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Abstract. The eigenvalues of a self-adjoint n×n matrix A can be put
into a decreasing sequence λ = (λ1, . . . , λn), with repetitions according
to multiplicity, and the diagonal of A is a point of Rn that bears some
relation to λ. The Schur-Horn theorem characterizes that relation in
terms of a system of linear inequalities.

We prove an extension of the latter result for positive trace-class op-
erators on infinite dimensional Hilbert spaces, generalizing results of one
of us on the diagonals of projections. We also establish an appropriate
counterpart of the Schur inequalities that relate spectral properties of
self-adjoint operators in II1 factors to their images under a conditional
expectation onto a maximal abelian subalgebra.

1. Introduction

This paper presents some of the results of a project begun by the authors
that is directed toward finding an appropriate common generalization of the
Schur-Horn theorem (for matrices) to operators on an infinite-dimensional
Hilbert space, and to operators in finite factors, in a form that would gen-
eralize work of one of us on projections in II1 factors [Kad02a], [Kad02b].

That project continues, and remains unfinished. The results below are
satisfactory in the case of type I factors, but are incomplete for finite factors.
We are making these partial results public since there is renewed interest
in these directions [She05], and it seems desirable to avoid duplication of
effort. Other aspects of this work were presented in Section 5 of [Kad04].

We point out that while the results of Section 4 may appear to overlap
with work of A. Neumann [Neu99], that is actually not the case. The results
of [Neu99] characterize the closure (in the �∞ norm) of the set of diagonals of
self-adjoint operators with prescribed spectral properties. Here, on the other
hand, we are concerned with the diagonals themselves, and not with their
limits relative to any topology. For example, one should compare Theorem
15 of [Kad02b] – which characterizes the diagonals of projections – with
the corresponding result of [Neu99] (Theorem 3.6 and Corollary 2.14) to
understand the extent to which subtlety is lost when one takes the closure
relative to the �∞-norm. Along with the nature of the characterizations
below, our methods also differ significantly from those of [Neu99]. Finally,
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we thank Daniel Markiewicz for calling our attention to the paper [Neu99]
(also see [Neu02]).

2. The Results of Schur and Horn

We begin by stating the key assertion of Theorem 5 from Alfred Horn’s
1954 paper [Hor54], which can be formulated as follows.

Theorem 2.1 (Horn). Let λ1 ≥ · · · ≥ λn and p1 ≥ · · · ≥ pn be two de-
creasing sequences of real numbers satisfying p1 + · · · + pk ≤ λ1 + · · · + λk,
1 ≤ k ≤ n − 1, and p1 + · · · + pn = λ1 + · · · + λn. Then there is a self-
adjoint n× n matrix with eigenvalues λ1, . . . , λn whose diagonal entries are
p1, . . . , pn.

Another proof is offered at the end of this section. In a more coordinate-
free formulation, Horn’s theorem makes the following assertion. Let A be a
self-adjoint operator on an n-dimensional Hilbert space H with eigenvalues
λ1 ≥ · · · ≥ λn, and let p1 ≥ · · · ≥ pn be a decreasing sequence that relates
to λ as in the hypothesis of Theorem 2.1. Then there is an orthonormal
basis e1, . . . , en for H such that

〈Aek, ek〉 = pk, k = 1, . . . , n.

The converse of Theorem 2.1 is also true, and this is the part of the
composite Schur-Horn theorem that is attributed to Schur [Sch23]: If there
is a self-adjoint n × n matrix A with eigenvalue sequence λ = (λ1, . . . , λn)
with diagonal p = (p1, . . . , pn), both written in decreasing order, then the
inequalities

(2.1) p1 + · · · + pk ≤ λ1 + · · · + λk, 1 ≤ k ≤ n

of the hypothesis of Theorem 2.1 are satisfied, with equality holding for
k = n. That implication follows from classical estimates going back to Weyl
[Wey12] (see the proof of Theorem 4.1 below).

There are other formulations of the Schur-Horn theorem that borrow
from classical inequalities [Har34], the most notable one being the following.
Given a sequence λ = (λ1, . . . , λn) of real numbers, let Oλ be the set of
all n × n self-adjoint matrices having eigenvalue sequence λ. Then the set
E(Oλ) of all diagonals of matrices in Oλ is the convex hull Λ of the set of
points λ ◦ π ∈ Rn, π ∈ Sn, obtained by permuting the components of λ.
Schur’s part of the Schur-Horn theorem becomes the assertion E(Oλ) ⊆ Λ
while Theorem 2.1 implies E(Oλ) ⊇ Λ. These formulations are discussed in
[Hor54].

The Schur-Horn theorem has led to generalizations in several directions.
In 1973, Kostant [Kos73] put it into the context of actions of compact Lie
groups (which generalize the unitary group U(n)). Later Atiyah [Ati82],
and independently Guillemin and Sternberg [GS82], reformulated Kostant’s
result in the broader context of symplectic manifolds M acted on by a torus
T , and showed that for every moment map Φ for the T -action, the range of
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Φ is the convex hull of the images of the T -fixed points of M . See [Knu00]
for more detail.

There is some connection between the finite dimensional Schur-Horn the-
orem [Hor54] and Horn’s subsequent work on the eigenvalues of sums of
matrices that culminated in the inequalities conjectured in [Hor62], as de-
scribed in [Knu00]. The Horn conjecture was recently proved, following work
of Klyachko [Kly98] and the proof of the saturation conjecture by Knutson
and Tao [KT99]. Thus, it may be appropriate to point out that Friedland
has obtained a generalization of Klyachko’s results to finite sums of positive
trace-class operators acting on infinite dimensional Hilbert spaces [Fri00].

The purpose of this paper is to discuss two infinite dimensional formula-
tions of the Schur-Horn Theorem. In Sections 3–4 we present a generaliza-
tion of the Schur-Horn theorem to positive trace class operators on infinite
dimensional Hilbert spaces. In Sections 5–7, we reformulate these issues in
the context of finite factors, and we establish appropriate versions of the
Schur inequalities. The II1 version of Horn’s result (Theorem 2.1) is left as
an open problem.

The first author wishes to thank Allen Knutson for helpful comments
about the Schur-Horn theorem including the sketch of a “calculus” proof,
and for providing some key references.

Proof of Theorem 2.1. We show how one can deduce Theorem 2.1 from two
results of [Kad02a]. Let p = (p1, . . . , pn) and λ = (λ1, . . . , λn) be two de-
creasing sequences satisfying the hypotheses of Theorem 2.1. By lemma 5
of [Kad02a], there is a sequence of points x1, . . . , xn in Rn such that x1 = λ,
xn = p, and for k = 1, . . . , n − 1, xk+1 can be expressed in terms of xk as
follows

(2.2) xk+1 = tk · xk + (1 − tk) · xk ◦ τk

where tk is a number in the unit interval, τk is a transposition in Sn, and
where x ◦ τ denotes (xτ(1), . . . , xτ(n)) ∈ Rn.

Given x1 = λ, . . . , xn = p ∈ Rn, t1, . . . , tn−1 ∈ [0, 1] and τ1, . . . , τn−1 ∈ Sn

such that the relations (2.2) are satisfied, we exhibit a sequence of self-
adjoint matrices A1, . . . , An such that Ak has eigenvalue list λ and diagonal
sequence xk as follows. Theorem 6 of [Kad02a] asserts the following: Given
a self-adjoint n× n matrix A = (aij) with diagonal sequence x, and given a
transposition τ in Sn and a number t ∈ [0, 1], there is a unitary matrix U
such that the diagonal of UAU∗ is t · x + (1 − t) · x ◦ τ . The proof exhibits
U = (uij) explicitly; if τ is the transposition (ij) then U coincides with the
identity matrix except for the four terms uii, uij , uji, ujj specified by(

uii uij

uji ujj

)
=

(
z cos θ sin θ
−z sin θ cos θ

)
,

where z is a complex number of absolute value 1 such that zaij is pure
imaginary, and where θ satisfies cos2 θ = t. Let A1 be the diagonal matrix
with diagonal λ = (λ1, . . . , λn) = x1. Given that A1, · · · , Ak have been
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defined and satisfy the asserted conditions for 1 ≤ k < n, the above result
implies that there is a unitary matrix Uk such that

diag (UkAkU
∗
k ) = tk · xk + (1 − tk) · xk ◦ τk.

Setting Ak+1 = UkAkU
∗
k and continuing inductively, we obtain a sequence

of matrices A1, . . . , An whose last term An = Un−1 · · ·U1A1U
∗
1 · · ·U∗

n−1 is a
self-adjoint matrix having eigenvalue list λ and diagonal p. �

Part 1. Type I∞ factors

We first give a generalization of the Schur-Horn theorem to the case of pos-
itive trace-class operators acting on a separable infinite-dimensional Hilbert
space.

3. L1-closed unitary orbits

Let H be a separable Hilbert space and let A be a positive compact
operator on H. The sequence of eigenvalues of A can be put into decreasing
order, with repetitions according to the multiplicity of positive terms in the
sequence, to obtain a sequence λ = (λ1, λ2, . . . ) satisfying λ1 ≥ λ2 ≥ · · · ≥ 0,
and we have

λ1 + λ2 + · · · = trace A ∈ [0, +∞].
Such a decreasing sequence λ will be called an eigenvalue list. The preceding
formula shows that A is trace-class iff its eigenvalue list belongs to �1, and
the set of all eigenvalue lists in �1 is a weak∗-closed cone, the weak∗-topology
on �1 arising from the identification of �1 with the dual of c0.

The eigenvalue list of A fails to be a complete invariant for unitary equiv-
alence because it fails to detect zero eigenvalues except when A is of finite
rank. For example, if A has infinitely many positive terms λk in its spectrum
and has trivial kernel, then A and A ⊕ 0 (0 being an the zero operator on
some space of positive dimension) cannot be unitarily equivalent despite the
fact that both have the same eigenvalue list.

The state of affairs for trace-class operators is described as follows. We
write L1 = L1(H) for the Banach space of all trace-class operators on a
Hilbert space H with respect to the trace norm

‖A‖1 = trace |A|,
|A| denoting the positive square root of A∗A. Given an eigenvalue list λ ∈ �1,
Oλ will denote the set of all positive trace-class operators on H having λ as
their eigenvalue list. Given a positive trace-class operator A ∈ B(H), O(A)
will denote the trace-norm closure of the unitary orbit of A

O(A) = {UAU∗ : U ∈ U(H)}−‖·‖1 .

Two trace-class operators A, B are said to be L1- equivalent if there is a
sequence of unitary operators U1, U2, . . . such that that ‖A−UnBU∗

n‖1 → 0
as n → ∞; equivalently, O(A) = O(B).
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Proposition 3.1. Let A be a positive trace-class operator in B(H) and let
λ be the eigenvalue list of A.

(i) O(A) is a Polish topological space on which the unitary group of H
acts minimally.

(ii) O(A) = Oλ; in particular, the eigenvalue list is a complete invariant
for L1-equivalence.

(iii) Two positive trace-class operators A, B are L1-equivalent iff A ⊕ 0
and B⊕0 are unitarily equivalent, where 0 denotes the zero operator
on an infinite dimensional Hilbert space.

(iv) If λ has only finitely many nonzero terms, then Oλ consists of a
single unitary orbit {UAU∗ : U ∈ U(H)}.

Proof. (i): Oλ is a closed subset of L1 and therefore a separable complete
metric space. The fact that the orbit of every point of O(A) under the
action of U(H) is dense in O(A) follows from the fact that L1-equivalence
is a transitive relation.

(ii): Let B be another positive trace-class operator with eigenvalue list
µ. We have to show that A and B are L1-equivalent ⇐⇒ λ = µ. For the
implication =⇒ we make use of the semiclassical inequality

∞∑
k=1

|λn − µn| ≤ ‖A − B‖1,

a proof of which can be found in the appendix of [Pow67]. Since B can be
closely approximated in the norm of L1 by operators unitarily equivalent to
A, this inequality implies that B must have the same eigenvalue list as A,
hence µ = λ. Conversely, if A and B are two positive trace-class operators
with the same eigenvalue list λ = (λ1, λ2, . . . ), then by the spectral theorem
we can decompose A and B as follows

A = An + Rn, B = Bn + Sn

where An and Bn are finite rank positive operators with eigenvalue list
(λ1, . . . , λn, 0, 0, . . . ) and where the remainders Rn and Sn satisfy

‖Rn‖1 = ‖Sn‖1 =
∞∑

k=n+1

|λk|.

Since An and Bn are obviously unitarily equivalent for every n = 1, 2, . . .
and since ‖Rn‖1 and ‖Sn‖1 tend to zero as n → ∞, it follows that there is
a sequence of unitary operators U1, U2, . . . such that ‖B − UnAU∗

n‖1 → 0.
(iii) is a consequence of (ii), which asserts that A and B are L1-equivalent

iff they have the same eigenvalue list. Indeed, it is obvious that if A and B
have the same eigenvalue list λ then A⊕0 and B⊕0 are unitarily equivalent;
conversely, if A⊕0 and B⊕0 are unitarily equivalent then A⊕0 and B⊕0
must have the same eigenvalue list, hence so do A and B.

Finally, note that (iii) =⇒ (iv), since if A is a finite rank positive operator
with eigenvalue list λ, then all but a finite number of components of λ are
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zero, hence A is unitarily equivalent to A ⊕ 0, so that all operators in Oλ

are unitarily equivalent. �

4. Diagonals of Trace Class Operators

Let H be a separable Hilbert space and let e1, e2, . . . be an orthonormal
basis for H. The sequence of rank-one projections Ek = [ek], k = 1, 2, . . .
generates a discrete maximal abelian subalgebra A ⊆ B(H), and the map
that replaces an operator A with the diagonal part (a11, a22, . . . ) of its matrix
aij = 〈Aej , ei〉, i, j = 1, 2, . . . , relative to (en) can be viewed as the unique
trace preserving conditional expectation E : B(H) → A

E(A) =
∞∑

n=1

EnAEn =
∞∑

n=1

annEn.

The following result provides an infinite-dimensional generalization of the
Schur-Horn theorem. For a related result that characterizes the norm-
closure of E(O(A)) for a broader class of operators A, see [Neu99].

Theorem 4.1. Let A be a discrete maximal abelian von Neumann algebra
in B(H), let E : B(H) → A be the trace-preserving conditional expectation
on A and let λ = (λ1 ≥ λ2 ≥ · · · ) be a decreasing sequence in �1 with
nonnegative terms. Then E(Oλ) consists of all positive trace-class operators
B ∈ A whose eigenvalue list p = (p1 ≥ p2 ≥ · · · ) satisfies

(4.1) p1 + · · · + pn ≤ λ1 + · · · + λn, n = 1, 2, . . .

together with

(4.2) p1 + p2 + · · · = λ1 + λ2 + · · · .

We will deduce Theorem 4.1 from the following more general assertion
about the diagonals of positive compact operators.

Theorem 4.2. Let A ⊆ B(H) be a discrete maximal abelian algebra with
natural conditional expectation E : B(H) → A. Let A ∈ B(H) be a positive
compact operator with eigenvalue list λ = (λ1 ≥ λ2 ≥ · · · ), and let B be a
positive compact operator in A. The following are equivalent.

(i) There is contraction L ∈ B(H) such that E(L∗AL) = B.
(ii) The eigenvalue list p = (p1 ≥ p2 ≥ · · · ) of B satisfies

p1 + p2 + · · · + pn ≤ λ1 + λ2 + · · · + λn, n = 1, 2, . . . .

We require some eigenvalue estimates that go back to work of Weyl
[Wey12], [Wey49]. Let A be a positive compact operator with eigenvalue
list λ1 ≥ λ2 ≥ · · · and let Pn be the set of all n-dimensional projections in
B(H). Then we have

(4.3) sup
P∈Pn

trace AP = max
P∈Pn

trace AP = λ1 + · · · + λn,
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the maximum being achieved on any n-dimensional projection whose range
contains eigenvectors for λ1, . . . , λn. Ky Fan’s version of this result can be
found on p. 22 of [Bha87].

The proof of Theorem 4.2 also requires a geometric result, asserting that
if p = (p1, . . . , pn) and λ = (λ1, . . . , λn) are two finite eigenvalue lists that
satisfy the first n inequalities (4.1), then the components of λ can be reduced
so as to preserve the first n − 1 inequalities, with equality in the nth.

Lemma 4.3. Let p = (p1, . . . , pn) and λ = (λ1, . . . , λn) be two decreasing
sequences of nonnegative reals of length n = 1, 2, . . . satisfying

(4.4) p1 + · · · + pk ≤ λ1 + · · · + λk, k = 1, 2, . . . , n.

There is a decreasing sequence µ = (µ1, . . . , µn) such that

(4.5) 0 ≤ µk ≤ λk, p1 + · · · + pk ≤ µ1 + · · · + µk,

for 1 ≤ k ≤ n, and p1 + · · · + pn = µ1 + · · · + µn.

Proof. We argue by induction, the case n = 1 being obvious. Fix n ≥ 2 and
suppose that Lemma 4.3 is true for sequences of length n− 1. Let D be the
set of all points µ = (µ1, . . . , µn) ∈ Rn satisfying µ1 ≥ · · · ≥ µn ≥ 0 and
µk ≤ λk, 1 ≤ k ≤ n, and consider the compact convex set K ⊆ Rn

K = {µ ∈ D : µ1 + · · · + µk ≥ p1 + · · · + pk, k = 1, . . . , n − 1}.
Since f(x) = x1 + · · · + xn is a linear functional on Rn, f(K) is a closed
interval I ⊆ R. We have to show that p1 + · · ·+ pn ∈ I. For that, it suffices
to show that there are points x, y ∈ K such that f(x) ≤ p1+ · · ·+pn ≤ f(y).
Setting y = λ ∈ K, we have p1 + · · · + pn ≤ λ1 + · · · + λn = f(y) by (4.4).
For x, use the induction hypothesis to obtain numbers µ1 ≥ · · · ≥ µn−1 ≥ 0
satisfying 0 ≤ µk ≤ λk, µ1 + · · · + µk ≥ p1 + · · · + pk, 1 ≤ k ≤ n − 1, and
µ1 + · · · + µn−1 = p1 + · · · + pn−1. The point x = (µ1, . . . , µn−1, 0) belongs
to K and satisfies f(x) = p1 + · · · + pn−1 ≤ p1 + · · · + pn. �

Proof of Theorem 4.2. (i) =⇒ (ii): Let e1, e2, . . . be an orthonormal basis
for H with the property that 〈Bej , ej〉 = pk, j = 1, 2, . . . . Fixing k and
letting E be the projection onto the span of e1, . . . , ek, we have

p1 + · · · + pk = trace(BE) = trace(L∗ALE) = trace(ALEL∗) ≤ trace(AF )

where F is the projection onto the range of the positive contraction LEL∗.
Since F is a projection of rank at most k, the estimate (4.3) implies

trace(AF ) ≤ sup
dim F=k

trace(AF ) = λ1 + · · · + λk,

and (ii) follows.
(ii) =⇒ (i): Let B be a positive compact operator in A whose eigenvalue

list p = (p1 ≥ p2 ≥ · · · ) satisfies the inequalities (ii) and let e1, e2, . . . be an
orthonormal basis for H such that [e1], [e2], . . . are the minimal projections
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of A. Since every permutation of the basis {ek} is implemented by a uni-
tary operator W ∈ B(H) satisfying WAW ∗ = A, we may assume without
essential loss that Bek = pkek, k = 1, 2, . . . .

We construct a sequence of operators Ln ∈ B(H), n = 1, 2, . . . , as follows.
Consider the spectral representation of A

A =
∞∑

k=1

λk ξk ⊗ ξ̄k

where ξ1, ξ2, . . . is an orthonormal sequence in H consisting of eigenvectors
of A. Fix n, let Hn be the linear span of ξ1, . . . , ξn, and let An be the
restriction of A to Hn. The eigenvalue list of An is (λ1, . . . , λn); so by Lemma
4.3, there is a decreasing sequence µ = (µ1, . . . , µn) satisfying 0 ≤ µk ≤ λk

for 1 ≤ k ≤ n, and

p1 + · · · + pk ≤ µ1 + · · · + µk, k = 1, . . . , n,

with equality holding for k = n. The sequence µ of course depends on n
but we suppress that in the notation since µ will soon disappear. Consider
the operator Bn defined on Hn by requiring Bnξk = µkξk, 1 ≤ k ≤ n. The
eigenvalue list of Bn dominates (p1, . . . , pn) as in the hypothesis of Horn’s
result Theorem 2.1. Thus there is an orthonormal basis e

(n)
1 , . . . , e

(n)
n for Hn

such that
〈Bne

(n)
k , e

(n)
k 〉 = pk, k = 1, . . . , n.

Since 0 ≤ Bn ≤ An it follows that

pk ≤ 〈Ane
(n)
k , e

(n)
k 〉 = 〈Ae

(n)
k , e

(n)
k 〉, k = 1, . . . , n.

Let Ln ∈ B(H) be the operator defined by Lnek = e
(n)
k for k = 1, . . . , n, and

Ln = 0 on the orthocomplement of [e(n)
1 , . . . , e

(n)
n ].

We have constructed a sequence L1, L2, . . . of finite rank partial isometries
in B(H) that satisfies the system of inequalities

(4.6) pk ≤ 〈ALnek, Lnek〉, n ≥ k ≥ 1.

Since the unit ball of B(H) is sequentially compact in its weak operator
topology, there is a subsequence n1 < n2 < . . . and a contraction L∞ ∈
B(H) such that 〈Lnjη, ζ〉 → 〈L∞η, ζ〉 as j → ∞, for every η, ζ ∈ H. We
claim that L∞ satisfies

(4.7) pk ≤ 〈AL∞ek, L∞ek〉, k = 1, 2, . . . .

To see that, fix k and note that for sufficiently large j, (4.6) implies

pk ≤ 〈ALnjek, Lnjek〉.
As j → ∞, Lnjek tends to L∞ek in the weak topology of H. Since A is
a compact operator, ‖ALnjek − AL∞ek‖ → 0 as j → ∞; hence the inner
products 〈ALnjek, Lnjek〉 converge to 〈AL∞ek, L∞ek〉, and (4.7) follows.
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Finally, choose t1, t2, · · · ∈ [0, 1] such that pk = tk〈AL∞uk, L∞uk〉 for
every k. Letting D ∈ B(H) be the contraction defined by Dek =

√
tkek,

k ≥ 1, one finds that the operator L = L∞D satisfies

〈L∗ALek, ek〉 = pk, k = 1, 2, . . . ,

and the required formula

E(L∗AL) =
∞∑

k=1

EkL
∗ALEk =

∞∑
k=1

pkEk = B

follows. �

Proof of Theorem 4.1. Let E1, E2, . . . be the minimal projections of A and
let e1, e2, . . . be an orthonormal basis for H such that Ek is the projection
[ek], k = 1, 2, . . . .

We show first that for every positive trace class operator A ∈ B(H) with
eigenvalue list λ, the eigenvalue list p = (p1, p2, . . . ) of B = E(A) must sat-
isfy (4.1) and (4.2). By permuting the elements of the basis {ek} appropri-
ately and changing notation, we may assume that Bek = pkek, k = 1, 2, . . . .
Let Pn be the projection on [e1, . . . , en]. Since A is a positive compact
operator with eigenvalue list λ, we can make use of (4.3) to write

p1 + · · · + pn =
n∑

k=1

〈Bek, ek〉 = trace APn ≤ λ1 + · · · + λn.

Moreover, p1+p2+· · · = 〈Au1, u1〉+〈Au2, u2〉+· · · = trace A = λ1+λ2+· · · .
Conversely, let p and λ be two summable eigenvalue lists that satisfy

(4.1) – (4.2), and let B be a positive trace-class operator in A with list
p. Again, by relabeling the orthonormal basis {ek}, we may assume that
Bek = pkek, k = 1, 2, . . . . Choose any positive trace-class operator A ∈
B(H) having eigenvalue list λ, and let P be the projection onto the closure
of AH. Theorem 4.2 implies that there is a contraction L ∈ B(H) satisfying
pk = 〈ALek, Lek〉 for k ≥ 1. By replacing L with PL if necessary, we may
also assume that LH is contained in PH, and in that case we claim:

(4.8) LL∗ = P.

Indeed, P −LL∗ ≥ 0 because L is a contraction whose range is contained in
PH, and it suffices to show that the positive operator A1/2(P −LL∗)A1/2 =
A−A1/2LL∗A1/2 has trace zero; equivalently, trace A1/2LL∗A1/2 = trace A.
Using trace XX∗ = trace X∗X for X = A1/2L, we have

trace A1/2LL∗A1/2 = trace L∗AL =
∞∑

n=1

〈ALen, Len〉

= p1 + p2 + · · · = λ1 + λ2 + · · · = trace A.

L is a co-isometry by (4.8); hence it can be changed into a unitary operator
U : H → H⊕ker L by making use of the projection Q : H → ker L as follows:
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Uξ = Lξ ⊕ Qξ, ξ ∈ H. Now consider the operator

A0 ⊕ 0 ∈ B(PH ⊕ ker L),

A0 denoting the restriction of A to PH = AH. Since Uek = Lek ⊕ Qek,
k = 1, 2, . . . , we have

〈(A0 ⊕ 0)Uek, Uek〉 = 〈ALek, Lek〉 = pk, k = 1, 2, . . . .

Therefore U∗(A0 ⊕ 0)U is a positive trace class operator in B(H) satisfying

E(U∗(A0 ⊕ 0)U) =
∞∑

k=1

pkEk = B.

Since U∗(A0⊕0)U has the same eigenvalue list as A, Proposition 3.1 implies
that it must belong to O(A) = Oλ, and the proof is complete. �

In the series [Kad02a], [Kad02b], one of us carried out a study of the
possible diagonals of projections acting on a separable Hilbert space. The
results of this paper do not address the most difficult case where the pro-
jection has infinite rank and infinite co-rank; but Theorem 4.1 does give the
result of Theorem 13 of [Kad02b], as follows. We formulate that in terms of
the Hilbert space �2 and its standard orthonormal basis (uk)k≥1, with the
associated realization of operators as matrices relative to this basis.

Corollary 4.4. Let p = (p1, p2, . . . ) be a sequence of numbers in the unit
interval 0 ≤ pk ≤ 1, and let m be a positive integer. The following are
equivalent

(i) There is a rank m projection P ∈ B(�2) whose matrix has p as its
diagonal.

(ii) p1 + p2 + · · · = m.

Proof. We prove the nontrivial implication (ii) =⇒ (i). Since (ii) implies
that the sequence pn converges to zero and since permutations of N are
implemented by unitary operators on �2(N) in the obvious way, it suffices
to address the case where the sequence is decreasing p1 ≥ p2 ≥ · · · . The
eigenvalue list of a projection of rank m is

λ = (1, . . . , 1︸ ︷︷ ︸
m times

, 0, 0, . . . ),

and Oλ consists of all rank m projections in B(�2). The hypothesis (ii),
together with 0 ≤ pk ≤ 1, implies that p1 + · · · + pn ≤ λ1 + · · · + λn holds
for every n ≥ 1. Hence Theorem 4.1 implies that there is an operator in Oλ

with diagonal sequence p. �

Part 2. Type II1 Factors

We turn now to the case of self-adjoint operators A in a finite factor. In
this context, the appropriate counterpart of the eigenvalue list is a finite
positive measure on the real line, called the spectral distribution of A. After
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working out the basic properties of the spectral distribution and relating
it to approximate unitary equivalence, we establish a generalization of the
Schur inequalities for II1 factors.

5. Spectral distribution of a self-adjoint operator

In the remainder of this paper we work within the context of a finite factor
M with normalized trace τ . For every self-adjoint operator A ∈ M there is
a unique probability measure mA on the Borel subsets of the real line whose
moments are given by

(5.1)
∫ ∞

−∞
λn dmA(λ) = τ(An), n = 0, 1, 2, . . . .

Definition 5.1. The measure mA is called the spectral distribution of A.

The purpose of these section is to discuss the basic properties of this
invariant. The spectral distribution is the appropriate generalization to II1

factors of the eigenvalue list invariant of self-adjoint n×n matrices. Indeed,
if A is a self-adjoint n× n matrix with eigenvalue list Λ = {λ1 ≥ λ2 ≥ · · · },
then mA is the discrete measure

mA =
1
n

(δλ1 + · · · + δλn),

δλ denoting the unit point mass concentrated at λ ∈ R. Equivalently, mA

assigns mass to singletons {λ} of R as follows

mA(λ) =

{
1
n(multiplicity of λ), if λ ∈ σ(A)
0, otherwise.

We require the following observation, which asserts that the spectral distri-
bution of an operator in a II1 factor can be arbitrary.

Proposition 5.2. Let A ⊆ M be a MASA in a II1 factor and let m be
a compactly supported probability measure on the real line. Then there is a
self-adjoint operator A ∈ A such that m = mA.

Proof. A contains a countably-generated nonatomic subalgebra, which must
be isomorphic to L∞[0, 1] in such a way that the restriction of the trace τ
corresponds to the state of L∞[0, 1] given by

τ(f) =
∫ 1

0
f(x) dx, f ∈ L∞[0, 1].

Thus it suffices to show that there is a real-valued function f ∈ L∞[0, 1]
such that

∫ 1
0 f(x)n dx =

∫
λn dm(λ) for n = 0, 1, . . . or equivalently, for

every Borel set S ⊆ R,

(5.2) τ{x ∈ [0, 1] : f(x) ∈ S} = m(S),

where we abuse notation slightly by also writing τ for Lebesgue measure on
the unit interval. Let K be the closed support of m. The pair (K, m) defines
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a separable measure algebra which may have a finite or countable number
of atoms. On the other hand, ([0, 1], τ) gives rise to a nonatomic separable
measure algebra. Letting x1, x2, . . . be the points of K having positive m-
measure, we find a sequence of disjoint Borel sets E1, E2, · · · ⊆ [0, 1] such
that τ(Ek) = m({xk}) for all k. Define f on ∪kEk so that it takes on the
constant value xk throughout Ek. f is a measure-preserving map of ∪kEk

onto the atomic part of (K, τ). Since τ([0, 1] \∪kEk) = m(K \ {x1, x2, . . . })
and since the remaining parts of both measure spaces are nonatomic and
separable, there is a surjective Borel map of [0, 1]\∪nEn onto K\{x1, x2, . . . }
that pushes Lebesgue measure forward to m, and we can use this map to
extend the definition of f to all of [0, 1] in the obvious way. �

The eigenvalue list is a complete invariant for L1-equivalence of positive
trace-class operators in type I factors. We now show that the spectral
distribution invariant occupies a similar position.

Definition 5.3. Operators A, B ∈ M are said to be approximately equiva-
lent if there is a sequence of unitary operators U1, U2, . . . in M such that

(5.3) lim
n→∞

‖UnAU∗
n − B‖ = 0.

The set of all operators in the norm-closed unitary orbit of A is written OA.

Theorem 5.4. Let A be a self-adjoint operator in M, let mA be the spectral
distribution of A, and let OA be the norm-closed unitary orbit of A. Then
OA is closed in the strong operator topology, and consists of all self-adjoint
operators B ∈ M satisfying mB = mA.

Before giving the proof we collect an elementary observation.

Lemma 5.5. Let E1 ≤ E2 ≤ · · · ≤ En and F1 ≤ F2 ≤ · · · ≤ Fn be two
linearly ordered sets of projections in M such that τ(Ek) = τ(Fk) for k =
1, . . . , n. Then there is a unitary operator U in M such that UEkU

∗ = Fk,
k = 1, . . . , n.

Proof. By adjoining the identity to the end of each list if necessary, we
can assume that En = Fn = 1. Setting E0 = F0 = 0, the hypothesis
implies that τ(Ek − Ek−1) = τ(Fk − Fk−1) for each k = 1, . . . , n. Since
M is a finite factor, projections with the same trace must be Murray-von
Neumann equivalent. Thus there are partial isometries U1, . . . , Un ∈ M
with U∗

kUk = Ek − Ek−1 and UkU
∗
k = Fk − Fk−1 for all k. The projections

U∗
1 U1, . . . , U

∗
nUn add up to En = 1, and similarly U1U

∗
1 + · · ·+UnU∗

n = 1. It
follows that W = U1 + · · ·+Un is a unitary operator in M with the property
W (Ek −Ek−1)W ∗ = Fk −Fk−1 for every k = 1, . . . , n, hence WEkW

∗ = Fk

for k = 1, . . . , n. �

Proof of Theorem 5.4. We will show that a self-adjoint operator B belongs
to OA iff mB = mA. Once that is established, it will follow that OA is
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strongly closed, because the relation mB = mA is characterized by the
sequence of equations

(5.4) τ(Bn) = τ(An), n = 0, 1, 2, . . .

and each of the monomials B �→ τ(Bn) is strongly continuous on bounded
subsets of M.

Every operator B ∈ M that is unitarily equivalent to A must satisfy the
formulas (5.4), and hence a norm-limit of such operators will satisfy the
same formulas. It follows that mB = mA for every B in the norm-closed
unitary orbit of A.

Conversely, let A, B be self-adjoint operators of M satisfying mA = mB,
and let [a, b] be an interval with the property that mA = mB is supported
in the interior (a, b). Then the spectra of A and B are both contained in
(a, b). For every a ≤ t ≤ b let Et (resp. Ft) be the spectral projection of A
(resp. B) corresponding to the subinterval [a, t] ⊆ R. Then by hypothesis
we have

(5.5) τ(Et) = mA([a, t]) = mB([a, t]) = τ(Ft), a ≤ t ≤ b.

Given ε > 0 we can find a partition a = t0 < t1 < · · · < tn = b of [a, b] fine
enough that

|t −
n∑

k−1

tkχ(tk−1,tk](t)| ≤ ε, a ≤ t ≤ b.

Letting A0, B0 be the operators

A0 =
n∑

k=1

tk(Etk − Etk−1
), B0 =

n∑
k=1

tk(Ftk − Ftk−1
),

we find that ‖A−A0‖ ≤ ε and ‖B −B0‖ ≤ ε. (5.5) implies τ(Etk) = τ(Ftk)
for every k, so by the Lemma there is a unitary operator W ∈ M such that
WEtkW ∗ = Ftk for all k, hence WA0W

∗ = B0. An obvious estimate now
implies ‖WAW ∗−B‖ ≤ 2ε, and since ε is arbitrary it follows that A and B
are approximately equivalent. �

Theorem 5.4 implies that the spectral distribution is a complete invari-
ant for approximate unitary equivalence, and it is natural to ask if two
self-adjoint operators that are approximately equivalent must be unitarily
equivalent, or at least conjugate by way of a ∗-automorphism. The following
class of examples shows that the answer is no.

Example. Let R be a II1 factor and let A and B be two MASAs in
R that are not conjugate by way of an automorphism of R. For example,
A can be taken to be a regular MASA and B a singular one. Since both
A and B are isomorphic to L∞[0, 1] by way of an isomorphism that carries
the trace to Lebesgue measure, it follows that a) there is a ∗-isomorphism
α of A onto B satisfying τ(α(X)) = τ(X) for all X ∈ A, and b) A is the
von Neumann algebra W ∗(A) generated by a single self-adjoint operator A.
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Let B = α(A). Then τ(An) = τ(Bn) for every n = 0, 1, 2, . . . and hence
mA = mB. It follows from Theorem 5.4 that A and B are approximately
equivalent. On the other hand, there is no unitary operator U ∈ R satisfying
UAU∗ = B, since that would imply that θ(X) = UXU∗ is an automorphism
of R that carries A = W ∗(A) onto B = W ∗(B).

6. Schur-type inequalities for II1 factors

The purpose of this section is to formulate an appropriate counterpart
of the Schur inequalities for self-adjoint operators in II1 factors. This is
not the only formulation possible, and we refer the reader to Section 5 of
[Kad04] for an alternate approach. Here, we seek to formulate the Schur
inequalities in terms of spectral distributions. That formulation is based on
the following observations.

Proposition 6.1. For any two compactly supported probability measures m,
n on the real line, the following are equivalent:

(i) m and n have the same first moment∫
R

λ dm(λ) =
∫

R
λ dn(λ),

and for every t ∈ R we have∫ ∞

t
m([s,∞)) ds ≤

∫ ∞

t
n([s,∞)) ds.

(ii) m and n have the same first moment, and for every t ∈ R we have∫
[t,∞)

(λ − t) dm(λ) ≤
∫

[t,∞)
(λ − t) dn(λ).

(iii) For every continuous convex function defined on a closed interval
I = [c, d] that supports both measures m and n, we have∫

I
f(λ) dm(λ) ≤

∫
I
f(λ) dn(λ).

Proof. The equivalence (i) ⇐⇒ (ii) is a consequence of the classic integration
by parts formula of Riemann-Stieltjes integration, which can be applied as
follows. Fix t ∈ R, let m be a compactly supported measure defined on
R, and choose a, b ∈ R so that a < t < b and such that (a, b) contains
the closed support of both m and n. Let α : R → R be the decreasing
function α(s) = m([s,∞)) and let f be the continuous increasing function
f(s) = max(s − t, 0). An application of Theorem 9–6 of [Apo57] gives∫ b

a
f(x) dα(x) +

∫ b

a
α(x) df(x) = f(b)α(b) − f(a)α(a).
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In this case, α(b) = f(a) = 0, and straightforward computations show that∫ b

a
f(x) dα(x) = −

∫
[t,∞]

(x − t) dm(x),∫ b

a
α(x) df(x) =

∫ ∞

t
m([x,∞)) dx.

It follows that ∫
[t,∞]

(λ − t) dm(λ) =
∫ ∞

t
m([s,∞)) ds,

and the equivalence of (i) and (ii) follows.
The equivalence (ii) ⇐⇒ (iii) follows from the basic fact that a continuous

real-valued convex function f defined on a compact interval I ⊆ R can be
uniformly approximated on I by functions

(6.1) f(λ) = a + bλ + g(λ)

where a and b are real constants and g belongs to the cone generated by the
“angular” functions

gt(λ) = max(λ − t, 0) = (λ − t)χ[t,∞)(λ), t ∈ R.

To see how the approximation (6.1) is achieved, one first approximates f
uniformly on I with a twice continuously differentiable convex function g.
Since g′ is an increasing function, it can be uniformly approximated by an
increasing step function having the form a+h(λ) where a is constant and h
belongs to the cone generated by the step functions χ[t,∞), t ∈ R. After one
integrates this approximation of g′ one obtains an approximation to g(λ)
of the form aλ + b +

∫
h(λ) dλ. Moreover, since the indefinite integral of

a step function χ[t,∞)(λ) has the form c + gt(λ) where c is a constant, this
approximation of g has the form (6.1). �

Definition 6.2. Let m and n be two compactly supported probability mea-
sures on the real line. We write m � n if m is dominated by n in the
equivalent senses of Proposition 6.1, i.e., if

∫
R λ dm(λ) =

∫
R λ dn(λ), and

(6.2)
∫ ∞

t
m([s,∞)) ds ≤

∫ ∞

t
n([t,∞)) ds, t ∈ R.

The relation � is obviously a partial ordering on the set of all compactly
supported probability measures on the real line. Given two self-adjoint
operators A, B in a II1 factor M, we interpret the relation mA � mB

as the appropriate counterpart of the Schur inequalities (2.1) that relate the
eigenvalue lists of A and B. This interpretation is justified by Proposition
6.1 and the following remarks.

Remark 6.3 (Relation to the classical inequalities of Schur). Let τ be the
normalized trace on the matrix algebra Mn(C), and let A and B be self-
adjoint n×n matrices. We have discussed the relation between the eigenvalue
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list of A and the spectral distribution mA in Section 5. We now examine
the relation between the integrals∫ ∞

t
mA([s,∞)) ds

appearing in (6.2) and the eigenvalue list λ1 ≥ · · · ≥ λn of A. For simplicity,
we consider the case where the eigenvalues are simple ones. For every t in the
interval λk+1 < t < λk one has m([t,∞)) = k/n, and after a straightforward
integration and cancellation one finds that for λk−1 < t < λk,∫ ∞

t
mA([s,∞)) ds =

λ1 + λ2 + · · · + λk − kt

n
.

Let B be another self-adjoint matrix with eigenvalue list µ1 ≥ · · · ≥ µn.
The preceding formula shows that the system of inequalities

(6.3)
∫ ∞

t
mA([s,∞)) ds ≤

∫ ∞

t
mB([s,∞)) ds, t ∈ R,

differs somewhat from the system of classical Schur inequalities, which in
terms of the normalized trace would assert

(6.4)
λ1 + · · · + λk

n
≤ µ1 + · · · + µk

n
, k = 1, 2, . . . , n.

However, if τ(A) = τ(B) then λ1+ · · ·+λn = µ1+ · · ·+µn; and in that event
the inequalities (6.3) are equivalent to the Schur inequalities (6.4) because
they are equivalent to the inequalities of assertion (iii) of Proposition 6.1.
That is a consequence of classical results of Hardy, Littlewood and Polya
which are summarized in Theorem 1 of [Hor54]. The relevant result asserts
that for two finite eigenvalue lists

{λ1 ≥ · · · ≥ λn}, {µ1 ≥ · · · ≥ µn}
which satisfy λ1 + · · · + λn = µ1 + · · · + µn, the following are equivalent:

(1) λ1 + · · · + λk ≤ µ1 + · · · + µk, for every k = 1, . . . , n.
(2) For every convex function f defined on an interval containing all λi

and µj , one has
n∑

k=1

f(λk) ≤
n∑

k=1

f(µk).

Thus, when taken together with the equivalence of (1) and (2), Proposition
6.1 implies that the system of inequalities (6.2) is the appropriate general-
ization of the Schur inequalities (6.4) to II1 factors.

7. Proof of the Schur inequalities

We require a convexity inequality for operators in a II1 factor. While
related results can be found in the literature, we have been unable to find
references appropriate for this particular result, and we include a proof for
completeness. Let A be a maximal abelian self-adjoint subalgebra of a II1
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factor M with normalized trace τ , and let E : M → A be the τ -preserving
conditional expectation.

Proposition 7.1. Let f be a real-valued continuous convex function defined
on a compact interval I = [a, b] ⊆ R. Then for every self-adjoint operator
A ∈ M with spectrum contained in I, the spectrum of E(A) is also contained
in I and we have

(7.1) f(E(A)) ≤ E(f(A)).

Proof. For every self-adjoint operator A ∈ M, we write A+ for the positive
part of A, defined by A+ = AP+ = P+A where P+ is the spectral projection
of A associated with the nonnegative real axis [0,∞). We claim first that

(7.2) E(A)+ ≤ E(A+).

Indeed, in the natural ordering of self-adjoint operators in M we have
A ≤ A+ and hence E(A) ≤ E(A+). Thus E(A+) is a positive operator
dominating E(A). Since A is abelian, E(A)+ is the smallest positive oper-
ator in A that dominates E(A), and (7.2) follows.

In order to prove (7.1), choose r ∈ R and let gr(λ) = max(λ − r, 0). We
may apply (7.2) to the operator A − r1 to obtain

gr(E(A)) = (E(A) − r1)+ = E(A − r1)+ ≤ E((A − r1)+) = E(gr(A)).

It follows that for every convex function f0 : R → R of the form

(7.3) f0(λ) = a + bλ +
n∑

k=1

ckgrk
(λ)

where a, b, r1, . . . , rn ∈ R and c1, . . . , cn ≥ 0, one has

f0(E(A)) ≤ E(f0(A)).

Since every continuous convex function f : [a, b] → R can be uniformly
approximated by functions f0 of the form (7.3), one deduces (7.1) for con-
tinuous convex functions from these inequalities. �

The following result establishes the Schur inequalities for operators in a
II1 factor.

Theorem 7.2. Let A be a MASA in M and let E : M → A be the trace-
preserving conditional expectation. For every self-adjoint operator A in M,
the spectral distribution of B = E(A) is related to that of A by mB � mA.

Proof. Let [a, b] be the smallest closed interval containing σ(A)∪σ(B). Since
both mB and mA are probability measures, Proposition 3.1 implies that
mB � mA iff for every continuous convex function f ∈ C[a, b],∫

I
f(λ) dmB(λ) ≤

∫
I
f(λ) dmA(λ).

Since the left side is τ(f(B)) = τ(f(E(A))) and the right side is τ(f(A)),
the preceding inequality follows from formula (7.1). �
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Theorem 7.2 makes the following assertion about the norm-closed unitary
orbit OA of a self-adjoint operator: E(OA) is contained in the set of all self-
adjoint operators B ∈ A satisfying mB � mA. Thus, an affirmative reply to
the following question would appear to be a natural counterpart of Horn’s
Theorem for n × n matrices.

Problem. Let A be a MASA in a II1 factor M, let E : M → A
be the trace-preserving conditional expectation, and let A be a self-adjoint
operator in M. Does E(OA) contain the set of all self-adjoint operators
B ∈ A satisfying mB � mA?
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