX dX∗).

It follows that for every X ∈ A the seminorms qt(X) are bounded for t > 0, and
for such X we have

max(‖σL(dX∗ dX)‖1/2, ‖σL(dX dX∗)‖1/2) ≤ lim sup
t→0+

qt(X).
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Conversely, suppose we are given an operator X ∈ D for which the seminorms
qt(X) are bounded for t > 0. We have to show that X∗X and XX∗ belong to D;
since D is self-adjoint and the seminorms qt are symmetric in that qt(X∗) = qt(X),
it is enough to show that X∗X belong to D. (1.4) implies that for fixed t > 0,

φt(X∗X)−X∗X =

(φt(X∗X)−φt(X∗)φt(X)) + X∗(φt(X)−X) + (φt(X∗)−X∗)φt(X)
(1.5)

Because of (1.3), the first term on the right of (1.5) is bounded in norm by M1 · t
where M1 is a positive constant. Similarly, since X and X∗ belong to D the second
and third terms are bounded in norm by terms of the form M2 · t and M3 · t
respectively, hence

‖φt(X∗X)−X∗X‖ ≤ (M1 + M2 + M3) · t.

By Lemma 1, X∗X must belong to D.

Turning now to the proof of Theorem A, (or more properly, to the proof that
A is an algebra), Lemma 3 tells us that A consists of all operators X ∈ B(H) for
which

sup
t>0

pt(X) < ∞, and sup
t>0

qt(X) < ∞.

Since pt and qt are both seminorms, it follows that A is a complex vector space
which is obviously closed under the ∗-operation.

To see that A is closed under multiplication, pick X, Y ∈ A. According to
Lemma 3, it is enough to show

(1.6) sup
t>0

qt(XY ) < ∞

and

(1.7) sup
t>0

pt(XY ) < ∞

To prove (1.6) we claim that

(1.8) qt(XY ) ≤ qt(X)‖Y ‖+ ‖X‖qt(Y ).

Indeed, writing [A,B] for the commutator AB −BA we have

[Pt, πt(XY )] = [Pt, πt(X)]πt(Y ) + πt(X)[Pt, πt(Y )],

and hence

qt(XY ) = t−1/2‖[Pt, πt(XY )]‖

≤ t−1/2‖[Pt, πt(X)‖ · ‖πt(Y )‖+ ‖πt(X)‖ · t−1/2‖[Pt, πt(Y )]‖,

from which (1.8) is evident.
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Finally, consider the condition (1.7). By definition of A, A ∈ A implies A∗A ∈ D.
Since A is now known to be a linear space we can assert that if X, Y ∈ A then for
every k = 0, 1, 2, 3 we have Y + ikX ∈ A, hence (Y + ikX)∗(Y + ikX) ∈ D and by
the polarization formula

X∗Y =
1
4

3∑
k=0

ik(Y + ikX)∗(Y + ikX),

X∗Y must also belong to D. Since A∗ = A, we can replace X∗ with X to conclude
that XY ∈ D. (1.7) now follows from Lemma 3 (i).

Corollary. Let D be the domain of the generator of a CP -semigroup acting on
B(H) and let A be a self-adjoint operator such that A ∈ D and A2 ∈ D. Then
p(A) ∈ D for every polynomial p(x) = a0 + a1x + · · ·+ anxn.

2. Examples. In this section we describe two classes of examples which are in
a sense at opposite extremes. In the first class of examples of CP -semigroups
φ = {φt : t ≥ 0}, each φt leaves the C∗-algebra K of all compact operators invariant,
φt(K) ⊆ K, its domain algebra A is strongly dense in B(H), and its generator
restricts to a “second order” differential operator on A (see formula (1.1) of [1]).
In the second class of examples, the individual maps satisfy φt(K) ∩ K = {0} for
t > 0, A is not strongly dense in B(H), and its generator is degenerate in the sense
that it restricts to a derivation on A.

We first recall the class of examples of CP -semigroups of [1], including the heat
flow of the CCR algebra. While for simplicity we confine the discussion to the case
of one degree of freedom, the reader will note that everything carries over verbatim
to the case of n degrees of freedom, n = 1, 2, . . . .

Let {Wz : z ∈ R2} be an irreducible Weyl system acting on a Hilbert space H.
Thus, z ∈ R2 7→ Wz is a strongly continuous mapping from R2 into the unitary
operators on H which satisfies the canonical commutation relations in Weyl’s form

Wz1Wz2 = eiω(z1,z2)Wz1+z2 , z1, z2 ∈ R2,

ω denoting the symplectic form on R2 given by

ω((x, y), (x′, y′)) =
1
2
(x′y − xy′).

Let {µt : t ≥ 0} be a one-parameter family of probability measures on R2 which is
a semigroup under the natural convolution of measures

µ ∗ ν(S) =
∫

R2×R2
χS(z + w) dµ(z) dν(w),

which satisfies µ0 = δ(0,0), and which is measurable in t in the natural sense. It is
convenient to define the Fourier transform of a measure µ in terms of the symplectic
form ω as follows,

µ̂(z) =
∫

R2
eiω(z,ζ) dµ(ζ), z ∈ R2.
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Given such a semigroup of probability measures {µt : t ≥ 0} there is a unique CP
semigroup φ = {φt : t ≥ 0} acting on B(H) which satisfies

φt(Wz) = µ̂t(z)Wz, z ∈ R2, t ≥ 0

see [1], Proposition 1.7. Two cases of particular interest are

(CCR heat flow) φt(Wz) = e−t|z|2Wz, t ≥ 0

where |(x, y)| denotes the Euclidean norm (x2 + y2)1/2, and

(Cauchy flow) φt(Wz) = e−t|z|Wz, t ≥ 0.

For both of these examples a straightforward estimate shows that for fixed z ∈ R2

there is a constant M > 0 such that

‖φt(Wz)−Wz‖ = |µ̂t(z)− 1| ≤ M · t, t > 0

and hence Wz ∈ D. Since Wz is unitary, 1 = W ∗
z Wz = WzW

∗
z belongs to D , and

hence Wz belongs to the domain algebra A of φ for every z ∈ R2. We conclude
that for these examples, the domain algebra is strongly dense in B(H).

Indeed, it is not hard to show that A contains a ∗-algebra of compact operators
that is norm-dense in the algebra K of all compact operators. Unlike the examples
to follow, these flows leave K invariant in the sense that φt(K) ⊆ K for all t ≥ 0,
and can therefore be considered as CP -semigroups which act on the separable C∗-
algebra K, rather than than as CP -semigroups acting on B(H).

We now describe a class of examples of CP semigroups whose domain algebras
are not strongly dense in B(H). These examples are inspired by a class of CP
semigroups that have emerged in recent work of Robert Powers, to whom we are
indebted for useful discussions.

Let H = L2(0,∞) and let U = {Ut : t ≥ 0} be the semigroup of isometries
Utξ(x) = ξ(x − t) for x ≥ t, Utξ(x) = 0 for 0 ≤ x < t. Fix a real number α > 0,
and let f be the unit vector in L2(0,∞) obtained by normalizing the exponential
function u(x) = e−αx, x ≥ 0. One has U∗

t f = e−αtf for every t ≥ 0, hence the
vector state ω(A) = 〈Af, f〉 satisfies ω(UtAU∗

t ) = e−2αtω(A), A ∈ B(H).
We consider the family of unit-preserving normal completely positive maps φ =

{φt : t ≥ 0} defined on B(H) by

φt(A) = ω(A)Et + UtAU∗
t , t ≥ 0.

where Et = 1− UtU
∗
t is the projection on the subspace L2(0, t) ⊆ L2(0,∞). Since

ω(Et) = ω(1)− ω(UtU
∗
t ) = 1− e−2αt,

it follows that ω(φt(A)) = ω(A) for every A. A routine computation now shows
that φ satisfies the semigroup property φs ◦φt = φs+t, hence φ is a CP semigroup.

Let D be the domain of the generator of φ and let A be the domain algebra

A = {A ∈ D : A∗A ∈ D, AA∗ ∈ D}.

Theorem A implies that A is a unital ∗-algebra and we calculate its strong closure.
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Proposition. The strong closure of A consists of all operators B ∈ B(H) such
that B commutes with the rank-one projection f ⊗ f̄ .

Thus the strong closure of A consists of all operators B such that both B and
B∗ have f as an eigenvector.

proof. By Lemma 1, the domain D of the generator of φ consists of all operators A
with the property

(2.1) ‖φt(A)−A‖ ≤ M · t, for all t ≥ 0,

where M is a positive constant depending on A.
First, we show that f ⊗ f commutes with A. Choose A ∈ A. In order to show

that A commutes with f ⊗ f̄ , it is enough to show that

(2.2) ω(A∗A) = ω(AA∗) = |ω(A)|2,

since (2.2) implies

‖Af − ω(A)f‖2 = ω(A∗A)− 2|ω(A)|2 + |ω(A)|2 = 0,

and similarly ‖A∗f − ω(A∗)f‖ = 0. Multiplying φt(A)−A on the right by Et and
using the fact that φt(A)Et = ω(A)Et we conclude from (2.1) that

lim
t→0

‖ω(A)Et −AEt‖ = 0.

Replacing A with A∗A and AA∗ one also finds

lim
t→0

‖ω(A∗A)Et −A∗AEt‖ = lim
t→0

‖ω(AA∗)Et −AA∗Et‖ = 0.

Taken together, these three limits imply that ω(A∗A) = ω(AA∗) = |ω(A)|2, as
required.

To prove the opposite inclusion it is enough to show that for every self-adjoint
operator A ∈ B(H) satisfying Af = 0 there is a sequence An of self-adjoint op-
erators in A which converges weakly to A (recall that A is a self-adjoint algebra
containing the identity). Fix such an A and, for every ε > 0, set

Aε = φε(A) = ω(A)Eε + UεAU∗
ε = UεAU∗

ε .

Aε converges weakly to A as ε → 0. Moreover, Aε is supported in the interval (ε,∞)
in the sense that AεEε = EεAε = 0, and in addition we have Aεf = 0 since

Aεf = UεAU∗
ε f = e−αεUεAf = 0.

We show that each Aε can be weakly approximated by self-adjoint elements of the
domain algebra.
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Lemma. Suppose ε > 0 and let A be a self-adjoint operator in B(H) such that (i)
Af = 0 and (ii) A is supported in (ε,∞) in the sense that AEε = EεA = 0. Let u
be a C∞ function having compact support in [0, ε] and consider

B =
∫ ∞

0

u(s)UsAU∗
s ds =

∫ ∞

0

u(s)φs(A) ds.

Then Bn ∈ D for every n = 1, 2, . . . , and in particular B ∈ A.

proof. Observe first that B has both properties (i) and (ii), hence so does Bn for
every n. Thus for t < ε we have

φt(Bn)−Bn = UtB
nU∗

t −Bn = UtB
nU∗

t −BnUtU
∗
t = (UtB

n −BnUt)U∗
t .

This implies that for sufficiently small t

‖φt(Bn)−Bn‖ = ‖UtB
n −BnUt‖.

We conclude that Bn ∈ D iff there is a constant K > 0 such that

(2.3) ‖UtB
n −BnUt‖ ≤ K · t, for all t > 0.

To prove (2.3), one uses the Leibniz rule for the derivation D(X) = UtX −XUt to
estimate ‖UtB

n −BnUt‖ in terms of ‖UtB −BUt‖,

‖D(Bn)‖ ≤ n · ‖B‖n−1‖D(B)‖ = n · ‖B‖n−1‖UtB −BUt‖.

Since B has been smoothed it belongs to the domain D, hence there is a constant
M such that ‖UtB −BUt‖ ≤ M · t, hence ‖UtB

n −BnUt‖ ≤ nM‖B‖n−1 · t.

The proof of the Proposition is completed by choosing A = Aε in the hypothesis
of the Lemma and by choosing a sequence uk of nonnegative C∞ functions, each
of which has integral 1, such that uk(x) = 0 outside the interval 0 ≤ x ≤ 1/k. A
standard argument shows that the sequence of self-adjoint operators

Bk =
∫ ∞

0

uk(s)φs(Aε) ds

converges weakly to Aε, and the Lemma implies that Bk ∈ A for k > 1/ε.

Thus the strong closure A− of A has the form B(H0) ⊕ C where H0 ⊆ H is a
subspace of codimension one in H, and the following implies that these examples are
“almost” E0-semigroups in the sense that there is an E0-semigroup α = {αt : t ≥ 0}
acting on B(H0) such that φt acts as follows on A−,

φt(B ⊕ λ) = αt(B)⊕ λ, B ∈ B(H0), λ ∈ C.
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Corollary. Let Ā be the strong closure of A. Then φt(Ā) ⊆ Ā for every t ≥ 0 and
{φt �Ā: t ≥ 0} is a semigroup of endomorphisms of this von Neumann algebra.

proof. We show that φt(A) ⊆ Ā, and for A,B ∈ A one has φt(AB) = φt(A)φt(B).
Choose A ∈ A, and let f and ω(A) = 〈Af, f〉 be as in the definition of φt,

φt(A) = ω(A)Et + UtAU∗
t , A ∈ A, t ≥ 0.

Since f is an eigenvector for both A and A∗ and U∗
t f = e−αtf , one can verify

directly that φt(A)f = ω(A)f and φt(A)∗f = ω(A∗)f , and the Proposition implies
that φt(A) ⊆ Ā. Finally, for A, B ∈ A one has ω(AB) = ω(A)ω(B), and φt(AB) =
ω(AB)Et + UtABU∗

t = ω(A)ω(B)Et + UtAU∗
t UtBU∗

t = φt(A)φt(B). By normality
of φt, the formula φt(AB) = φt(A)φt(B) persists for operators A,B in the strong
closure of A.

3. The symbol of the generator: properties and structure.
There are two useful characterizations of the generators of uniformly continuous

CP -semigroups, i.e., those whose generators are everywhere defined bounded linear
maps on B(H). The first is due to Lindblad [24] and independently to Gorini et al
[20] (also see [13], Theorem 4.2). The second characterization is due to Evans and
Lewis [19], based on work of Evans [16]. These two results can be paraphrased as
follows.

Theorem. Let L : B(H) → B(H) be a bounded linear map and let φ = {φt : t ≥ 0}
be the semigroup defined on B(H) by φt = exp(tL). The following are equivalent.

(1) φt is a completely positive map for every t ≥ 0.
(2) (Lindblad, Gorini et al) L admits a decomposition

L(A) = P (A) + BA + AB∗, A ∈ B(H)

where P is a completely positive linear map and B ∈ B(H).
(3) (Evans and Lewis) For every finite set of operators A1, . . . , An, B1, . . . , Bn ∈

B(H) which satisfy A1B1 + · · ·+ AnBn = 0, we have

n∑
i,j=1

A∗
jL(B∗

j Bi)Ai ≥ 0.

A linear map L : B(H) → B(H) satisfying property (3) of Theorem 3.1 is called
conditionally completely positive [17]. While the characterization (2) tells us exactly
which bounded linear maps generate CP semigroups, the cited decomposition of L
into a sum of more familiar mappings is unfortunately not unique.

The purpose of this section is to make two observations. First, we point out
that the notion of a conditionally completely positive linear map defined on a ∗-
algebra is more properly formulated in terms of the bimodule of noncommutative
2-forms over that algebra; and once that is done the “symbol” of the map becomes
analogous to a Riemannian metric. Second, we show that by making use of the
domain algebra of section 1, this notion becomes appropriate for the generators of
arbitrary CP -semigroups.
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Let A be the domain algebra of a CP semigroup φ = {φt : t ≥ 0} acting on
B(H)

A = {A ∈ D : A∗A ∈ D, AA∗ ∈ D},
where D is the natural domain of the generator L of φ. We first recall the definition
of the module of noncommutative 1-forms Ω1(A), and 2-forms Ω2(A). The algebraic
tensor product of vector spaces A ⊗ A can be considered an involutive bimodule
over A, with

a(x⊗ y)b = ax⊗ yb,

(x⊗ y)∗ = y∗ ⊗ x∗.

The map d : A → A⊗A defined by dx = 1 ⊗ x − x ⊗ 1 is a derivation for which
(dx)∗ = −d(x∗), and it is a universal derivation of A in the sense that if E is any
A-bimodule and D : A → E is a linear map satisfying D(xy) = xD(y) + D(x)y for
all x, y ∈ A, then there is a unique homomorphism of A-modules θ : Ω1(A) → E
such that θ ◦ d = D. Every element of Ω1(A) is a finite sum of the form

ω =
r∑

k=1

ak dxk,

and the involution in Ω1(A) satisfies

(a dx)∗ = −d(x∗)a∗ = −d(x∗a∗) + x∗ d(a∗).

Finally, Ω1(A) is the kernel of the multiplication map µ : A ⊗ A → A defined by
µ(x⊗ y) = xy, and thus we have an exact sequence of A-modules

(3.1) 0 −→ Ω1(A) −→ A⊗A −→
µ
A −→ 0.

Ω2(A) is defined by
Ω2(A) = Ω1(A)⊗A Ω1(A),

and any element of Ω2(A) can be written as a sum

ω =
r∑

k=1

ak dxk dyk.

The involution in Ω2(A) satisfies

(a dx dy)∗ = d(y∗) d(x∗) a∗ = d(y∗) d(x∗a∗)− d(y∗x∗)d(a∗) + y∗d(x∗)d(a∗).

Since A is a ∗-subalgebra of B(H), we may also think of B(H) as an A-bimodule.
Now a straightforward argument shows that for every linear mapping L : A → B(H)
there is a unique homomorphism of bimodules σL : Ω2(A) → B(H) which satisfies

(3.2) σL(dx dy) = L(xy)− xL(y)− L(x)y + xL(1)y, x, y ∈ A

(see section 2 of [4] for more detail). σL ∈ hom(Ω2,B(H)) is called the symbol of
the linear map L.

Consider now the special case in which A = B(H), L : B(H) → B(H) is a
bounded linear mapping, and let φ = {φt = exp tL : t ≥ 0} is the semigroup of
bounded operators on B(H) generated by L. The preceding theorem gives two
characterizations of the maps L for which each φt = exp tL is completely positive;
however, the following characterization is perhaps more in spirit with the theory of
differential operators on manifolds.
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Theorem. Let L : B(H) → B(H) be a bounded linear map. To the two character-
izations (2) (3) above, one can append the following equivalent condition

(4) The symbol σL : Ω2(B(H)) → B(H) satisfies

σL(ω∗ω) ≤ 0, for every ω ∈ Ω1(B(H)).

This characterization is Proposition 1.6 of [5]; a fuller discussion of these issues
can be found in [4]. Notice that the sense of the inequality ≤ is determined by the
fact that the involution in Ω1 satisfies (dx)∗ = −d(x∗), and hence for ω = dx we
have ω∗ω = −d(x∗) dx. In particular, for ω = dx where x is a self-adjoint element
we have σL(ω2) ≥ 0 while σL(ω∗ω) ≤ 0.

Remarks. There is a rather compelling analogy between this characterization of the
generators of CP semigroups and the generator of the heat flow of a Riemannian
manifold, namely the Laplacian. More precisely, let M be a complete (but not
necessarily compact) Riemannian manifold and consider its natural Hilbert space
L2(M). The Laplacian ∆ acts naturally as a densely defined operator on L2(M) and
generates a semigroup of bounded operators exp t∆, t ≥ 0, acting on L2(M) (the
book of Davies [14] is a good reference). This semigroup maps bounded functions
in L2(M) to bounded functions in L2(M), and the latter determines a semigroup
of normal linear maps on the abelian von Neumann algebra L∞(M) which carries
nonnegative functions to nonnegative functions and fixes the constant functions.

In order to discuss the symbol of ∆ we introduce local coordinates in some open
set U ⊆ M to identify U with an open region in Rn. For clarity, we will be explicit
with notation. At each point x ∈ U the tangent space Tx(M) is identified with Rn,
and for a smooth function f on M the differential df takes the following form

df(x, v) =
d

dt
f(x + tv)|t=0 =

n∑
k=1

∂f

∂xk
(x)vk.

The metric gives rise to a an operator function x ∈ U 7→ G(x) on Rn by way of

〈v, w〉Tx(M) = 〈G(x)v, w〉Rn , v, w ∈ Tx(M), x ∈ U,

where 〈·, ·〉Rn denotes the Euclidean inner product on Rn. G(x) is an invertible
positive operator on Rn for every x ∈ U . For two vector fields ξ, η on M we have

〈ξ(x), η(x)〉Tx(M) = 〈G(x)ξ(x), η(x)〉Rn =
n∑

i,j=1

gij(x)ξj(x)ηi(x),

for x ∈ U , (gij(x)) being the matrix of G(x) relative to the usual orthonormal basis
for Rn.

The inner product on the tangent space Tx(M) promotes naturally to an inner
product on the cotangent space T ∗

x (M). Indeed, the Riesz lemma implies that every
linear functional ρ on Tx(M) is associated with a unique vector ρ∗ ∈ Tx(M) via

ρ(v) = 〈v, ρ∗〉Tx(M) ,
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and the inner product in T ∗
x (M) is defined by

〈ρ, σ〉T∗x (M) = 〈ρ∗, σ∗〉Tx(M) .

With these conventions one finds that for a smooth function f and a point x ∈ U ,
df(x, ·)∗ becomes the vector in Rn with components v1, . . . , vn,

vi =
n∑

j=1

gij(x)
∂f

∂xj
(x),

(gij(x)) = (gij(x))−1 being the matrix of the inverse operator G(x)−1. For points
x ∈ U one has

(3.3) 〈(df)∗, (dg)∗〉Tx(M) =
n∑

i,j=1

gij(x)
∂f

∂xj

∂f

∂xi
.

We first recall that the dualized Riemannian metric (whose values are inner
products on the cotangent spaces T ∗

x (M)) can be linearized naturally so that it
becomes a C∞(M)-linear map of the the module Ω(2)(M) of symmetric 2-forms.
More explicitly, let Ω1(M) be the usual module of 1-forms and let Ω(2)(M) be the
submodule of Ω1(M)⊗C∞(M) Ω1(M) consisting of all elements that are fixed under
the action of the reflection R defined by R : ω1⊗ω2 7→ ω2⊗ω1. For ω1, ω2 ∈ Ω1(M)
we write ω1ω2 for the symmetrized product

ω1ω2 =
1
2
(ω1 ⊗ ω2 + ω2 ⊗ ω1) ∈ Ω(2)(M).

There is a unique homomorphism of C∞(M)-modules G∗ : Ω(2)(M) → C∞(M)
satisfying G∗(df dg)(x) = 〈df, dg〉T∗x (M) for all x ∈ M , and in local coordinates
(3.3) implies that G∗ has the form

(3.4) G∗(df dg)(x) =
n∑

i,j=1

gij(x)
∂f

∂xj

∂g

∂xi
, x ∈ U.

If one knows G∗ as a homomorphism of C∞(M)-modules then one also knows
the inner product in each cotangent space T ∗

x (M), and hence one can recover the
original metric as an inner product on tangent spaces by duality and the Riesz
lemma as above.

We now relate these remarks to the symbol of the Laplacian ∆ of M . The symbol
of any differential operator L : C∞(M) → C∞(M) of order at most 2 is associated
with the bilinear form defined on C∞(M) by

f, g ∈ C∞(M) 7→ L(fg)− fL(g)− gL(f) + fgL(1).

A straightforward argument shows that there is a (necessarily unique) homomor-
phism of C∞(M)-modules σL : Ω(2)(M) → C∞(M) satisfying

σL(df dg) = L(fg)− fL(g)− gL(f) + fgL(1).
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In particular, this defines the symbol of any second order differential operator on
C∞(M)), as an element of hom(Ω2(M), C∞(M)).

Restricting attention to the operator L = ∆, one sees that for each f ∈ C∞(M)
the restriction of ∆(f) to U has the form

(3.5) ∆(f)(x) =
n∑

i,j=1

gij(x)
∂2f

∂xi∂xj
+

n∑
k=1

uk(x)
∂f

∂xk
,

where u1, . . . , un are appropriate smooth functions (see p. 147 of [14]). Using (3.5)
one easily computes the symbol of ∆, and because of the local formula (3.4) for
G∗ one obtains σ∆ = 2 · G∗. From these remarks we conclude that the symbol of
the Laplacian (considered as an element of hom(Ω(2)(M), C∞(M))) is precisely the
Riemannian metric of M in its dualized form.

Returning now to the case of a general CP semigroup φ = {φt : t ≥ 0} acting
on B(H), let A be the domain algebra of the generator of φ. Letting L be the
restriction of the generator to A, it is natural to ask the extent to which the
generator can be identified with something analogous to a Riemannian metric (more
precisely, to the homomorphism of C∞(M)-modules G∗ : Ω(2)(M) → C∞(M) that
the dualized Riemannian metric determines). We have already defined the symbol
σL : Ω2(A) → B(H) as a homomorphism of A-modules, and the following asserts
that σL does behave as if it were a (perhaps degenerate) Riemannian metric.

Proposition. Let φ = {φt : t ≥ 0} be a CP semigroup acting on B(H) and
consider the restriction L of the generator to the domain algebra L : A → B(H).
Then the symbol of L satisfies

σL(ω∗ω) ≤ 0, ω ∈ Ω1(A);

and more generally for all ξ1, . . . , ξn ∈ H and ω1, . . . , ωn ∈ Ω1(A) we have

n∑
i,j=1

〈
σL(ω∗j ωi)ξi, ξj

〉
≤ 0.

The proof is a computation, facilitated by the following formula.

Lemma. Let ω1, ω2 be elements of Ω1(A) having the form

ωk =
s∑

p=1

Akp ⊗Bkp, k = 1, 2,

where Ak1Bk1 + · · ·+ AksBks = 0 for k = 1, 2. Then

σL(ω1ω2) = −
s∑

p,q=1

A1pL(B1pA2q)B2q.

proof of Lemma. Since Ω1(A) is spanned by elements of the form A · dX, as well
as by elements of the form dY · B, A,B,X, Y ∈ A, and since σL is a bimodule
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homomorphism, it suffices to check the formula for ω1, ω2 of the particular form
ω1 = dX, ω2 = dY .

Writing

dX dY = (X ⊗ 1− 1⊗X)(Y ⊗ 1− 1⊗ Y )

= (X ⊗ 1)(Y ⊗ 1)− (1⊗X)(Y ⊗ 1)− (X ⊗ 1)(1⊗ Y ) + (1⊗X)(1⊗ Y )

the right side of the asserted formula for σL(dX dY ) has the form

−(XL(Y )− L(XY )−XL(1)Y + L(X)Y ) =

L(XY )−XL(Y )− L(X)Y + XL(1)Y = σL(dX dY ),

as required.

proof of Proposition. Because of the exact sequence (3.1), every element ω ∈ Ω1(A)
can be written

ω = A1 ⊗B1 + · · ·+ As ⊗Bs,

where Ak, Bk are elements of A satisfying A1B1 + · · ·+AsBs = 0. Choose elements
ω1, . . . , ωn ∈ Ω1(A) of the form

ωk =
s∑

p=1

Akp ⊗Bkp, k = 1, . . . , n

where
∑

p AkpBkp = 0 for k = 1, . . . , n. We have

ω∗k =
n∑

p=1

B∗
kp ⊗A∗

kp

so that the product ω∗kωj ∈ Ω2(A) is given by

ω∗kωj =
s∑

p,q=1

(B∗
kp ⊗A∗

kp)(Ajq ⊗Bjq).

The Lemma implies that

(3.6) σL(ω∗kωj) = −
s∑

p,q=1

B∗
kpL(A∗

kpAjq)Bjq.

If we now choose vectors ξk ∈ H, k = 1, . . . , n then we find that∑
k,j

〈σL(ω∗kωj)ξj , ξk〉 = −
∑

i,j,p,q

〈
L(A∗

kpAjq)Bjqξj , Bkpξk

〉
= −

∑
α,β

〈
L(A∗

βAα)ηα, ηβ

〉
,(3.7)
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where in the third term, α and β run over all pairs {(k, p) : 1 ≤ k ≤ n, 1 ≤ p ≤ s}
and where the ηα are defined by η(k,p) = Bkpξk. Finally, the last term on the right
of (3.7) can be rewritten in terms of the n · s× n · s operator matrix Ã having the
entries Aα along a single row and zeros along all the other rows as follows

−
〈
L(n·s)(Ã∗Ã)η̃, η̃

〉
,

where η̃ is the column vector with components ηα, and where L(n·s) is the natural
map induced by L on matrices over A be applying L to the elements of the matrix
term-by-term.

Thus we have to show that
〈
L(n·s)(Ã∗Ã)η̃, η̃

〉
≥ 0. Recalling that the definition

of L on elements of A is

L(X) = lim
t→0+

1
t
(φt(X)−X)

and the fact that A is a ∗-subalgebra of the domain of L, it follows that〈
L(n·s)(Ã∗Ã)η̃, η̃

〉
= lim

t→0+

1
t
(
〈
φ

(n·s)
t (Ã∗Ã)η̃, η̃

〉
−

〈
Ã∗Ãη̃, η̃

〉
).

Notice that
〈
Ã∗Ãη̃, η̃

〉
= 0. Indeed, by inspection of the components of the

column vector Ãη̃ we find that it is the column vector having a single (possibly)
nonzero component and that component is∑

α

Aαηα =
∑
k,p

AkpBkpξk =
n∑

k=1

(
s∑

p=1

AkpBkp)ξk = 0,

since
∑

p AkpBkp = 0 for every k. Thus we have to show that

(3.8) lim
t→0+

1
t

〈
φ

(n·s)
t (Ã∗Ã)η̃, η̃

〉
≥ 0.

Now since for each t > 0 the map φt is unital and completely positive, the
Schwarz inequality for completely positive maps implies

φ
(n·s)
t (Ã∗Ã) ≥ φ

(n·s)
t (Ã)∗φ(n·s)

t (Ã),

and hence for positive t we have
1
t

〈
φ

(n·s)
t (Ã∗Ã)η̃, η

〉
≥ 1

t

〈
φ

(n·s)
t (Ã)η, φ

(n·s)
t (Ã)η

〉
=

1
t
‖φ(n·s)

t (Ã)η‖2.

We claim that the term on the right tends to zero as t → 0+. Indeed, since the
operator matrix Ã belongs to the domain of the generator of the CP semigroup
φ(n·s) = {φ(n·s)

t : t ≥ 0}, Lemma 1 implies that there is a constant M > 0 such that
for every positive t, ‖φ(n·s)

t (Ã)− Ã‖ ≤ M · t. It follows that

‖φ(n·s)
t (Ã)η̃‖ = ‖φ(n·s)

t (Ã)η̃ − Ãη‖ ≤ M · t · ‖η̃‖
and hence

lim sup
t→0+

1
t
‖φ(n·s)

t (Ã)η̃‖2 ≤ lim
t→0+

1
t
(M2 · t2 · ‖η̃‖2) = 0.

It follows that

lim
t→0+

1
t

〈
φ

(n·s)
t (Ã∗Ã)η̃, η̃

〉
≥ lim

t→0+

1
t
‖φ(n·s)

t (Ã)η‖2 = 0,

and the inequality (3.8) follows.
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