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Abstract. A notion of curvature is introduced in multivariable operator theory,
that is, for commuting d tuples of operators acting on a common Hilbert space whose
“rank” is finite in an appropriate sense.

The curvature invariant is a real number in the interval [0, r] where r is the

rank, and for good reason it is desireable to know its value. For example, there
are significant and concrete consequences when it assumes either of the two extreme
values 0 or r. In the few simple cases where it can be calculated directly, it turns
out to be an integer. This paper addresses the general problem of computing this

invariant.
Our main result is an operator-theoretic version of the Gauss-Bonnet-Chern for-

mula of Riemannian geometry. The proof is based on an asymptotic formula which

expresses the curvature of a Hilbert module as the trace of a certain self-adjoint
operator. The Euler characteristic of a Hilbert module is defined in terms of the
algebraic structure of an associated finitely generated module over the algebra of
complex polynomials C[z1, . . . , zd], and the result is that these two numbers are the

same for graded Hilbert modules. Thus the curvature of such a Hilbert module is
an integer; and since there are standard tools for computing the Euler characteristic
of finitely generated modules over polynomial rings, the problem of computing the
curvature can be considered solved in these cases.

The problem of computing the curvature of ungraded Hilbert modules remains
open.
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2 WILLIAM ARVESON

Introduction.
In a recent paper [1] the author showed that the simplest form of von Neumann’s

inequality fails for the unit ball of C
d when d ≥ 2, and that consequently the

traditional approach to dilation theory (based on normal dilations) is inappropriate
for multivariable operator theory in dimension greater than 1. A modification of
dilation theory was proposed for higher dimensions, and that modification involves
a particular commuting d-tuple of operators called the d-shift in an essential way.
The d-shift is not subnormal and does not satisfy von Neumann’s inequality.

This reformulation of dilation theory bears a strong resemblance to the alge-
braic theory of finitely generated modules over polynomial rings, originating with
Hilbert’s work of the 1890s [18],[19]. For example, the module structure defined
by the d-shift occupies the position of the rank-one free module in the algebraic
theory. On the other hand, since we are working with bounded operators on Hilbert
spaces (rather than linear transformations on vector spaces) there are also geomet-
ric aspects that accompany this additional structure. In particular, it is possible to
define a numerical invariant (the curvature) for appropriate Hilbert modules over
C[z1, . . . , zd]. This is a new invariant in operator theory, analogous to the integral
of the Gaussian curvature of a compact oriented Riemannian 2n-manifold.

The curvature invariant K(H) takes values in the interval [0, r] where r is the
rank of H. Both extremal values K(H) = r and K(H) = 0 have significant
operator-theoretic implications. We show in section 2 that for pure Hilbert modules
H, the curvature invariant is maximal K(H) = rank(H) iff H is the free Hilbert
module of rank r = rank(H) (the free Hilbert module of rank r is the module defined
by the orthogonal direct sum of r copies of the d-shift, see Remark 1.3 below). The
opposite extreme K(H) = 0 is closely related to the existence of “inner sequences”
for the invariant subspaces of H2. More precisely, a closed submodule M ⊆ H2

is associated with an “inner sequence” iff K(H2/M) = 0, H2/M denoting the
quotient Hilbert module.

If one seeks to make use of these extremal properties one obviously must calculate
K(H). But direct computation appears to be difficult for most of the natural
examples, and in the few cases where the computations can be explicitly carried
out the curvature turns out to be an integer. Thus we were led to ask if the
curvature invariant can be expressed in terms of some other invariant which is a)
obviously an integer and b) easier to calculate.

We establish such a formula in section 5 (Theorem B), which applies to Hilbert
modules (in the category of interest) which are “graded” in the sense that the
d-tuple of operators which defines the module structure should be circularly sym-
metric. Theorem B asserts that the curvature of such a Hilbert module agrees with
the Euler characteristic of a certain finitely generated algebraic module that is asso-
ciated with it in a natural way. Since the Euler characteristic of a finitely generated
module over C[z1, . . . , zd] is relatively easy to compute using conventional algebraic
methods, the problem of calculating the curvature can be considered solved for
graded Hilbert modules.

The problem of calculating the curvature of ungraded finite rank Hilbert modules
remains open (additional concrete problems are discussed in section 7).

Theorem B is proved by establishing asymptotic formulas for both the curva-
ture and Euler characteristic of arbitrary (i.e., perhaps ungraded) Hilbert modules
(Theorems C and D), the principal result being Theorem C. Theorem C is proved
by showing that the curvature invariant is actually the trace of a certain self-adjoint
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trace class operator, and we prove an appropriate asymptotic formula for the trace
of that operator in section 3. These results have been summarized in [2].

Cowen and Douglas have introduced a geometric notion of curvature for certain
operators whose adjoints have “sufficiently many” eigenvectors [8]. The Cowen-
Douglas curvature operator is associated with a Hermitian vector bundle over a
bounded domain in C. This bundle is constructed by organizing the eigenvector-
eigenvalue information attached to the operator. Our work differs from that of
Cowen and Douglas in three ways. First, we are primarily interested in the mul-
tivariable case where one is given several mutually commuting operators. Second,
we concentrate on higher dimensional analogues of contractions...modules whose
geometry is associated with the unit ball of C

d. Third, we make no other geometric
assumptions on the Hilbert module beyond that of being “finite rank” in an appro-
priate sense (more precisely, the defect operator associated with the Hibert module
should be of finite rank). Cowen and Douglas have extended some of their results
to multivariable cases (see [9], [10]), but the overlap between the two approaches
is slight. We also point out that in [4], [22], [23] Misra, Bagchi, Pati, and Sastry
have studied d-tuples of operators that are invariant under a group action. The
connection between our work and the latter is not completely understood, but again
the two approaches are fundamentally different. Finally, though the curvature of
a Hilbert module is a global invariant, it may also be appropriate to call attention
to two recent papers [13], [14] which deal with the local properties of short exact
sequences of Hilbert modules.

We now describe our results more precisely, beginning with the definition of the
curvature invariant. Let T̄ = (T1, . . . , Td) be a d-tuple of mutually commuting
operators acting on a common Hilbert space H. T̄ is called a d-contraction if

‖T1ξ1 + · · ·+ Tdξd‖2 ≤ ‖ξ1‖2 + · · ·+ ‖ξd‖2

for all ξ1, . . . , ξd ∈ H. The number d will normally be fixed, and of course we
are primarily interested in the cases d ≥ 2. Let A = C[z1, . . . , zd] be the complex
unital algebra of all polynomials in d commuting variables z1, . . . , zd. A commuting
d-tuple T1, . . . , Td of operators in the algebra B(H) of all bounded operators on H
gives rise to an A-module structure on H in the natural way,

f · ξ = f(T1, . . . , Td)ξ, f ∈ A, ξ ∈ H;

and (T1, . . . , Td) is a d-contraction iff H is a contractive A-module in the following
sense,

‖z1ξ1 + · · ·+ zdξd‖2 ≤ ‖ξ1‖2 + · · ·+ ‖ξd‖2

for all ξ1, . . . , ξd ∈ H. Thus it is equivalent to speak of d-contractions or of con-
tractive Hilbert A-modules, and we will shift from one point of view to the other
when it is convenient to do so.

For every d-contraction T̄ = (T1, . . . , Td) we have 0 ≤ T1T
∗
1 + · · · + TdT

∗
d ≤ 1,

and hence the “defect operator”

(0.1) ∆ = (1− T1T
∗
1 − · · · − TdT ∗d )1/2

is a positive operator on H of norm at most one. The rank of T̄ is defined as the
dimension of the range of ∆. Throughout this paper we will be primarily concerned
with finite rank d-contractions (resp. finite rank contractive Hilbert A-modules).
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Let H be a finite rank contractive Hilbert A-module and let (T1, . . . , Td) be its
accociated d-contraction. For every point z = (z1, . . . , zd) in complex d-space C

d

we form the operator

(0.2) T (z) = z̄1Td + · · ·+ z̄dTd ∈ B(H),

z̄k denoting the complex conjugate of the complex number zk. Notice that the
operator function z 7→ T (z) is an antilinear mapping of C

d into B(H), and since
(T1, . . . , Td) is a d-contraction we have

‖T (z)‖ ≤ |z| = (|z1|2 + · · ·+ |zd|2)1/2

for all z ∈ C
d. In particular, if z belongs to the open unit ball

Bd = {z ∈ C
d : |z| < 1}

then ‖T (z)‖ < 1 and 1− T (z) is invertible. Thus for every z ∈ Bd we can define a
positive operator F (z) acting on the finite dimensional Hilbert space ∆H as follows,

F (z)ξ = ∆(1− T (z)∗)−1(1− T (z))−1∆ξ, ξ ∈ ∆H.

In order to define the curvature invariantK(H) we require the boundary values of
the real-valued function z ∈ Bd 7→ traceF (z). These do not exist in a conventional
sense because in all significant cases this function is unbounded. However, we show
that “renormalized” boundary values do exist almost everywhere on the sphere ∂Bd
with respect to the natural rotation-invariant probability measure σ on ∂Bd.

Theorem A. For σ-almost every ζ ∈ ∂Bd, the limit

K0(ζ) = lim
r↑1

(1− r2)traceF (rζ) = 2 · lim
r↑1

(1− r)traceF (rζ)

exists and satisfies 0 ≤ K0(ζ) ≤ rank (H).

Section 1 is devoted to the proof of Theorem A. The curvature invariant is defined
by averaging K0 over the sphere

(0.3) K(H) =
∫
∂Bd

K0(ζ) dσ(ζ).

Obviously, K(H) is a real number satisfying 0 ≤ K(H) ≤ rank (H).
The definition of the Euler characteristic χ(H) of a finite rank contractive A-

module H is more straightforward. χ(H) depends only on the linear algebra of the
following A-submodule of H:

MH = span{f · ξ : f ∈ A, ξ ∈ ∆H}.

Notice that we have not taken the closure in forming MH . Note too that if r =
rank(H) and ζ1, . . . , ζr is a linear basis for ∆H, then MH is the set of “linear
combinations”

MH = {f1 · ζ1 + · · ·+ fr · ζr : fk ∈ A}.
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In particular, MH is a finitely generated A-module.
It is a consequence of Hilbert’s syzygy theorem for ungraded modules (cf. Theo-

rem 182 of [20] or Corollary 19.8 of [17]) that MH has a finite free resolution; that
is, there is an exact sequence of A-modules

(0.4) 0→ Fn → · · · → F2 → F1 →MH → 0

where Fk is a free module of finite rank βk,

Fk = A⊕ · · · ⊕A︸ ︷︷ ︸
βktimes

.

The alternating sum of the “Betti numbers” of this free resolution β1−β2+β3−+ . . .
does not depend on the particular finite free resolution of MH , hence we may define
the Euler characteristic of H by

(0.5) χ(H) =
n∑
k=1

(−1)k+1βk,

where βk is the rank of Fk in any finite free resolution of MH of the form (0.4).
One of the more notable results in the Riemannian geometry of surfaces is the

Gauss-Bonnet theorem, which asserts that if M is a compact oriented Riemannian
2-manifold and

K : M → R

is its Gaussian curvature function, then

(0.6)
1

2π

∫
M

K dA = β0 − β1 + β2

where βk is the kth Betti number of M . In particular, the integral of K depends
only on the topological type of M . This remarkable theorem was generalized by
Shiing-Shen Chern to compact oriented even-dimensional Riemannian manifolds in
1944 [7].

In section 5 we will establish the following result, which we view as an analogue
of the Gauss-Bonnet-Chern theorem for graded Hilbert A-modules. By a graded
Hilbert A-module we mean a pair (H,Γ) where H is a (finite rank, contractive)
Hilbert A-module and Γ : T→ B(H) is a strongly continuous unitary representation
of the circle group such that

Γ(λ)TkΓ(λ)−1 = λTk, k = 1, 2, . . . , d, λ ∈ T,

T1, . . . , Td being the d-contraction associated with the module structure of H. Thus,
graded Hilbert A-modules are precisely those whose underlying operator d-tuple
(T1, . . . , Td) possesses circular symmetry. Γ is called the gauge group of H.

Theorem B. Let H be a graded (contractive, finite rank) Hilbert A-module for
which the spectrum of the gauge group is bounded below. Then K(H) = χ(H), and
in particular K(H) is an integer.

We remark that the hypothesis on the spectrum of the gauge group is equivalent
to several other natural ones, see Proposition 5.4. Theorem B depends on the
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following asymptotic formulas for K(H) and χ(H), which are valid for finite rank
contractive Hilbert A-modules, graded or not. For such an H, let (T1, . . . , Td) be its
associated d-contraction and define a completely positive normal map φ : B(H)→
B(H) by

φ(A) = T1AT
∗
1 + · · ·+ TdAT

∗
d .

Since H is contractive and finite rank, 1− φn(1) is a positive finite rank operator
for every n = 1, 2, . . . .

Theorem C. For every contractive finite rank Hilbert A-module H,

K(H) = d! lim
n→∞

trace (1− φn(1))
nd

.

Theorem D. For every contractive finite rank Hilbert A-module H,

χ(H) = d! lim
n→∞

rank (1− φn(1))
nd

.

Theorems C and D are proved in sections 3 and 4; taken together, they lead
immediately to the general inequality K(H) ≤ χ(H) (Corollary 2 of Theorem D).
We have already alluded to the fact that the number K(H) is actually the trace
of a certain self-adjoint trace-class operator dΓ, which exists for any finite rank
contractive Hilbert module. While the trace of this operator is always nonnegative,
it is noteworthy that dΓ itself is never a positive operator. Indeed, we have found
it useful to think of dΓ as a higher dimensional operator-theoretic counterpart of
the differential of the Gauss map γ : M → S2 of an oriented 2-manifold M ⊆ R

3.
We have glossed over some details in order to make the essential point; see section
3 for a more comprehensive discussion. In any case, the formula

K(H) = trace dΓ

is an essential component underlying Theorems B and C.
Theorem B implies that K(H) is an integer for pure finite rank graded Hilbert

modules H. We do not know if it is an integer for pure ungraded Hilbert modules.
In the case rank(H) = 1 this is equivalent to the existence of an inner sequence for
every closed submodule of the free Hilbert module H2(Cd) (see Theorem 2.2).

In section 7 we discuss examples illustrating various phenomena, and we pose
several open problems. We also give the following applications of the material
described above (the reader is referred to section 7 for a more detailed discussion
of these results).

Theorem E. Let M ⊆ H2 be a closed submodule of H2(Cd) which contains a
nonzero polynomial. Then M has an inner sequence.

Corollary of Theorem F. In dimension d ≥ 2, every graded submodule of infinite
codimension in H2(Cd) is an infinite rank Hilbert A-module.

Finally, I want to thank Ron Douglas, David Eisenbud, Robin Hartshorne, Palle
Jørgensen and Lance Small for useful comments and help with references.
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1. Curvature invariant. The curvature invariant of a finite rank Hilbert A-
module is defined as the integral of the “renormalized” boundary values of a natural
function defined in the open unit ball. The purpose of this section is to establish
the existence and basic properties of this boundary value function (Theorem A).
Further properties of the curvature invariant are developed in sections 2 and 3.

Let H be a Hilbert A-module with canonical operators T1, . . . , Td. For every
z ∈ C

d we define the operator T (z) ∈ B(H) as in (0.2),

T (z) = z̄1T1 + · · ·+ z̄dTd.

We have already pointed out that ‖T (z)‖ ≤ |z|, and hence 1 − T (z) is invertible
for all z in the open unit ball Bd. Thus we can define an operator-valued function
F : Bd → B(∆H) as follows:

(1.1) F (z)ξ = ∆(1− T (z)∗)−1(1− T (z))−1∆ξ, ξ ∈ ∆H

where ∆ is the defect operator associated with H, ∆ = (1−T1T
∗
1 − · · ·−TdT ∗d )1/2.

Assuming that rank(H) < ∞, for every z F (z) is a positive operator acting
on a finite dimensional Hilbert space and we may consider the numerical func-
tion z ∈ Bd 7→ traceF (z). We show in Theorem A below that this function has
“renormalized” boundary values

K0(z) = lim
r→1

(1− r2)traceF (rz)

for almost every point z ∈ ∂Bd relative to the natural measure dσ on ∂Bd. Once
this is established we can define the curvature invariant K(H) by integrating K0

over ∂Bd. The key formula behind Theorem A is the following.

Theorem 1.2. Let F : Bd → B(∆H) be the function (1.1). There is a Hilbert
space E and an operator-valued holomorphic function Φ : Bd → B(E,∆H) such
that

(1− |z|2)F (z) = 1− Φ(z)Φ(z)∗, z ∈ Bd.

The multiplication operator associated with Φ maps H2⊗E into H2⊗∆H and has
norm at most 1.

Remark 1.3: Free Hilbert modules and their multipliers. The statement
of Theorem 1.2 requires clarification. We take this opportunity to discuss basic
terminology and collect a number of observations about multipliers for later use.

Consider the Hilbert A-module H2 = H2(Cd) [1]. H2 can be defined most
quickly as the symmetric Fock space over a d-dimensional Hilbert space Z ∼= C

d,
and the canonical operators S1, . . . , Sd of H2 are defined by symmetric tensoring
with a fixed orthonormal basis e1, . . . , ed for Z. (S1, . . . , Sd) is called the d-shift,
and H2 is called the free Hilbert module of rank one.

Let H be an arbitrary contractive Hilbert A-module, and let r be a positive
integer or ∞ = ℵ0. We will write r ·H for the direct sum of r copies of the Hilbert
module H, and of course r · H is a Hilbert A-module in a natural way. If C is
a Hilbert space of dimension r, then we can make the tensor product of Hilbert
spaces H ⊗C into a Hilbert A module by defining the action of a polynomial f on
an element ξ ⊗ ζ (ξ ∈ H, ζ ∈ C) by f · (ξ ⊗ ζ) = f · ξ ⊗ ζ, and extending in the
obvious way by linearity. The Hilbert A-modules H⊗C and r ·H are isomorphic in
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the sense that there is a unitary operator from one to the other which intertwines
the respective actions of polynomials. When H = H2 we refer to both r ·H2 and
H2 ⊗ C as the free Hilbert A-module of rank r.

Perhaps this terminology requires justification, and for that discussion it is better
to consider H2 as the completion of the polynomial algebra A = C[z1, . . . , zd] in
a natural Hilbert space norm. This norm derives from an inner product on A
having certain maximality properties, and the space H2(Cd) generalizes to higher
dimensions the familiar Hardy space in one complex dimension (see [1], section 1).
Every element of H2 can be realized as a holomorphic function defined in the open
unit ball Bd ⊆ C

d, and the Hilbert module action of a polynomial on an element
of H2 corresponds to pointwise multiplication of complex functions defined on Bd.

There is a well-established notion of free module in commutative algebra, and free
modules of finite rank (over, say, the polynomial algebra A = C[z1, . . . , zd]) can be
characterized by various universal properties. They are concretely defined as finite
direct sums of copies of A, with the obvious action of polynomials on elements of
the direct sum. The most basic universal property of free modules is that every
finitely generated A-module is isomorphic to a quotient F/K where F is a free
module of finite rank (which can be taken as the minimal number of generators)
and K ⊆ F is a submodule. This universal property actually characterizes free
modules provided that one imposes a natural condition of “minimality”.

Now if H is a contractive finite rank Hilbert module over A = C[z1, . . . , zd]
and K ⊆ H is a closed subspace of H which is invariant under the action of
the given operators on H, then the quotient H/K is a Hilbert space and the A-
module structure of H can be promoted naturally to obtain a contractive A-module
structure on H/K. It is quite easy to show that rank(H/K) ≤ rank(H). In
particular, if F = H2⊕· · ·⊕H2 is a finite direct sum of copies of the Hilbert module
H2 and K ⊆ F is any closed submodule, then F/K is a finite rank contractive
Hilbert module.

It is significant that finite direct sums F = H2 ⊕ · · · ⊕H2 of the basic Hilbert
module H2 have precisely the above universal property, in the category of “pure”
Hilbert modules of finite rank. This observation depends on a known result in mul-
tivariable dilation theory (which actually extends appropriately to noncommuting
operators). For our purposes it is convenient to reformulate Theorem 4.4 of [1] in
the following way.

1.4 Dilation Theorem. Let H be a (contractive) Hilbert A-module, and let H2⊗
∆H be the associated free Hilbert A-module. There is a unique bounded linear
operator L : H2 ⊗∆H → H satisfying

L(f ⊗ ζ) = f ·∆ζ, f ∈ A, ζ ∈ ∆H.

L is a homomorphism of Hilbert A-modules, and we have

LL∗ = 1− lim
n→∞

φn(1)

where φ is the completely positive map on B(H) associated with the natural operators
T1, . . . , Td of H, φ(X) = T1XT

∗
1 + · · ·+ TdXT

∗
d .
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Purity. Notice that since φ(1) = T1T
∗
1 +· · ·+TdT ∗d ≤ 1 we have ‖φ‖ = ‖φ(1)‖ ≤ 1,

hence the sequence of positive operators 1 ≥ φ(1) ≥ φ2(1) ≥ . . . converges strongly
to a positive limit limn φ

n(1). A Hilbert module H is called pure if limn φ
n(1) = 0.

It is quite easy to see that free Hilbert modules are pure, that closed submodules
of pure Hilbert modules are pure, and the same is true of quotients of pure Hilbert
modules.

Notice that when the given Hilbert module H of Theorem 1.4 is pure the operator
L : F → H is a coisometry LL∗ = 1H ; hence L implements an isomorphism of the
quotient F/ kerL and H. We deduce the following result, which justifies our use of
the term free Hilbert module for finite direct sums of the basic Hilbert module H2.

Corollary. Let H be a pure Hilbert module of rank r = 1, 2, . . . ,∞, and let F =
r ·H2 be the free Hilbert module of rank r. Then there is a closed submodule K ⊆ F
such that H is unitarily equivalent to F/K.

This result implies that in order to understand the structure of pure Hilbert
modules of finite rank, one should focus attention on free Hilbert modules of finte
rank, their (closed) submodules, and their quotients.

Multipliers. Elements of free Hilbert modules, and homomorphisms from one free
Hilbert module to another, can be “evaluated” at points in the open unit ball Bd
in C

d. We now describe these evaluation maps, and we briefly discuss the relation
between module homorphisms and multipliers.

Let E be a separable Hilbert space and consider the free Hilbert A-module
F = H2 ⊗ E of rank r = dimE. One thinks of elements of H2 ⊗ E as E-valued
holomorphic functions defined on Bd in the following way. Let {uz : z ∈ Bd} be
the family of holomorphic functions defined on Bd by

uz(w) = (1− 〈w, z〉)−1, w ∈ Bd.

Each function uz can be identified with an element of H2 in a natural way and its
H2 norm is given by

‖uz‖ = (1− |z|2)−1/2, z ∈ Bd

see [1], Proposition 1.12. Since H2 is spanned by {uz : z ∈ Bd}, H2⊗E is spanned
by {uz ⊗ ζ : z ∈ Bd, ζ ∈ E}.

Using these elements we may evaluate an element ξ ∈ H2⊗E at a point z ∈ Bd
to obtain an vector ξ(z) ∈ E by way of the Riesz lemma,

〈ξ(z), ζ〉E = 〈ξ, uz ⊗ ζ〉H2 , ζ ∈ E,

and the obvious estimate shows that ‖ξ(z)‖ ≤ ‖ξ‖(1 − |z|2)−1/2. z 7→ ξ(z) is
obviously a holomorphic E-valued function defined on the ball Bd. Writing A for
the algebra C[z1, . . . , zd] of all complex polynomials in d variables, note that the
A-module structure of H2 ⊗ E is conveniently expressed in terms of the values of
the function ξ(·) as follows,

(f · ξ)(z) = f(z)ξ(z), f ∈ A, ξ ∈ H2 ⊗ E, z ∈ Bd.

Similarly, any bounded homomorphism of free modules can be evaluated at
points in Bd to obtain a holomorphic operator-valued function. In more detail,



10 WILLIAM ARVESON

let E1, E2 be separable Hilbert spaces and let Φ : H2 ⊗ E1 → H2 ⊗ E2 be a
bounded linear operator satisfying

Φ(f · ξ) = f · Φ(ξ), f ∈ A, ξ ∈ H2 ⊗ E1.

Then we have the elementary estimate

| 〈Φ(1⊗ ζ1), uz ⊗ ζ2〉 | ≤
‖Φ‖ · ‖ζ1‖ · ‖ζ2‖√

1− |z|2
,

for ζk ∈ Ek and z ∈ Bd, so by another application of the Riesz lemma there is a
unique operator-valued function z ∈ Bd 7→ Φ(z) ∈ B(E1, E2) satisfying

〈Φ(z)ζ1, ζ2〉 = 〈Φ(1⊗ ζ1), uz ⊗ ζ2〉 , ζk ∈ Ek, z ∈ Bd.

The multiplication operator defined by the function Φ(·) agrees with the original
operator Φ in the sense that Φ(ξ)(z) = Φ(z)ξ(z) for every z ∈ Bd, ξ ∈ H2⊗E1, and
we refer to the function Φ(·) as the multiplier associated with the homomorphism
of A-modules Φ : H2 ⊗ E1 → H2 ⊗ E2.

Further connections between the homomorphism and its multiplier are summa-
rized as follows.
(1.3a) sup|z|<1 ‖Φ(z)‖ ≤ ‖Φ‖,
(1.3b) the adjoint Φ∗ ∈ B(H2 ⊗ E2, H

2 ⊗ E1) of the operator Φ is related to the
operator function z ∈ Bd 7→ Φ(z)∗ ∈ B(E2, E1) as follows,

Φ∗(uz ⊗ ζ) = uz ⊗ Φ(z)∗ζ, z ∈ Bd, ζ ∈ E2.

We sketch the proof of these facts for the convenience of the reader. For (1.3b), fix
f ∈ H2, ζk ∈ Ek, k = 1, 2, and z ∈ Bd. Then we have

〈f ⊗ ζ1,Φ∗(uz ⊗ ζ2)〉 = 〈Φ(f ⊗ ζ1), uz ⊗ ζ2〉 = 〈f · Φ(1⊗ ζ1), uz ⊗ ζ2〉
= 〈f(z)Φ(z)ζ1, ζ2〉 = f(z) 〈Φ(z)ζ1, ζ2〉 = 〈f, uz〉 〈ζ1,Φ(z)∗ζ2〉
= 〈f ⊗ ζ1, uz ⊗ Φ(z)∗ζ2〉 .

Since H2 ⊗ E1 is spanned by vectors of the form f ⊗ ζ1, (1.3b) follows.
To prove (1.3a) it suffices to show that for every ζk ∈ Ek, k = 1, 2 with ‖ζk‖ ≤ 1

we have | 〈Φ(z)ζ1, ζ2〉 | ≤ ‖Φ‖, and for that, write

(1− |z|2)−1| 〈Φ(z)ζ1, ζ2〉 | = ‖uz‖2| 〈ζ1,Φ(z)∗ζ2〉 | = | 〈uz ⊗ ζ1, uz ⊗ Φ(z)∗ζ2〉 |.
By the formula (1.3b) just established, the right side is

| 〈uz ⊗ ζ1,Φ∗(uz ⊗ ζ2)〉 | ≤ ‖uz‖2‖ζ1‖‖ζ2‖‖Φ∗‖ ≤ ‖uz‖2‖Φ‖ = (1− |z|2)−1‖Φ‖,
from which the assertion of (1.3a) follows.

Remark. Experience with one-dimensional operator theory might lead one to ex-
pect that the inequality of (1.3.a) is actually equality. However, the failure of von
Neumann’s inequality for the ball Bd in dimension d ≥ 2 (cf. [1], Theorem 3.3)
implies that this is not so. Considering the simplest case in which both spaces
E1 = E2 = C consist of scalars, it was shown in [1] that in dimension d ≥ 2 there
are bounded holomorphic functions defined on the open unit ball which are not
associated with bounded homomorphisms of H2 into itself. Indeed, explicit exam-
ples are given of continuous functions defined on the closed unit ball f : Bd → C

which are holomorphic in the interior Bd but which do not belong to H2; for such
functions f the multiplier condition f ·H2 ⊆ H2 must fail.

We now turn attention to the proof of Theorem 1.2 and Theorem A.
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Definition 1.5: Factorable Operators. Let H be a Hilbert A-module. A positive
operator X ∈ B(H) is said to be factorable if there is a free Hilbert A-module
F = H2 ⊗ E and a bounded homomorphism L : F → H of Hilbert modules such
that X = LL∗.

Given a pair of factorable operators X1, X2, say Xk = LkL
∗
k where Lk ∈

hom(Fk, H), then we can define L ∈ hom(F1 ⊕ F2, H) by L(ξ1, ξ2) = L1ξ1 + L2ξ2
and we find that X1 +X2 = LL∗. Thus the set of factorable operators is a subcone
of the positive cone in B(H). Lemma 1.4 implies that in general, 1 − limn φ

n(1)
is factorable, and in particular for a pure Hilbert A-module 1 is factorable. We
are particularly concerned with factorable operators on free Hilbert A-modules and
require the following characterization which, among other things, implies that the
cone of factorable operators on a pure Hilbert A-module is closed in the weak
operator topology.

Proposition 1.6. Let φ(B) = T1BT
∗
1 + · · · + TdBT

∗
d be the completely positive

map of B(H) associated with a Hilbert A-module H. For every positive operator X
on H, the following are equivalent.

(1) X is factorable.
(2) φ(X) ≤ X and the sequence of positive operators X ≥ φ(X) ≥ φ2(X) ≥ . . .

decreases to 0.
For pure Hilbert modules H, (2) can be replaced with

(2)′ φ(X) ≤ X.

proof of (1) =⇒ (2). This direction is straightforward; letting L be a homomor-
phism of some free Hilbert A-module F into H, we may consider the natural opera-
tors S1, . . . , Sd of F and the associated operator map σ(B) = S1BS

∗
1 + · · ·+SdBS∗d ,

B ∈ B(F ). Then σ(1F ) is a projection, and since free modules are pure we also have
σn(1F ) ↓ 0. Thus φ(LL∗) =

∑
k TkLL

∗T ∗k =
∑
k LSkS

∗
kL
∗ = Lσ(1F )L ≤ LL∗.

Similarly, φn(LL∗) = Lσn(1F )L∗ ↓ 0, showing that X = LL∗ satisfies (2).

proof of (2) =⇒ (1). Let X ≥ 0 satisfy (2) and consider the closed subspace
K ⊆ H obtained by closing the range of the positive operator X1/2. We will make
K into a pure Hilbert A-module as follows.

We claim first that there is a unique d-contraction T̃1, . . . , T̃d acting on K such
that

TkX
1/2 = X1/2T̃k, k = 1, 2, . . . , d.

Indeed, the uniqueness of T̃1, . . . , T̃d is clear from the fact that K is the closure of
the range of X1/2, hence the restriction of X1/2 to K has trivial kernel.

In order to construct the operators T̃k it is easier to work with adjoints, and we
will define operators Ak = T̃ ∗k as follows. Fix k = 1, . . . , d and ξ ∈ F . Then

‖X1/2T ∗k ξ‖2 ≤
d∑
k=1

‖X1/2T ∗k ξ‖2 =
d∑
k=1

〈TkXT ∗k ξ, ξ〉 = 〈φ(X)ξ, ξ〉 ≤ 〈Xξ, ξ〉 ,

hence ‖X1/2T ∗k ξ‖ ≤ ‖X1/2ξ‖2. Thus there is a unique contraction Ak ∈ B(K) such
that

(1.7) AkX
1/2 = X1/2T ∗k , k = 1, . . . , d.
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As in the previous estimate,the hypothesis (2) together with (1.7) implies

d∑
k=1

‖AkX1/2ξ‖2 ≤ 〈φ(X)ξ, ξ〉 ≤ 〈Xξ, ξ〉 = ‖X1/2ξ‖2, ξ ∈ F,

and hence A∗1A1 + · · ·+A∗dAd ≤ 1K . Since the T ∗k mutually commute, (1.7) implies
that the Ak must mutually commute, and hence T̃k = A∗k, k = 1, . . . , d defines a
d-contraction acting on K.

Next, we claim that (T̃1, . . . , T̃d) is a pure d-contraction in the sense that if
φ̃ : B(K)→ B(K) is the map defined by

φ̃(A) =
d∑
k=1

T̃kAT̃
∗
k ,

then φ̃n(1K) ↓ 0 as n → ∞. Since {φ̃n(1K) : n ≥ 0} is a uniformly bounded
sequence of positive operators, the claim will follow if we show that

lim
n→∞

〈
φ̃n(1K)η, η

〉
= 0

for all η in the dense linear manifold X1/2H of K. But for η of the form η = X1/2ξ,
ξ ∈ H, we have 〈

φ̃n(1K)X1/2ξ,X1/2ξ
〉

=
〈
X1/2φ̃n(1K)X1/2ξ, ξ

〉
.

Since X1/2T̃k = TkX
1/2 for all k it follows that X1/2φ̃n(1K)X1/2 = φn(X) for

every n = 0, 1, 2, . . . , hence
〈
φ̃n(1K)X1/2ξ,X1/2ξ

〉
= 〈φn(X)ξ, ξ〉 and the right

side decreases to zero as n→∞ by hypothesis (2).
Using the operators T̃1, . . . , T̃d ∈ B(K) we make K into a pure Hilbert A-module;

moreover, if we consider X1/2 as an operator from K to H then it becomes a
homomorphism of Hilbert A-modules. By Lemma 1.4 there is a free Hilbert A-
module F and an operator L0 ∈ hom(F,K) such that

L0L
∗
0 = 1K − lim

n→∞
φ̃n(1K) = 1K .

Hence the composition L = X1/2L0 belongs to hom(F,H). Finally, since L0L
∗
0 =

1K we have
LL∗ = X1/2L0L

∗
0X

1/2 = X,

proving that X is factorable.

Lemma 1.8. let H be a (contractive) Hilbert A-module and Let L : H2⊗∆H → H
be the operator of Lemma 1.4. There is a free Hilbert A-module F and a homomor-
phism Φ ∈ hom(F,H2 ⊗∆H) such that

L∗L+ ΦΦ∗ = 1H2⊗∆H .
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proof. We have to show that the positive operator 1 − L∗L ∈ B(H2 ⊗ ∆H) is
factorable. To that end, we will show that 1−L∗L is the limit in the weak operator
topology of a sequence of positive operators Xn satisfying σ(Xn) ≤ Xn for every
n, σ denoting the completely positive operator mapping associated with H2⊗∆H.
Since the set of all positive operators X satisfying σ(X) ≤ X is weakly closed it
will follow that σ(1 − L∗L) ≤ 1 − L∗L; and since the underlying Hilbert module
H2⊗∆H is free and therefore pure, an application of Proposition 1.6 will complete
the proof.

We first create some room by noting that H2⊗∆H is a submodule of the larger
free Hilbert A-module H2⊗H, and we can extend the definition of L to the larger
module H2 ⊗H by the same formula L(f ⊗ ξ) = f∆ξ, f ∈ A, ξ ∈ H. Notice that
the extended L vanishes on the orthocomplement of H2 ⊗∆H.

Fix a real number r, 0 < r < 1. The d-tuple (rT1, . . . , rTd) is obviously a
d-contraction acting on H, and since r < 1 it is pure. Let

∆r = (1− r2(T1T
∗
1 + · · ·+ TdT

∗
d ))1/2

be the associated defect operator and let Lr : H2 ⊗H → H be the linear operator
defined as in Lemma 1.4 by

Lr(f ⊗ ξ) = f(rT1, . . . , rTd)∆rξ, f ∈ A, ξ ∈ H.

Lr is a homomorphism of H2⊗H into the Hilbert A-module structure of H defined
by (rT1, . . . , rTd), and by Lemma 1.4 Lr is a coisometry, LrL∗r = 1H . Thus Pr =
1H2⊗H − L∗rLr is the projection of H2 ⊗ H onto the kernel of Lr, an invariant
projection for the canonical operators S1, . . . , Sd of H2 ⊗ H. From the equation
PrSkPr = SkPr, k = 1, . . . , d it follows that

σ(Pr) = Prσ(Pr)Pr ≤ Prσ(1)Pr,

hence σ(Pr) ≤ Pr.
Now let Q be the projection of H2 ⊗ H onto the submodule H2 ⊗ ∆H. Since

Q commutes with S1, . . . , Sd it defines a homomorphism of the A-module H2 ⊗H
onto the A-module H2 ⊗∆H. It follows that the net of operators

Xr = QPr �H2⊗∆H∈ B(H2 ⊗∆H)

satisfies σ(Xr) ≤ Xr for every r < 1, since σ(QPrQ) = Qσ(Pr)Q ≤ QPrQ.
We claim that Xr converges weakly to 1 − L∗L as r ↑ 1. Indeed, since XrQ =

Q−QL∗rLrQ, it suffices to show that the restriction of Lr to H2 ⊗∆H converges
strongly to L. Since the operators Lr are uniformly bounded, it suffices to show
that for every polynomial f and ζ ∈ ∆H we have

(1.9) ‖Lr(f ⊗ ζ)− L(f ⊗ ζ)‖ → 0, as r ↑ 1.

Now Lr(f ⊗ ζ) = f(rT1, . . . , rTd)∆rζ. The operators ∆2
r = 1− r2(T1T

∗
2 + . . . TdT

∗
d )

decrease to ∆2 = 1− (T1T
∗
1 + · · ·+TdT

∗
d ) as r increases to 1. Since the square root

function is operator monotone on positive operators it follows that ∆r decreases
to ∆, and thus ∆r converges strongly to ∆. Since f(rT1, . . . , rTd) converges to
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f(T1, . . . , Td) in the operator norm as r ↑ 1, we conclude that f(rT1, . . . , rTd)∆rζ
converges to f(T1, . . . , Td)∆ζ and Lemma 1.8 follows.

proof of Theorem 1.2. Fix α ∈ Bd, ζ1, ζ2 ∈ ∆H. From (1.1) we can write

(1.10) 〈F (α)ζ1, ζ2〉 =
〈
(1− T (α))−1∆ζ1, (1− T (α))−1∆ζ2

〉
.

Consider the operator L : H2 ⊗∆H → H given by L(f ⊗ ζ) = f ·∆ζ. Notice that
for the element uα ∈ H2 defined by

uα(z) = (1− 〈z, α〉)−1, z ∈ Bd

we have

(1.11) L(uα ⊗ ζ) = (1− T (α))−1∆ζ.

Indeed, the sequence of polynomials fn ∈ H2 defined by

fn(z) =
n∑
k=0

〈z, α〉k

converges in the H2-norm to uα since

‖uα − fn‖2 =
∞∑

k=n+1

|α|2k → 0

as n→∞. Since

L(fn ⊗ ζ) = fn ·∆ζ =
n∑
k=0

T (α)k∆ζ,

formula (1.11) follows by taking the limit as n→∞.
From (1.11) we find that

〈F (α)ζ1, ζ2〉 = 〈L(uα ⊗ ζ1), L(uα ⊗ ζ2)〉 = 〈L∗Luα ⊗ ζ1, uα ⊗ ζ2〉 .

By Lemma 1.8 we have L∗L = 1 − ΦΦ∗, and using the formula Φ∗(uα ⊗ ζ) =
uα ⊗ Φ(α)∗ζ of (1.3b) we can write

〈F (α)ζ1, ζ2〉 = 〈(1− ΦΦ∗)uα ⊗ ζ1, uα ⊗ ζ2〉
= 〈uα ⊗ ζ1, uα ⊗ ζ2〉 − 〈uα ⊗ Φ(α)∗ζ1, uα ⊗ Φ(α)∗ζ2〉
= ‖uα‖2(〈ζ1, ζ2〉 − 〈Φ(α)∗ζ1,Φ(α)∗ζ2〉)
= (1− |α|2)−1 〈(1− Φ(α)Φ(α)∗ζ1, ζ2〉 .

Theorem 1.2 follows after multiplying through by 1− |α|2.
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Theorem A. Let H be a Hilbert A-module of finite positive rank, let F : Bd →
B(∆H) be the operator function defined by (1.1), and let σ denote normalized mea-
sure on the sphere ∂Bd. Then for σ-almost every z ∈ ∂Bd, the limit

K0(z) = lim
r↑1

(1− r2)traceF (r · z)

exists and satisfies
0 ≤ K0(z) ≤ rankH.

proof. By Theorem 1.2, there is a separable Hilbert space E and a homomorphism
of free Hilbert A-modules Φ : H2 ⊗ E → H2 ⊗ ∆H, ‖Φ‖ ≤ 1, whose associated
multiplier z ∈ Bd 7→ Φ(z) ∈ B(E,∆H) satisfies

(1− r2)F (rz) = 1− Φ(rz)Φ(rz)∗, z ∈ ∂Bd, 0 < r < 1.

Since Φ(·) is a bounded holomorphic operator-valued function defined in the
open unit ball Bd it has a radial limit function

(1.12) lim
r→1
‖Φ(rz)− Φ̃(z)‖ = 0.

almost everywhere dσ(z) on the boundary ∂Bd relative to the operator norm. This
can be seen as follows. Since ∆H is finite dimensional every bounded operator
A : E → ∆H is a Hilbert-Schmidt operator, and we have

‖A‖2 ≤ traceA∗A ≤ dim ∆H · ‖A‖2.
Consider the separable Hilbert space L2(E,∆H) of all such Hilbert-Schmidt opera-
tors. We may consider Φ : z ∈ Bd 7→ Φ(z) ∈ L2(E,∆H) as a bounded vector-valued
holomorphic function. Hence there is a Borel set N ⊆ ∂Bd of σ-measure zero such
that for all z ∈ ∂Bd the limit

lim
r→1

Φ(rz) = Φ̃(z)

exists in the norm of L2(E,∆H) (for example, one verifies this by making use of
the radial maximal function (see 5.4.11 of [30])). (1.12) follows.

Thus for z ∈ ∂Bd \N we see from Theorem 1.2 that

lim
r→1
‖(1− r2)F (rz)− (1− Φ̃(z)Φ̃(z)∗)‖ = lim

r→1
‖ − Φ(rz)Φ(rz)∗ + Φ̃(z)Φ̃(z)‖ = 0,

and after applying the trace we obtain

lim
r→1

(1− r2)traceF (rz) = trace (1∆H − Φ̃(z)Φ̃(z)∗)

almost everywhere (dσ) on ∂Bd. In particular, the limit function K0(·) is expressed
in terms of Φ̃(·) almost everywhere on ∂Bd as follows

(1.13) K0(z) = trace (1∆H − Φ̃(z)Φ̃(z)∗) = rankH − trace Φ̃(z)Φ̃(z)∗.

Since ‖Φ̃(z)‖ ≤ 1 we have 0 ≤ 1∆H − Φ̃(z)Φ̃(z)∗ ≤ 1∆H and hence

0 ≤ K0(z) ≤ trace (1∆H − Φ̃(z)Φ̃(z)∗) ≤ trace 1∆H = rank(H)

for almost every z ∈ ∂Bd.

The curvature invariant of H is defined by averaging K0(·) over the sphere

(1.14) K(H) =
∫
∂Bd

K0(z) dσ(z).
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2. Extremal properties of K(H).
Let H be a contractive, finite rank Hilbert module over A = C[z1, . . . , zd], and

let
K(H) =

∫
∂Bd

K0(z) dσ(z)

be its curvature invariant. From Theorem A we have 0 ≤ K(H) ≤ rankH. In this
section we will show that the curvature invariant is sufficiently sensitive to detect
exactly when H is a free module in the following sense.

Theorem 2.1. Suppose in addition that H is pure. Then K(H) = rankH iff H
is isomorphic to the free Hilbert module H2 ⊗∆H of rank r = rankH.

We will also show that the other extreme value K(H) = 0 has the following
significance for the structure of the invariant subspaces of H2.

Theorem 2.2. Let M ⊆ H2 be a proper closed submodule of the rank-one free
Hilbert module. There exists an inner sequence for M iff K(H2/M) = 0, where
H2/M is the quotient Hilbert module.

Remark. The notion of inner sequence for an invariant subspace M ⊆ H2 will be
introduced below (see Definition 2.6 and the discussion following it).

proof of Theorem 2.1. Suppose first that H is isomorphic to a free Hilbert module
H2 ⊗ C of rank r = dimC. In this case the curvature invariant is easily computed
directly and it is found to be dimC; we include a sketch of this calculation for
completeness.

The canonical operators of H2 ⊗ C are given by Tk = Sk ⊗ 1C , k = 1, . . . , d,
where S1, . . . , Sd ∈ B(H2) is the d-shift, and the defect operator is ∆ = [1] ⊗ 1C ,
where [1] denotes the projection onto the one-dimensional subspace of H2 spanned
by the constant function 1. In particular the range of ∆ is identified with C. For
z ∈ Bd let uz be the element of H2 defined by the holomorphic function

uz(w) = (1− 〈w, z〉)−1, w ∈ Bd.

Then for z ∈ Bd we have

(1H2 −
d∑
k=1

z̄kSk)−11 = uz,

hence for ζ ∈ C,

(1H2⊗C −
d∑
k=1

z̄kTk)−1(1⊗ ζ) = uz ⊗ ζ.

Letting z ∈ Bd 7→ F (z) ∈ B(C) be the function of (1.1), it follows that

traceF (z) = ‖uz‖2 dimC = (1− |z|2)−1 dimC.

Thus (1 − |z|2)traceF (z) ≡ dimC is constant over the unit ball, hence K0(·) ≡
dimC, and finally

K(H2 ⊗ C) =
∫
∂Bd

K0(z) dσ(z) = dimC,
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as asserted.
Conversely, suppose that H is a pure Hilbert module for which K(H) = rankH.

We will show that H is isomorphic to the free Hilbert module H2 ⊗ ∆H. Let
L : H2⊗∆H → H be the dilation homomorphism of Lemma 1.4, L(f⊗ζ) = f ·∆ζ,
f ∈ A, ζ ∈ ∆H. Since H is assumed pure we see from Lemma 1.4 that L∗ is an
isometry,

LL∗ = 1H − lim
n→∞

φn(1H) = 1H

and we have to show that L is also an isometry. To that end, let Φ : F → H2⊗∆H
be the homomorphism of Lemma 1.8,

L∗L+ ΦΦ∗ = 1H2⊗∆H .

We will show that Φ = 0.
Since 0 ≤ K0(z) ≤ rankH almost everywhere dσ(z) on ∂Bd and since

K(H) =
∫
∂Bd

K0(z) dσ(z) = rankH,

we must have K0(z) = rankH = trace (1∆H) almost everywhere on ∂Bd. On the
other hand, letting Φ̃(·) : ∂Bd → B(∆H) be the boundary value function associated
with the multiplier of Φ, we see from (1.13) that

K0(z) = trace (1∆H − Φ̃(z)Φ̃(z)∗),

almost everywhere on ∂Bd. Since the trace is faithful, we conclude from

trace (1∆H − Φ̃(z)Φ̃(z)∗) = K0(z) = trace (1∆H)

that Φ̃(z) must vanish almost everywhere dσ(z) on ∂Bd. Since the multiplier of Φ is
uniquely determined by its boundary values it must vanish identically throughout
Bd, hence Φ = 0.

The curvature invariant also detects “inner sequences”. More precisely, let M ⊆
H2 be a proper closed submodule of H2 and let PM be the projection of H2 onto
M . We first point out that there is a (finite or infinite) sequence φ1, φ2, . . . of
holomorphic functions defined on Bd, which define multipliers of H2 (i.e., φk ·H2 ⊆
H2), whose associated multiplication operators Mφk

∈ B(H2) satisfy

(2.3) Mφ1M
∗
φ1

+Mφ2M
∗
φ2

+ · · · = PM .

To see this, note that if S1, . . . , Sd denotes the natural operators of H2 then we
have

(2.4) S1PMS
∗
1 + · · ·+ SdPMS

∗
d ≤ PM .

Indeed, since SkM ⊆M we must have SkPMSk ≤ PM , and since

‖S1PMS
∗
1 + · · ·+ SdPMS

∗
d‖ ≤ ‖S1S

∗
1 + · · ·+ SdS

∗
d‖ ≤ 1,



18 WILLIAM ARVESON

(2.4) follows. By Proposition 1.6 PM is factorable; i.e., there is a free Hilbert
module H2 ⊗ E and a homomorphism of Hilbert modules Φ : H2 ⊗ E → H2 such
that PM = ΦΦ∗. Let e1, e2, . . . be an orthonormal basis for E and define φk ∈ H2

by φk = Φ(1⊗ ek), k = 1, 2, . . . . Since Φ is a homomorphism of Hilbert modules of
norm at most 1 we find that the φk are in H∞ and in fact they define multipliers
of H2, φk ·H2 ⊆ H2, for which equation (2.3) holds.

For definiteness of notation, we can assume that the sequence φ1, φ2, . . . is infinite
by adding harmless zero functions if it is not.

Now let φ1, φ2, . . . be any sequence of multipliers of H2 satisfying (2.3). Notice
that

(2.5) sup
|z|<1

∞∑
n=1

|φn(z)|2 ≤ 1.

Indeed, if {uα : α ∈ Bd} denotes the family of functions in H2 defined in Remark
1.3, then vα = (1−|α|2)1/2uα is a unit vector in H2 which is an eigenvector for the
adjoint of any multiplication operator associated with a multiplier of H2; thus for
the operators Mφn we have M∗φn

vα = φn(α)vα. Using (2.3) we find that

∞∑
n=1

|φn(α)|2 =
∞∑
n=1

‖M∗φn
vα‖2 =

∞∑
n=1

〈
MφnM

∗
φn
vα, vα

〉
= 〈PMvα, vα〉 ≤ 1,

and (2.5) follows.
Therefore, the boundary functions φ̃n : ∂Bd → C defined almost everywhere by

φ̃n(z) = limr→1 φn(rz) must also satisfy (2.5)

∞∑
n=1

|φ̃n(z)|2 ≤ 1, z ∈ ∂Bd

almost everywhere with respect to the natural normalized measure σ on ∂Bd.

Definition 2.6. Let M be a closed invariant subspace of H2 and let φ1, φ2, . . . be
a finite or infinite sequence of multipliers satisfying equation (2.3). {φ1, φ2, . . . } is
called an inner sequence for M if for almost every z ∈ ∂Bd relative to the natural
measure, the boundary values {φ̃1, φ̃2, . . . } satisfy

|φ̃1(z)|2 + |φ̃2(z)|2 + · · · = 1.

We have seen above that every invariant subspace M ⊆ H2 is associated with
a sequence {φ1, φ2, . . . } which satisfies (2.3). However, we do not consider that a
satisfactory higher dimensional analogue of Beurling’s theorem because we do not
know if it is possible to find such a sequence that is also an inner sequence. It is
not hard to see that for a fixed M , if some sequence satisfying (2.3) is an inner
sequence then every such sequence is an inner sequence (the proof is omitted since
we do not require this result in the sequel).

Of course, in dimension d = 1 Beurling’s theorem implies that there is a single
multiplier φ satisfying equation (2.3), MφM

∗
φ = PM ; and since the unilateral shift

can be extended to a unitary operator (the bilateral shift) this very formula implies
that φ is inner: |φ(z)| = 1 for almost every z on the unit circle. However, in
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dimension d ≥ 2 one can no longer satisfy (2.3) with a single function, and in fact
the sequences of (2.3) are typically infinite. Moreover, the natural operators of H2

do not form a subnormal d-tuple. For these reasons, arguments that are effective
in the one-dimensional case break down in dimension d ≥ 2. Thus we do not know
if invariant subspaces of H2 are associated with inner sequences, and that is one of
the significant open problems in this theory. Theorem 2.2 shows the relevance of
the curvature invariant for this problem, and we turn now to its proof.

proof of Theorem 2.2. Let F be the direct sum of an infinite number of copies of
H2 and define Φ ∈ hom(F,H2) by

Φ(f1, f2, . . . ) =
∞∑
n=1

φn · fn.

Then ΦΦ∗ = PM . Letting L : H2 → H2/M be the natural projection of H2

onto the quotient Hilbert module, then L is a homomorphism of Hilbert modules
satisfying LL∗ = 1H2/M , and the kernel of L is 1H2 − PM . Indeed L defines the
natural dilation of H2/M as in Lemma 1.4, and it is clear from its construction
that Φ satisfies the formula of Lemma 1.8

L∗L+ ΦΦ∗ = 1H2 .

Writing

K(H2/M) =
∫
∂Bd

K0(z) dσ(z),

we see from formula (1.13) that in this case

K0(z) = 1− Φ̃(z)Φ̃(z)∗ = 1−
∞∑
n=1

|φ̃n(z)|2,

and therefore K(H2/M) = 0 iff
∑
n |φ̃n(z)|2 = 1 almost everywhere on ∂Bd.

In Theorem E of section 7 we will combine Theorem 2.2 with later results to
establish the existence of inner sequences in many cases. The general problem
remains open, and is discussed in section 7.

3. Asymptotics of K(H): curvature operator, stability.
Let us recall a convenient description of the Gaussian curvature of a compact

oriented Riemannian 2-manifold M . It is not necessary to do so, but for simplicity
we will assume that M ⊆ R

3 can be embedded in R
3 in such a way that it inherits

the usual metric structure of R
3. After choosing one of the two orientations of

M (as a nondegenerate 2-form) we normalize it in the obvious way to obtain a
continuous field of unit normal vectors at every point of M .

For every point p of M one can translate the normal vector at p to the origin of
R

3 (without changing its direction), and the endpoint of that translated vector is
a point γ(p) on the unit sphere S2. This defines the Gauss map

(3.1) γ : M → S2



20 WILLIAM ARVESON

of M to the sphere. Now fix p ∈M . The tangent plane TpM is obviously parallel to
the corresponding tangent plane Tγ(p)S

2 of the sphere (they have the same normal
vector) and hence both are cosets of the same 2-dimensional subspace V ⊆ R

3:

TpM = p+ V, Tγ(p)S
2 = γ(p) + V.

Thus the differential dγ(p) defines a linear operator on the two-dimensional vector
space V , and the Gaussian curvature K(p) of M at p is defined as the determinant of
this operator K(p) = det dγ(p). K(p) does not depend on the choice of orientation.
The Gauss-Bonnet theorem asserts that the average value of K(·) is the alternating
sum of the Betti numbers of M

1
2π

∫
M

K(p) = β0 − β1 + β2.

In this section we define a curvature operator associated with any finite rank
Hilbert A-module H. This operator can be thought of as a quantized (higher-
dimensional) analogue of the differential of the Gauss map γ : M → S2. We show
that it belongs to the trace class, that its trace agrees with the curvature invariant
K(H) of section 1, and in Theorem C below we establish a key asymptotic formula
for K(H).

Let H be a finite rank contractive A-module and let L : H2 ⊗ ∆H → H be
the dilation map of Lemma 1.4. Along with the free Hilbert module H2 ⊗ ∆H
we must also work with the subnormal Hardy module H2(∂Bd) ⊗∆H, defined as
the closure in the norm of L2(∂Bd) ⊗ ∆H of the space of restrictions to ∂Bd of
all holomorphic polynomials f : C

d → ∆H. There is a natural way of extending
functions in H2(∂Bd) ⊗ ∆H holomorphically to the interior of the unit ball Bd
[30]. Theorem 4.3 of [1] implies that these two spaces of ∆H-valued holomorphic
functions on Bd are related as follows

(3.2) H2 ⊗∆H ⊆ H2(∂Bd)⊗∆H.

The inclusion map (3.2) is an isometry in dimension d = 1, and is a compact
operator of norm 1 when d ≥ 2. Significantly, it is never a Hilbert-Schmidt operator
(see Remark 3.9 below).

The Hilbert module structure of H2(∂Bd)⊗∆H is defined by the natural mul-
tiplication operators Z1, . . . , Zd,

Zk : f(z1, . . . , zd) 7→ zkf(z1, . . . , zd), k = 1, 2, . . . , d.

By way of contrast with the d-shift, Z1, . . . , Zd is a subnormal d-contraction satis-
fying

Z∗1Z1 + · · ·+ Z∗dZd = 1, Z1Z
∗
1 + · · ·+ ZdZ

∗
d = 1− Ẽ0,

Ẽ0 denoting the rankH-dimensional projection onto the constant ∆H-valued func-
tions in H2(∂Bd)⊗∆H.

Let b : H2⊗∆H → H2(∂Bd)⊗∆H denote the inclusion map of (3.2). We define
a linear map Γ : B(H2 ⊗∆H)→ B(H2(∂Bd)⊗∆H) as follows

(3.3) Γ(X) = bXb∗.
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Remark 3.4. We first record some simple observations about the operator mapping
Γ. It is obvious that Γ is a normal completely positive linear map. Γ is also an
order isomorphism because b is injective. Indeed, if Γ(X) ≥ 0 then 〈Xξ, ξ〉 ≥ 0
for every ξ in the range b∗(H2(∂Bd) ⊗ ∆H), and b∗(H2(∂Bd) ⊗ ∆H) is dense in
H2 ⊗∆H because b has trivial kernel. A similar argument shows that Γ is in fact
a complete order isomorphism. However, in dimension d ≥ 2 the range of Γ is a
linear space of compact operators which is norm-dense in K(H2(∂Bd)⊗∆H).

The operator mapping of central importance for defining the curvature operator
is not Γ but rather its “differential”, defined as follows for arbitrary finite rank
contractive Hilbert A-modules H.

Definition 3.5. Let Z1, . . . , Zd be the canonical operators of the Hardy module
H2(∂Bd)⊗∆H. The linear map dΓ : B(H2⊗∆H)→ B(H2(∂Bd)⊗∆H) is defined
as follows

dΓ(X) = Γ(X)−
d∑
k=1

ZkΓ(X)Z∗k .

The curvature operator of H is defined as the self-adjoint operator

dΓ(L∗L) ∈ B(H2(∂Bd)⊗∆H),

where L : H2 ⊗∆H → H is the dilation map L(f ⊗ ζ) = f ·∆ζ, f ∈ H2, ζ ∈ ∆H.

Remarks. Notice that L∗L is a positive operator on H2 ⊗ ∆H, that Γ(L∗L) is
a positive compact operator on the Hardy module H2(∂Bd) ⊗ ∆H (at least in
dimension d ≥ 2), and that the curvature operator dΓ(L∗L) is a self-adjoint compact
operator which is neither positive nor negative.

We have found it useful to think of the operator Γ(L∗L) as a higher-dimensional
“quantized” analogue of the Gauss map γ : M → S2 of (3.1), and of the curvature
operator dΓ(L∗L) as its “differential”. Of course, this is only an analogy. But we
will also find that dΓ(L∗L) belongs to the trace class, and

trace dΓ(L∗L) = K(H).

We have already suggested an analogy between the term K(H) on the right and
the average Gaussian curvature of, say, a surface

1
2π

∫
M

K =
1

2π

∫
M

det dγ(p).

On the other hand, K(H) is defined in section 1 as the integral of the trace (not
the determinant) of an operator-valued function, and thus these analogies must not
be carried to extremes.

We also remark that the curvature operator can be defined in somewhat more
concrete terms as follows. Let T (z) denote the operator function of z ∈ C

d defined
in (0.2). T (z) is invertible for |z| < 1, and hence every vector ξ ∈ H gives rise to a
vector-valued holomorphic function ξ̂ : Bd → ∆H defined on the ball by way of

ξ̂(z) = ∆(1− T (z)∗)−1ξ, z ∈ Bd.

It is a fact that the function ξ̂ belongs to the Hardy module H2(∂F ) ⊗ ∆H, and
thus we have defined a linear mapping B : ξ ∈ H 7→ ξ̂ ∈ H2(∂F )⊗∆H. Indeed, the
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reader can verify that B is related to b and L by B = bL∗, and hence the curvature
operator of Definition 3.5 is given by

dΓ(L∗L) = BB∗ −
d∑
k=1

ZkBB
∗Z∗k .

We will not require this formula nor the operator B in what follows.
We take this opportunity to introduce a sequence of polynomials that will be used

repeatedly in the sequel. Let q0, q1, · · · ∈ Q[x] be the sequence of polynomials which
are normalized so that qk(0) = 1, and which are defined recursively by q0(x) = 1
and

(3.6) qk(x)− qk(x− 1) = qk−1(x), k ≥ 1.

One finds that for k ≥ 1,

(3.7) qk(x) =
(x+ 1)(x+ 2) . . . (x+ k)

k!
.

When x = n is a positive integer, qk(n) is the binomial coefficient
(
n+k
k

)
, and more

generally qk(Z) ⊆ Z, k = 0, 1, 2, . . . .
We now work out the basic properties of the operator mapping

dΓ : B(H2 ⊗∆H)→ B(H2(∂Bd)⊗∆H).

The essential properties of the inclusion map b : H2 ⊗ ∆H → H2(∂Bd) ⊗ ∆H
are summarized as follows. We will write En, n = 0, 1, 2, . . . for the projection of
H2 ⊗∆H onto its subspace of homogeneous (vector-valued) polynomials of degree
n, and we have

traceEn = dim{f ∈ H2 : f(λz) = λnf(z), λ ∈ C, z ∈ C
d} · dim ∆H

= qd−1(n) · rankH,

(see Appendix A of [1]).
Let Ẽn be the corresponding sequence of projections acting on the Hardy module

H2(∂Bd)⊗∆H. We will also write N and Ñ for the respective number operators
on H2 ⊗∆H and H2(∂Bd)⊗∆H,

N =
∞∑
n=0

nEn, Ñ =
∞∑
n=0

nẼn.

Proposition 3.8. Let b : H2 ⊗ ∆H → H2(∂Bd) ⊗ ∆H be the natural inclusion.
Then

(1) bEn = Ẽnb, n = 0, 1, 2, . . . .
(2) b ∈ hom(H2 ⊗∆H,H2(∂Bd)⊗∆H).
(3) b∗b = qd−1(N)−1 =

∑∞
n=0

1
qd−1(n)En.
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proof. Properties (1) and (2) are immediate from the definition of b. Property
(3) follows from a direct comparison of the norms in H2 and the Hardy module
H2(∂Bd). Indeed, if f, g ∈ H2 are both homogeneous polynomials of degree n of
the specific form

f(z) = 〈z, α〉n , g(z) = 〈z, β〉n , α, β ∈ C
d,

then 〈f, g〉H2 = 〈β, α〉n, whereas if we consider f, g as elements of H2(∂Bd) then
we have

〈bf, bg〉 = 〈f, g〉H2(∂Bd) = qd−1(n)−1 〈β, α〉n ,

see Proposition 1.4.9 of [30]. Since EnH2 is spanned by such f, g we find that for
all f, g ∈ EnH2,

〈bf, bg〉 = qd−1(n)−1 〈f, g〉H2 .

Thus
Enb

∗bEn = qd−1(n)−1En = qd−1(N)−1En,

and (3) follows for the one-dimensional case ∆H = C because b∗b commutes with
En and

∑
nEn = 1.

If we now tensor both H2 and H2(∂Bd) with the finite dimensional space ∆H
then we obtain (3) in general after noting that dim(K1 ⊗K2) = dimK1 · dimK2

for finite dimensional vector spaces K1,K2.

Remark 3.9. In the one-variable case d = 1, qd−1(x) is the constant polynomial 1,
and hence 3.8 (3) asserts the familiar fact that b is a unitary operator; i.e., there is
no difference between H2 and the Hardy module H2(S1) in dimension 1.

In dimension d ≥ 2 however, qd−1(x) is a polynomial of degree d− 1 and hence

b∗b = qd−1(N)−1

is a positive compact operator. Significantly, the operator b∗b is never trace class.
Indeed, the computations of Appendix A of [1] imply that b∗b ∈ Lp iff p > d

d−1 > 1.
We need to know which operators X ∈ B(H2 ⊗ ∆H) have trace-class “differ-

entials” dΓ(X) and the following result provides this information, including an
asymptotic formula for the trace of dΓ(X).

Theorem 3.10. For every operator X in the complex linear span of the cone

C = {X ∈ B(H2 ⊗∆H) : dΓ(X) ≥ 0},

dΓ(X) is a trace-class operator and

trace dΓ(X) = rankH · lim
n→∞

trace (XEn)
traceEn

,

where E0, E1, . . . is the sequence of spectral projections of the number operator of
H2 ⊗∆H.

Theorem 3.10 depends on a general identity, which we establish first.
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Lemma 3.11. For every X ∈ B(H2 ⊗∆H) and n = 0, 1, 2, . . . we have

trace (dΓ(X)P̃n) = rankH · trace (XEn)
traceEn

,

where P̃n = Ẽ0 + Ẽ1 + · · ·+ Ẽn, {Ẽn} being the spectral projections of the number
operator of the Hardy module H2(∂Bd)⊗∆H.

Remark. Notice that all of the operators En,XEn, dΓ(X)P̃n appearing in Lemma
3.11 are of finite rank. Note too that traces on the right refer to the Hilbert space
H2 ⊗∆H, while the trace on the left refers to the Hilbert space H2(∂Bd)⊗∆H.

proof of Lemma 3.11. Let Ėn be the projection of H2 onto its space of homogeneous
polynomials of degree n. Then En = Ėn ⊗ 1∆H , and hence

traceEn = trace Ėn · dim ∆H = qd−1(n) · rankH,

for all n = 0, 1, . . . where qd−1(x) is the polynomial of (3.6) (see Appendix A of
[1]). Thus we have to show that

(3.12) trace (dΓ(X)P̃n) =
trace (XEn)
qd−1(n)

, n = 0, 1, . . . .

For that, fix n. Let Tk = Sk ⊗ 1∆H , k = 1, . . . , d be the canonical operators of
the free module H2⊗∆H and let φ(X) = T1XT

∗
1 + · · ·+TdXT

∗
d be the associated

completely positive operator mapping. We can write

X − φn+1(X) =
n∑
k=0

φk(X − φ(X))

and, since the range of the operator φn+1(X) is contained in the orthocomplement
of the space of homogeneous polynomials of degree n, we have φn+1(X)En = 0.
Thus

XEn =
n∑
k=0

φk(X − φ(X))En

and taking the trace we obtain

trace (XEn) =
n∑
k=0

trace (φk(X − φ(X))En) = trace ((X − φ(X))
n∑
k=0

φk∗(En))

where φ∗ is the pre-adjoint of φ, defined on trace class operators B by

φ∗(B) =
d∑
k=1

T ∗kBTk.

Let Pn = E0 + E1 + · · ·+ En. We now establish the critical formula

(3.13)
n∑
k=0

φk∗(En) = qd−1(n)qd−1(N)−1Pn.
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Indeed, the relation TkEl = El+1Tk, k = 1, . . . , d implies that for all 0 ≤ k ≤ n and
all i1, . . . , ik ∈ {1, 2, . . . , d} we have

T ∗i1 . . . T
∗
ik
En = En−kT

∗
i1 . . . T

∗
ik
.

Hence
φk∗(En) = En−kφ

k
∗(1).

Now the operators φk∗(1) were explicitly computed in Limma 7.9 of [1] for the
rank-one case F = H2, and it was found that

(3.14) φk∗(1H2) =
∞∑
p=0

gk(p)Ėp,

where gk(x) is the rational function

gk(x) =
(x+ k + 1)(x+ k + 2) . . . (x+ k + d− 1)

(x+ 1)(x+ 2) . . . (x+ d− 1)
,

if d ≥ 2 and gk(x) = 1 if d = 1. Thus in all cases we have

gk(x) =
qd−1(x+ k)
qd−1(x)

and hence (3.14) becomes

φk∗(1H2) =
∞∑
p=0

qd−1(k + p)
qd−1(p)

Ėp.

The result is obtained for H2 ⊗ ∆H by replacing 1H2 with 1H2 ⊗ 1∆H , and by
replacing Ėp with Ep = Ėp ⊗ 1∆H . We conclude that

φk∗(1F ) =
∞∑
p=0

qd−1(k + p)
qd−1(p)

Ep.

Thus

En−kφ
k
∗(1F ) =

qd−1(n)
qd−1(n− k)

En−k,

and we find that

n∑
k=0

En−kφ
k
∗(1F ) = qd−1(n)

n∑
k=0

1
qd−1(n− k)

En−k

= qd−1(n)
n∑
l=0

1
qd−1(l)

El = qd−1(n)qd−1(N)−1Pn,

where Pn = E0 + E1 + · · ·+ En as asserted in (3.13).
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Now from Proposition 3.8 (3) we have qd−1(N)−1 = b∗b, and 3.8 (1) implies that
b∗bPn = b∗P̃nb. Thus we conclude from (3.13) that

trace (XEn) = qd−1(n) · trace ((X − φ(X))b∗bPn)(3.15)

= qd−1(n) · trace ((X − φ(X))b∗P̃nb)

= qd−1(n) · trace (b(X − φ(X))b∗P̃n).

Finally, writing ψ(B) = Z1BZ
∗
1 + · · ·+ ZdBZ

∗
d for the natural completely positive

map of B(H2(∂Bd)⊗∆H) associated with its A-module structure we have

b(X − φ(X))b∗ = bXb∗ − bφ(X)b∗ = bXb∗ − ψ(bXb∗)

= Γ(X)− ψ(Γ(X)) = dΓ(X).

Thus (3.15) becomes

trace (XEn) = qd−1(n) · trace (dΓ(X)P̃n),

and (3.12) follows.

proof of Theorem 3.10. It suffices to show that for any operator X in B(H2⊗∆H)
for which dΓ(X) ≥ 0, we must have trace dΓ(X) <∞ as well as the limit formula
of 3.10. From Lemma 3.11 we have

(3.16) trace (dΓ(X)P̃n) = rankH · trace (XEn)
traceEn

, n = 0, 1, 2, . . . .

We claim first that X ≥ 0. To see that, let T1, . . . , Td and Z1, . . . , Zd be the
canonical operators of H2 ⊗ ∆H and H2(∂Bd) ⊗ ∆H respectively, and note that
by Proposition 3.7 we have bTk = Zkb, k = 1, . . . , d. Hence

0 ≤ dΓ(X) = bXb∗−
d∑
k=1

ZkbXb
∗Z∗k = bXb∗−b(

d∑
k=1

TkXT
∗
k )b∗ = Γ(X−

d∑
k=1

TkXT
∗
k ).

Since Γ is an order isomorphism the latter implies X −
∑
k TkXT

∗
k ≥ 0, or

(3.17) X − φ(X) ≥ 0,

φ being the completely positive map of B(H2⊗∆H), φ(A) = T1AT
∗
1 + · · ·+TdAT

∗
d .

Free Hilbert A-modules are pure, hence φn(1H2⊗∆H) ↓ 0 as n → ∞. It follows
that for every positive operator A ∈ B(F ) we have 0 ≤ φn(A) ≤ ‖A‖φn(1), and
hence φn(A) → 0 in the strong operator topology, as n → ∞. By taking linear
combinations we find that limn→∞ φn(A) = 0 in the strong operator topology for
every A ∈ B(H2 ⊗∆H).

Returning now to equation (3.17) we find that

X − φn+1(X) =
n∑
k=1

φk(X − φ(X)) ≥ 0
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for every n = 1, 2, . . . and since φn+1(X) must tend strongly to 0 by the preceding
paragraph, we conclude that X ≥ 0 by taking the limit on n.

Since X is a positive operator and ρn(A) = trace (AEn)/traceEn is a state of
B(H2 ⊗∆H) we have

0 ≤ trace (XEn)
traceEn

≤ ‖X‖

for every n. Since the projections P̃n increase to 1∂F with increasing n we conclude
from (3.16) that

trace (dΓ(X)) = sup
n≥0

trace (dΓ(X)P̃n) ≤ rankH · ‖X‖ <∞.

Moreover, since in this case

trace (dΓ(X)) = lim
n→∞

trace (dΓ(X)P̃n),

we may infer the limit formula of Theorem 3.9 directly from (3.16) as well.

In view of Theorem 3.9 and the fact that for every factorable operator X on
H2 ⊗ ∆H we have dΓ(X) ≥ 0 (see Proposition 1.6), the following lemma shows
how to compute the trace of dΓ(X) in the most important cases.

Lemma 3.18. Let F = H2 ⊗ E be a free Hilbert A-module, and let Φ : F →
H2 ⊗∆H be a homomrphism of Hilbert A-modules. Considering Φ as a multiplier
z ∈ Bd 7→ Φ(z) ∈ B(E,∆H) with boundary value function Φ̃ : ∂Bd → B(E,∆H)
we have

trace dΓ(ΦΦ∗) =
∫
∂Bd

trace (Φ̃(z)Φ̃(z)∗) dσ(z).

Remark. Note that for σ-almost every z ∈ ∂Bd, Φ̃(z)Φ̃(z)∗ is a positive operator
in B(∆H), and since ∆H is finite dimensional the right side is well defined and
dominated by ‖Φ‖2 · rankH.

proof of Lemma 3.18. Consider the linear operator A : E → H2(Bd; ∆H) defined
by Aζ = b(Φ(1⊗ ζ)), ζ ∈ E. We claim first that

(3.19) dΓ(ΦΦ∗) = AA∗.

Indeed, since bΦ ∈ hom(F,H2(∂Bd)⊗∆H) we have

d∑
k=1

ZkbΦΦ∗b∗Z∗k =
d∑
k=1

Zk(bΦ)(bΦ)∗Z∗k = bΦ(
d∑
k=1

TkT
∗
k )(bΦ)∗,

where T1, . . . , Td are the canonical operators of F = H2 ⊗ E, and hence

dΓ(ΦΦ∗) = bΦ(bΦ)∗ −
d∑
k=1

ZkbΦΦ∗b∗Z∗k = bΦ(1F −
d∑
k=1

TkT
∗
k )(bΦ)∗.
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The operator 1F −
∑
k TkT

∗
k is the projection of F = H2 ⊗ E onto its space of

E-valued constant functions and, denoting by [1] the projection of H2 onto the one
dimensional space of constants C · 1, the preceding formula becomes

dΓ(ΦΦ∗) = bΦ([1]⊗ 1E)(bΦ)∗ = AA∗,

as asserted in (3.19).
Now fix an orthonormal basis e1, e2, . . . for E. By formula (3.19) we can evaluate

the trace of dΓ(ΦΦ∗) in terms of the vector functions Aen ∈ H2(∂Bd) ⊗ ∆H as
follows,

trace dΓ(ΦΦ∗) = traceH2(∂Bd)⊗∆H(AA∗) = traceE(A∗A)(3.20)

=
∑
n

〈A∗Aen, en〉 =
∑
n

‖Aen‖2H2(∂Bd)⊗∆H .

Turning now to the term on the right in Lemma 3.18, we first consider Aen =
b(Φ(1⊗ en)) as a function from the open ball Bd to ∆H. In terms of the multiplier
Φ(·) of Φ we have

Aen(z) = bΦ(1⊗ en)(z) = Φ(z)en

and hence the boundary values Ãen of Aen are given by Ãen(z) = Φ̃(z)en for
σ-almost every z ∈ ∂Bd. Thus for such z ∈ ∂Bd we have

trace ∆H(Φ̃(z)Φ̃(z)∗) = traceE(Φ̃(z)∗Φ̃(z)) =
∑
n

‖Φ̃(z)en‖2 =
∑
n

‖Ãen(z)‖2.

Integrating the latter over the sphere we obtain∫
∂Bd

trace ∆H(Φ̃(z)Φ̃(z)∗) dσ =
∑
n

∫
∂Bd

‖Ãen(z)‖2 dσ(z) =
∑
n

‖Ãen‖2H2(∂Bd)⊗∆H

and from (3.20) we see that this coincides with trace dΓ(ΦΦ∗).

We now establish the required asymptotic formula for K(H).

Theorem C. For every finite rank Hilbert A-module H, the curvature operator
dΓ(L∗L) belongs to the trace class L1(H2(∂Bd)⊗∆H), and we have

K(H) = trace dΓ(L∗L) = d! lim
n→∞

trace (1− φn+1(1))
nd

where φ : B(H) → B(H) is the canonical completely positive map associated with
the A-module structure of H.

Let ∆ = (1 − φ(1))1/2. We will actually prove a slightly stronger assertion,
namely

(3.21) K(H) = trace dΓ(L∗L) = (d− 1)! lim
n→∞

trace (φn(∆2))
nd−1

.
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We first point out that it suffices to prove (3.21). For that, let ak = traceφk(∆2),
k = 0, 1, 2, . . . . Since

1− φn+1(1) =
n∑
k=0

φk(1− φ(1)) =
n∑
k=0

φk(∆2)

and since for every r = 1, 2, . . . the polynomial qr of (3.7) obeys

qr(n) =
(n+ 1) . . . (n+ r)

r!
∼ nr

r!
,

we have

d!
trace (1− φn+1(1))

nd
∼ trace (1− φn+1(1))

qd(n)
=
a0 + a1 + · · ·+ an

qd(n)

while

(d− 1)!
traceφn(∆2)

nd−1
∼ traceφn(∆2)

qd−1(n)
=

an
qd−1(n)

Thus the following elementary lemma allows one to deduce Theorem C from (3.21).

Lemma 3.22. Let d = 1, 2, . . . and let a0, a1, . . . be a sequence of real numbers
such that

lim
n→∞

an
qd−1(n)

= L ∈ R.

Then
lim
n→∞

a0 + a1 + · · ·+ an
qd(n)

= L.

proof of Lemma 3.22. Choose ε > 0. By hypothesis, there is an n0 ∈ N such that

(3.23) (L− ε)qd−1(k) ≤ ak ≤ (L+ ε)qd−1(k), k ≥ n0.

By the recursion formula (3.6) we have

n∑
k=n0

qd−1(k) =
n∑

k=n0

(qd(k)− qd(k − 1)) = qd(n)− qd(n0 − 1).

Thus if we sum (3.23) from n0 to n and divide through by qd(n) we obtain

(L− ε)(1− qd(n0 − 1)
qd(n)

) ≤ an0 + · · ·+ an
qd(n)

≤ (L+ ε)(1− qd(n0 − 1)
qd(n)

).

Since qd(n)→∞ as n→∞, the latter inequality implies

L− ε ≤ lim inf
n→∞

a0 + · · ·+ an
qd(n)

≤ lim sup
n→∞

a0 + · · ·+ an
qd(n)

≤ L+ ε,

and since ε is arbitrary, Lemma 3.23 follows.
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proof of Theorem C. Let L : H2⊗∆H → H be the dilation map L(f ⊗ ζ) = f ·∆ζ,
f ∈ H2, ζ ∈ ∆H. We claim that for every n = 0, 1, . . .

(3.24) traceφn(∆2) = trace (L∗LEn),

En ∈ B(H2⊗∆H) being the projection onto the space of homogeneous polynomials
of degree n. Indeed, from Lemma 1.4 we have

LL∗ = 1− lim
n→∞

φn(1) = 1− φ∞(1),

and since φ(φ∞(1)) = φ∞(1) we can write

∆2 = 1− φ(1) = (1− φ∞(1))− φ(1− φ∞(1)) = LL∗ − φ(LL∗).

Thus

(3.25) φn(∆2) = φn(LL∗)− φn+1(LL∗).

Consider the free Hilbert module F = H2 ⊗∆H and its associated completely
positive map φF : B(F )→ B(F ). Since L ∈ hom(F,H) we have

φk(LL∗) = LφkF (1F )L∗

for every k = 0, 1, . . . . Moreover,

φnF (1F )− φn+1
F (1F ) = φnF (1F − φF (1F )) = φnF (E0) = En,

so that (3.25) implies
φn(∆2) = LEnL

∗.

The formula (3.24) follows immediately since

traceH(LEnL∗) = trace F (L∗LEn).

By Lemma 1.8 there is a free module F̃ and Φ ∈ hom(F̃ , F ) such that

L∗L = 1F − ΦΦ∗.

Since both dΓ(1F ) and dΓ(ΦΦ∗) are positive operators by Proposition 1.6 (indeed
dΓ(1F ) is the projection of H2(∂Bd)⊗∆H onto its subspace of constant functions),
it follows from Theorem 3.9 that the curvature operator dΓ(L∗L) is trace class and,
in view of (3.24), satisfies

(3.26) trace dΓ(L∗L) = lim
n→∞

trace (L∗LEn)
qd−1(n)

= lim
n→∞

traceφn(∆2)
qd−1(n)

.

Finally, we use Lemma 3.18 together with L∗L = 1F − ΦΦ∗ to evaluate the left
side of (3.26) and we find that

trace dΓ(L∗L) =
∫
∂Bd

trace (1∆H − Φ̃(z)Φ̃(z)∗) dσ(z).
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Formula (1.13) shows that the term on the right is K(H).

Remark 3.27. Closed submodules of finite-rank Hilbert A-modules need not have
finite rank (see section 7, Corollary of Theorem F). However, if H0 is a submodule
of a finite rank Hilbert module H which is of finite codimension in H, then H0 is
of finite rank. Indeed, if P0 is the projection of H onto H0, then

rank(H0) = rank(1H0 − φH0(1H0)) = rank(P0 − φH(P0)).

Since P0 − φH(P0) = (1H − φH(1H))− P⊥0 + φH(P⊥0 ), we have

rank(H0) ≤ rank(H) + rank(P⊥0 ) + rank(φH(P⊥0 )) <∞.

On the other hand, given a submodule H0 ⊆ H with dim(H/H0) < ∞, the
defect operator ∆0 of H0 is not conveniently related to the defect operator ∆ of
H and thus there is no obvious way of relating K(H0) to K(H). Nevertheless,
Theorem C implies the following.

Corollary 1: stability of Curvature. Let H be a finite rank contractive Hilbert
A-module and let H0 be a closed submodule such that dim(H/H0) < ∞. Then
K(H0) = K(H). In particular, K(F ) = 0 for any finite dimensional Hilbert A-
module F , and for any H as above we have

K(H ⊕ F ) = K(H).

proof. By estimating as in Remark 3.27 we have

trace (1H0 − φn+1
H0

(1H0)) ≤trace (1H − φn+1
H (1H))+

traceP⊥0 + trace (φn+1
H (P⊥0 )),

P0 denoting the projection of H on H0. Similarly,

trace (1H − φn+1
H (1H)) ≤trace (1H0 − φn+1

H0
(1H0))+

traceP⊥0 + trace (φn+1
H (P⊥0 )),

Thus we have the inequality
(3.28)
|trace (1H −φn+1

H (1H))− trace (1H0 −φn+1
H0

(1H0))| ≤ traceP⊥0 + trace (φn+1
H (P⊥0 )).

One estimates the right side as follows. Note that

〈
φn+1(P⊥0 )ξ, ξ

〉
=

d∑
i1,...,in+1=1

〈
P⊥0 T

∗
in+1

. . . T ∗1 ξ, T
∗
in+1

. . . T ∗1 ξ
〉

vanishes iff ξ belongs to the kernel of every operator of the form P⊥0 f(T1, . . . , Td)∗

where f ∈ En+1H
2 is a homogeneous polynomial of degree n + 1. Hence the

range of the positive finite rank operator φn+1(P⊥0 ) is the orthocomplement of all



32 WILLIAM ARVESON

such vectors ξ, and is therefore spanned linearly by the ranges of all operators
f(T1, . . . , Td)P⊥0 , f ∈ En+1H

2, i.e.,

span{f · ζ : f ∈ En+1H
2, ζ ∈ P⊥0 H}.

It follows that

trace (φn+1(P⊥0 )) ≤ dim(En+1H
2) · traceP⊥0 = qd−1(n+ 1)traceP⊥0 .

Thus (3.28) implies that

|
trace (1H − φn+1

H (1H))
nd

−
trace (1H0 − φn+1

H0
(1H0))

nd
|

is at most

trace (P⊥0 )
1 + qd−1(n+ 1)

nd
.

Since qd−1(x) is a polynomial of degree d − 1, the latter tends to zero as n → ∞,
and the conclusion |K(H)−K(H0)| = 0 follows from Theorem C after taking the
limit on n.

We also point out the following application to invariant subspaces of the d-
shift S1, . . . , Sd acting on H2. In dimension d = 1 the invariant subspaces of the
simple unilateral shift define submodules which are isomorphic to H2 itself, and in
particular they all have rank one. In higher dimensions, on the other hand, we can
never have that behavior for submodules of finite codimension.

Corollary 2. Suppose that d ≥ 2, and let M be a proper closed submodule of H2

of finite codimension. Then rank (M) > 1.

proof. Since H2 is a free Hilbert A-module of rank 1 we have K(H2) = 1 (this
computation was done in the proof of Theorem 2.1). By Corollary 1 above we must
have K(M) = 1 as well. By Lemma 7.14 of [1], no proper submodule of H2 can
be a free Hilbert module in dimension d > 1, hence the first extremal property of
K(M) (Theorem 2.1) implies that we must have rank(M) > K(M) = 1.

Remark. Of course, the ranks of finite codimensional submodules of H2 must be
finite by Remark 3.27, and they can be arbitrarily large.

4. Euler characteristic: asymptotics of χ(H), stability.
Throughout this section, H will denote a finite rank Hilbert A-module. We will

work not with H itself but with the following linear submanifold of H

MH = span{f ·∆ξ : f ∈ A, ξ ∈ H}.

The definition and basic properties of the Euler characteristic are independent of
any topology associated with the Hilbert space H, and depend solely on the linear
algebra of MH . As we have pointed out in the introduction, MH is a finitely gener-
ated A-module, and has finite free resolutions in the category of finitely generated
A-modules

0 −→ Fn −→ · · · −→ F2 −→ F1 −→MH −→ 0,
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each Fk being a sum of βk copies of the rank-one module A. The alternating sum
of the ranks β1 − β2 + β3 −+ . . . does not depend on the particular free resolution
of MH , and we define the Euler characteristic of H by

(4.1) χ(H) =
n∑
k=1

(−1)k+1βk.

The main result of this section is an asymptotic formula (Theorem D) which ex-
presses χ(H) in terms of the sequence of defect operators 1−φn+1(1), n = 1, 2, . . . ,
where φ is the completely positive map on B(H) associated with the canonical
operators T1, . . . , Td of H,

φ(A) = T1AT
∗
1 + · · ·+ TdAT

∗
d .

The Hilbert polynomial is an invariant associated with finitely generated graded
modules over polynomial rings k[x1, . . . , xd], k being an arbitrary field. We require
something related to the Hilbert polynomial, which exists in greater generality than
the former, but whose existence can be deduced rather easily from Hilbert’s original
work [18], [19]. While this polynomial is quite fundamental (indeed, its existence
might be described as the fundamental result of multivariable linear algebra), it is
less familiar to analysts than it is to algebraists.

We define this polynomial in a way suited to our needs, and in particular we will
make use of the sequence of polynomials q0, q1, · · · ∈ Q[x] of (3.6) and (3.7).

Theorem 4.2. Let V be a vector space over a field k, let T1, . . . , Td be a commuting
set of linear operators on V , and make V into a k[x1, . . . , xd]-module by setting
f · ξ = f(T1, . . . , Td)ξ, f ∈ k[x1, . . . , xd], ξ ∈ V .

Let G be a finite dimensional subspace of V and define finite dimensional sub-
spaces M0 ⊆M1 ⊆M2 ⊆ . . . by

Mn = span{f · ξ : f ∈ k[x1, . . . , xd], deg f ≤ n, ξ ∈ G}.

Then there are integers c0, c1, . . . , cd ∈ Z and N ≥ 1 such that for all n ≥ N we
have

dimMn = c0q0(n) + c1q1(n) + · · ·+ cdqd(n).

In particular, the dimension function n 7→ dimMn is a polynomial for sufficiently
large n.

proof. We may obviously assume that V = ∪nMn, and hence V is a finitely gener-
ated k[x1, . . . , xd]-module. The fact that the function n 7→ dimMn is a polynomial
of degree at most d for sufficiently large n follows from the result in section 8.4.5
of [21]; and the specific form of this polynomial follows from the discussion in [21],
section 8.4.4.

Remark 4.3. We emphasize that the dimension function n 7→ dimMn is generally
not a polynomial for all n ∈ N, but only for sufficiently large n ∈ N.

We also point out for the interested reader that one can give a relatively simple
direct proof of Theorem 4.2 by an inductive argument on the number d of operators,
along lines similar to the proof of Theorem 4.11 of [17].
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Suppose now that G is a finite dimensional subspace of V which generates V as
a k[x1, . . . , xd]-module

V = span{f · ξ : f ∈ k[x1, . . . , xd], ξ ∈ G}.

The polynomial
p(x) = c0q0(x) + c1q1(x) + · · ·+ cdqd(x)

defined by theorem 4.2 obviously depends on the generator G; however, its top
coefficient cd does not. In order to discuss that, it is convenient to broaden the
context somewhat. Let M be a module over the polynomial ring k[x1, . . . , xd]. A
filtration of M is an increasing sequence M1 ⊆M2 ⊆ . . . of finite dimensional linear
subspaces of M such that

M = ∪nMn and
xkMn ⊆Mn+1, k = 1, 2, . . . , d, n ≥ 1.

The filtration {Mn} is called proper if there is an n0 such that

(4.4) Mn+1 = Mn + x1Mn + · · ·+ xdMn, n ≥ n0.

Proposition 4.5. Let {Mn} be a proper filtration of M . Then the limit

c = d! lim
n→∞

dimMn

nd

exists and defines a nonnegative integer c = c(M) which is the same for all proper
filtrations.

proof. Let {Mn} be a proper filtration, choose n0 satisfying (4.4), and let G be the
generating subspace G = Mn0 . One finds that for n = 0, 1, 2, . . .

Mn0+n = span{f · ξ : deg f ≤ n, ξ ∈Mn0}

and hence there is a polynomial p(x) ∈ Q[x] of the form stipulated in Theorem 4.2
such that dimMn0+n = p(n) for sufficiently large n. Writing

p(x) = c0q0(x) + c1q1(x) + · · ·+ cdqd(x)

and noting that qk is a polynomial of degree k with leading coefficient 1/k!, we find
that

cd = d! lim
n→∞

p(n)
nd

= d! lim
n→∞

dimMn0+n

nd
= d! lim

n→∞

dimMn

nd
,

as asserted.
Now let {M ′n} be another proper filtration. Since M = ∪nM ′n and Mn0 is finite

dimensional, there is an n1 ∈ N such that Mn0 ⊆ M ′n1
. Since {M ′n} is also proper

we can increase n1 if necessary to arrange the condition of (4.4) on M ′n for all
n ≥ n1, and hence

M ′n1+n = span{f · ξ : deg f ≤ n, ξ ∈M ′n1
}.
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Letting p′(x) = c′0q0(x) + c′1q1(x) + · · ·+ c′dqd(x) be the polynomial satisfying

dimM ′n1+n = p′(n)

for sufficiently large n, the preceding argument shows that

c′d = d! lim
n→∞

dimM ′n
nd

.

On the other hand, the inclusion Mn0 ⊆M ′n1
, together with the condition (4.4)

on both {Mn} and {M ′n}, implies

Mn0+n = span{f · ξ : deg f ≤ n, ξ ∈Mn0}
⊆ span{f · η : deg f ≤ n, η ∈M ′n1

} = M ′n1+n.

Thus we have

lim
n→∞

dimMn

nd
= lim
n→∞

dimMn0+n

nd
≤ lim
n→∞

dimM ′n1+n

nd
= lim
n→∞

dimM ′n
nd

,

from which we conclude that cd ≤ c′d. By symmetry we also have c′d ≤ cd.

The following two results together constitute a variant of the Artin-Rees lemma of
commutative algebra (cf. [33], page II-9). Since the result we require is formulated
differently than the Artin-Rees lemma (normally a statement about the behavior
of decreasing filtrations associated with ideals and their relation to submodules),
and since we have been unable to locate an appropriate reference, we have included
complete proofs.

With any filtration {Mn} of a k[x1, . . . , xd]-module M there is an associated
Z-graded module M̄ , which is defined as the (algebraic) direct sum of finite dimen-
sional vector spaces

M̄ =
∑
n∈Z

M̄n,

where M̄n = Mn/Mn−1 for each n ∈ Z, and where for nonpositive values of n, Mn is
taken as {0}. The k[x1, . . . , xd]-module structure on M̄ is defined by the commuting
d-tuple of “shift” operators T1, . . . , Td, where Tk is defined on each summand M̄n

by
Tk : ξ +Mn−1 ∈Mn/Mn−1 7→ xkξ +Mn ∈Mn+1/Mn.

Remark 4.6. For our purposes, the essential feature of this construction is that for
every n ≥ 1, the following are equivalent

(1) Mn+1 = Mn + x1Mn + · · ·+ xdMd

(2) M̄n+1 = T1M̄n + · · ·+ TdM̄n.

Lemma 4.7. Let {Mn} be a filtration of a k[x1, . . . , xd]-module M . The following
are equivalent:

(1) {Mn} is proper.
(2) The k[x1, . . . , xd]-module M̄ is finitely generated.
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proof of (1) =⇒ (2). Find an n0 ∈ N such that

Mn+1 = Mn + x1Mn + · · ·+ xdMn

for all n ≥ n0. From Remark 4.6 we have M̄n+1 = T1M̄n + · · · + TdM̄n for all
n ≥ n0, hence G = M̄1 + · · ·+ M̄n0 is a finite dimensional generating space for M̄ .

proof of (2) =⇒ (1). Assuming (2), we can find a finite set of homogeneous
elements ξk ∈ M̄nk

, k = 1, . . . , r which generate M̄ as a k[x1, . . . , xd]-module. It
follows that for n ≥ max(n1, . . . , nr) we have

M̄n+1 = T1M̄n + · · ·+ TdM̄n.

For such an n, Remark 4.6 implies that

Mn+1 = Mn + x1Mn + · · ·+ xdMn,

hence {Mn} is proper.

Lemma 4.8. Let {Mn} be a proper filtration of a k[x1, . . . , xd]-module M , let
K ⊆M be a submodule, and let {Kn} be the filtration induced on K by

Kn = K ∩Mn.

Then {Kn} is a proper filtration of K.

proof. Form the graded modules

M̄ =
∑
n∈Z

Mn/Mn−1

and
K̄ =

∑
n∈Z

Kn/Kn−1.

Because of the natural isomorphism

K̄n = K ∩Mn/K ∩Mn−1
∼= (K ∩Mn +Mn−1)/Mn−1 ⊆Mn/Mn−1 = M̄n,

K̄ is isomorphic to a submodule of M̄ . Lemma 4.7 implies that M̄ is finitely
generated. Thus by Hilbert’s basis theorem (asserting that graded submodules of
finitely generated graded modules are finitely generated), it follows that K̄ is finitely
generated. Now apply Lemma 4.7 once again to conclude that {Kn} is a proper
filtration of K.

We remark that the proof of Lemma 4.8 is inspired by Cartier’s proof of the
Artin-Rees lemma [33], p II-9.

Let M be a finitely generated k[x1, . . . , xd]-module, choose a finite dimensional
subspace G ⊆M which generates M as an k[x1, . . . , xd]-module, and set

Mn = span{f · ζ : f ∈ k[x1, . . . , xd], deg f ≤ n, ζ ∈ G}.

Since {Mn} is a proper filtration, Proposition 4.5 implies that the number

c(M) = d! lim
n→∞

dimMn

nd

exists as an invariant ofM independently of the choice of generatorG. The following
result shows that this invariant is additive on short exact sequences.
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Proposition 4.9. For every exact sequence

0 −→ K −→ L −→M −→ 0

of finitely generated k[x1, . . . , xd]-modules we have c(L) = c(K) + c(M).

proof. Since c(M) depends only on the isomorphism class of M , we may assume
that K ⊆ L is a submodule of L and M = L/K is its quotient. Pick any proper
filtration {Ln} for L and let {L̇n} and {Kn} be the associated filtrations of L/K
and K

L̇n = (Ln +K)/K ⊆ L/K,
Kn = K ∩Mn ⊆ K.

It is obvious that {L̇n} is proper, and Lemma 4.8 implies that {Kn} is proper as
well.

Now for each n ≥ 1 we have an exact sequence of finite dimensional vector spaces

0 −→ Kn −→ Ln −→ L̇n −→ 0,

and hence
dimLn = dimKn + dim L̇n.

Since each of the three filtrations is proper we can multiply the preceding equation
through by d!/nd and take the limit to obtain c(L) = c(K) + c(L/K).

Remark 4.10. The addition property of Proposition 4.9 generalizes immediately to
the following assertion. For every finite exact sequence

0 −→Mn −→ · · · −→M1 −→M0 −→ 0

of finitely generated k[x1, . . . , xd]-modules, we have

n∑
k=0

(−1)kc(Mk) = 0.

Corollary. Let M be a finitely generated k[x1, . . . , xd]-module and let

0 −→ Fn −→ · · · −→ F1 −→M −→ 0

be a finite free resolution of M , where

Fk = βk · k[x1, . . . , xd]

is a direct sum of βk copies of the rank-one free module k[x1, . . . , xd]. Then

c(M) =
n∑
k=1

(−1)k+1βk.
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proof. Remark (4.10) implies that

c(M) =
n∑
k=1

(−1)k+1c(Fk),

and thus it suffices to show that if F = β · k[x1, . . . , xd] is a free module of rank
β ∈ N, then c(F ) = β.

By the additivity property of 4.9 we have

c(β · k[x1, . . . , xd]) = β · c(k[x1, . . . , xd])

and thus we have to show that c(k[x1, . . . , xd]) is 1.
This follows from a computation of the dimensions of

Pn = {f ∈ k[x1, . . . , xd] : deg f ≤ n}

and it is a classical result that

dimPn = qd(n) =
(n+ 1) . . . (n+ d)

d!

(see Appendix A of [1] for the relevant case k = C). Thus

c(k[x1, . . . , xd]) = d! lim
n→∞

dimPn
nd

= lim
n→∞

(n+ 1) . . . (n+ d)
nd

= 1

and the corollary is established.

We now deduce the main result of this section. Let H be a finite-rank Hilbert
module over A = C[z1, . . . , zd], and let φ : B(H) → B(H) be its associated com-
pletely positive map φ(A) = T1AT

∗
1 + · · ·+ TdAT

∗
d .

Theorem D.

χ(H) = d! lim
n→∞

rank (1− φn+1(1))
nd

.

proof. Consider the module

MH = span{f ·∆ξ : f ∈ A, ξ ∈ H}

and its natural (proper) filtration

Mn = span{f ·∆ξ : deg f ≤ n, ξ ∈ H}, n = 1, 2, . . . .

In view of the definition of χ(H) in terms of free resolutions of MH , the preceding
corollary implies that

χ(H) = c(MH) = d! lim
n→∞

dimMn

nd
.
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Thus it suffices to show that

dimMn = rank(1− φn+1(1))

for every n = 1, 2, . . . . For that, we will prove

(4.11) Mn = (1− φn+1(1))H.

Indeed, writing

(4.12) 1− φn+1(1) =
n∑
k=0

φk(1− φ(1)) =
n∑
k=0

φk(∆2),

we see in particular that 1− φn+1(1) is a positive finite rank operator for every n
and hence

(1− φn+1(1))H = ker(1− φn+1(1))⊥.

The kernel of 1− φn+1(1) is easily computed. We have

ker(1− φn+1(1)) = {ξ ∈ H :
〈
(1− φn+1(1))ξ, ξ

〉
= 0},

and by (4.12),
〈
(1− φn+1(1))ξ, ξ

〉
= 0 iff

n∑
k=0

〈
φk(∆2)ξ, ξ

〉
= 0.

Since

φk(∆2) =
d∑

i1,...,ik=1

Ti1 . . . Tik∆2T ∗ik . . . T
∗
i1 ,

the latter is equivalent to

n∑
k=0

d∑
i1,...,ik=1

‖∆T ∗ik . . . T
∗
i1ξ‖

2 = 0.

Thus the kernel of 1− φn+1(1) is the orthocomplement of the space spanned by

{Ti1 . . . Tik∆η : η ∈ H, 1 ≤ i1, . . . , ik ≤ d, k = 0, 1, . . . , n},

namely Mn = span{f ·∆η : deg f ≤ n, η ∈ H}. This shows that

ker(1− φn+1(1)) = M⊥n ,

from which formula (4.11) is evident.

Remark 4.13. We have already pointed out in Remark 3.27 that a closed submodule
H0 ⊆ H of a finite rank contractive Hilbert module which is of finite codimension
in H must also be of finite rank. However, given a such a submodule H0 ⊆ H the
algebraic module MH0 is not a submodule of MH , nor is it conveniently related
to MH . Again, there is no direct way of relating χ(H) to χ(H0) by way of their
definitions. However from Theorem D we obtain the following stability result.
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Corollary 1: stability of Euler characteristic. Let H0 be a closed submodule of
a finite rank Hilbert A-module H such that dim(H/H0) <∞. Then χ(H0) = χ(H).

proof. By estimating as in Remark 3.27 we have

rank(1H0 − φn+1
H0

(1H0)) ≤rank(1H − φn+1
H (1H))+

rankP⊥0 + rank(φn+1
H (P⊥0 )),

P0 denoting the projection of H on H0. Similarly,

rank(1H − φn+1
H (1H)) ≤rank(1H0 − φn+1

H0
(1H0))+

rankP⊥0 + rank(φn+1
H (P⊥0 )),

Thus we have the inequality
(4.14)
|rank(1H − φn+1

H (1H))− rank(1H0 − φn+1
H0

(1H0))| ≤ rankP⊥0 + rank(φn+1
H (P⊥0 )).

At this point one can estimate the rank of φn+1
H (P⊥0 ) exactly as we have estimated

its trace in the proof of Corollary 1 of Theorem C in section 3, and one finds that

rank(φn+1(P⊥0 )) ≤ dim(En+1H
2) · rankP⊥0 = qd−1(n+ 1)rankP⊥0 .

Thus (4.14) implies that

| rank(1H − φn+1
H (1H))

nd
−

rank(1H0 − φn+1
H0

(1H0))
nd

|

is at most

rank(P⊥0 )
1 + qd−1(n+ 1)

nd
.

Since qd−1(x) is a polynomial of degree d − 1, the latter tends to zero as n → ∞,
and the conclusion |χ(H) − χ(H0)| = 0 follows from Theorem D after taking the
limit on n.

For algebraic reasons, the Euler characteristic of a finitely generated A-module
must be nonnegative ([20], Theorem 192). One also has the upper bound χ(H) ≤
rank(H). More significantly, we have the following inequality relating K(H) to
χ(H) in general, a consequence of Theorems C and D together.

Corollary 2. For every finite rank Hilbert A-module H,

0 ≤ K(H) ≤ χ(H) ≤ rank(H).

proof. Let MH be the algebraic module associated with H and let M1 ⊆M2 ⊆ . . .
be the proper filtration of it defined by

Mn = span{f · ξ : f ∈ A, deg f ≤ n, ξ ∈ ∆H}
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∆ denoting the square root of 1H − T1T
∗
1 − · · · − TdT ∗d . Clearly

dimMn ≤ dim{f ∈ A : deg f ≤ n} · dim ∆H = qd(n) · rank(H).

From the corollary of Proposition 4.9 which identifies χ(MH) with c(MH),

χ(H) = χ(MH) = d! lim
n→∞

dimMn

nd
≤ d! lim

n→∞

qd(n)
nd

· rank(H) = rank(H),

and the inequality χ(H) ≤ rank(H) follows.
Since the trace of a positive operator A is dominated by ‖A‖·rank(A), Theorems

C and D together imply that

K(H) = d! lim
n→∞

trace (1− φn+1(1))
nd

≤ d! lim
n→∞

rank(1− φn+1(1))
nd

= χ(H).

The inequality of Corollary 2 is useful; a significant application is given in The-
orem E of section 7.

5. Graded Hilbert modules: Gauss-Bonnet-Chern formula.
In this section we prove an analogue of the Gauss-Bonnet-Chern theorem for

Hilbert A-modules. The most general setting in which one might hope for such
a result is the class of finite rank pure Hilbert A-modules. These are the Hilbert
A-modules which are isomorphic to quotients F/M of finite rank free modules
F = H2 ⊗ C

r by closed submodules M . However, in Proposition 7.4 we give
examples of submodules M ⊆ H2 for which K(H2/M) < χ(H2/M). In this section
we establish the result (Theorem B) under the additional hypothesis that H is
graded. Examples are obtained by taking H = F/M where F is free of finite
rank and M is a closed submodule generated by a set of homogeneous polynomials
(perhaps of different degrees). In particular, one can associate such a module H
with any algebraic variety in complex projective space P

d−1 (see section 7).
By a graded Hilbert space we mean a pair H,Γ where H is a (separable) Hilbert

space and Γ : T → B(H) is a strongly continuous unitary representation of the
circle group T = {λ ∈ C : |λ| = 1}. Γ is called the gauge group of H. Alternately,
one may think of the structure H,Γ as a Z-graded Hilbert space by considering the
spectral subspaces {Hn : n ∈ Z} of Γ,

Hn = {ξ ∈ H : Γ(λ)ξ = λnξ, λ ∈ T}.

The spectral subspaces give rise to an orthogonal decomposition

(5.1) H = · · · ⊕H−1 ⊕H0 ⊕H1 ⊕ . . . .

Conversely, given an orthogonal decomposition of a Hilbert space H of the form
(5.1), one can define an associated gauge group Γ by

Γ(λ) =
∞∑

n=−∞
λnEn λ ∈ T



42 WILLIAM ARVESON

En being the orthogonal projection onto Hn.
A Hilbert A-module is said to be graded if there is given a distinguished gauge

group Γ on H which is related to the canonical operators T1, . . . , Td of H by

(5.2) Γ(λ)TkΓ(λ)−1 = λTk, k = 1, . . . , d, λ ∈ T.

Thus, graded Hilbert A-modules are those whose operators admit minimal (i.e.,
circular) symmetry. Letting Hn be the nth spectral subspace of Γ, (5.2) implies
that each operator is of degree one in the sense that

(5.3) TkHn ⊆ Hn+1, k = 1, . . . , d, n ∈ Z.

Conversely, given a Z-graded Hilbert space which is also an A-module satisfying
(5.3), then it follows that the corresponding gauge group

Γ(λ) =
∞∑

n=−∞
λnEn

satisfies (5.2), and moreover that the spectral projections En of Γ satisfy TkEn =
En+1Tk for k = 1, . . . , d. Thus it is equivalent to think in terms of gauge groups
satisfying (5.2), or of Z-graded Hilbert A-modules with degree-one operators satis-
fying (5.3). Algebraists tend to prefer the latter description because it generalizes
to fields other than the complex numbers. On the other hand, the former descrip-
tion is more convenient for operator theory on complex Hilbert spaces, and in this
paper we will work with gauge groups and (5.2).

Let H be a graded Hilbert A-module. A linear subspace S ⊆ H is said to be
graded if Γ(λ)S ⊆ S for every λ ∈ T. If K ⊆ H is a graded (closed) submodule
of H then K is a graded Hilbert A-module, and the gauge group of K is of course
the corresponding subrepresentation of Γ. Similarly, the quotient H/K of H by
a graded submodule K is graded in an obvious way. We require the following
observation, asserting that several natural hypotheses on graded Hilbert modules
are equivalent.

Proposition 5.4. For every graded finite rank Hilbert A-module H, the following
are equivalent.

(1) The spectrum of the gauge group Γ is bounded below.
(2) H is pure in the sense that its associated completely positive map of B(H)

φ(A) = T1AT
∗
1 + · · ·+ TdAT

∗
d satisfies φn(1) ↓ 0 as n→∞.

(3) The algebraic submodule

MH = span{f ·∆ζ : f ∈ A, ζ ∈ ∆H}

is dense in H.
(4) There is a finite-dimensional graded linear subspace G ⊂ H which generates

H as a Hilbert A-module.
Moreover, if (1) through (4) are satisfied then the spectral subspaces of Γ,

Hn = {ξ ∈ H : Γ(λ)ξ = λnξ} n ∈ Z,
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are all finite dimensional.

proof. We prove that (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1). Let En be the projection
onto the nth spectral subspace Hn of Γ and let T1, . . . , Td be the canonical operators
of H. From the commutation formula (5.2) it follows that T1T

∗
1 + · · · + TdT

∗
d

commutes with Γ(λ) and hence

(5.5) Γ(λ)∆ = ∆Γ(λ), λ ∈ T,

where ∆ = (1− T1T
∗
1 − · · · − TdT ∗d )1/2.

proof of (1) =⇒ (2). The hypothesis (1) implies that there is an integer n0 such
that En = 0 for n < n0. By the preceding remarks we have TkEp = Ep+1Tk for
every p ∈ Z. Thus φ(Ep) = Ep+1φ(1) ≤ Ep+1, and hence φn(Ep) ≤ Ep+n. Writing

φn(1) = φn(
∞∑

p=n0

Ep) =
∞∑

p=n0

φn(Ep) ≤
∞∑

p=n0+n

Ep,

the conclusion limn φ
n(1) = 0 is apparent.

proof of (2) =⇒ (3). Assuming H is pure, (1.13) implies that the natural map
L ∈ hom(H2 ⊗ ∆H,H) defined by L(f ⊗ ζ) = f · ∆ζ satisfies LL∗ = 1, and
therefore MH = L(H2 ⊗∆H) = H.

proof of (3) =⇒ (4). Assuming (3), notice that G = ∆H satisfies condition (4).
Indeed, G is finite dimensional because rank(H) <∞, it is graded because of (5.5),
and it generates H as a closed A-module because the A-module MH generated by
G is dense in H.

proof of (4) =⇒ (1). Let G ⊆ H satisfy (4). The restriction of Γ to G is a finite
direct sum of irreducible subrepresentations, and hence there are integers n0 ≤ n1

such that
G = Gn0 ⊕Gn0+1 ⊕ · · · ⊕Gn1

where Gk = G ∩ Hk. In particular, G ⊆ Hn0 + Hn0+1 + . . . . Since the space
Hn0 +Hn0+1 + . . . is invariant under the operators T1, . . . , Td by (5.3), we have

H = spanA ·G ⊆ Hn0 +Hn0+1 + . . . .

Thus H = Hn0 +Hn0+1 + . . . , hence the spectrum of Γ is bounded below by n0.
The finite dimensionality of all of the spectral subspaces of Γ follows from con-

dition (4), together with the fact that for every n = 0, 1, 2, . . . , the space Pn of
operators {f(T1, . . . , Td)} where f is a homogeneous polynomial of degree n is fi-
nite dimensional and and Pn maps Hk into Hk+n.

Theorem B. For every finite rank graded Hilbert A-module H satisfying the con-
ditions of Proposition 5.4 we have K(H) = χ(H).

proof. Because of the stability properties of K(·) and χ(·) established in the corol-
laries of Theorems C and D, it suffices to exhibit a closed submodule H0 ⊆ H of
finite codimension for which K(H0) = χ(H0). H0 is constructed as follows.
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Let {En : n ∈ Z} be the spectral projections of the gauge group

Γ(λ) =
∞∑

n=−∞
λnEn.

Since ∆ is a finite rank operator in the commutant of {En : n ∈ Z}, we must have
En∆ = ∆En = 0 for all but a finite number of n ∈ Z, and hence there are integers
n0 ≤ n1 such that

(5.6) ∆ = ∆n0 + ∆n0+1 + · · ·+ ∆n1

∆k denoting the finite rank positive operator ∆Ek.
We claim that for all n ≥ n1 we have

(5.7) φ(En) = En+1.

Indeed, since H is pure (Proposition 5.4 (2)) we can assert that

(5.8) 1H =
∞∑
p=0

φp(∆2)

because
n∑
p=0

φp(∆2) =
n∑
p=0

φp(1H − φ(1H)) = 1H − φn+1(1H)

converges strongly to 1H as n→∞. Multiplying (5.8) on the left with En we find
that

(5.9) En =
∞∑
p=0

Enφ
p(∆2), n ∈ Z.

Using (5.6) we have

Enφ
p(∆2) =

n1∑
k=n0

Enφ
p(∆2

k).

Now ∆2
k ≤ Ek and hence φp(∆2

k) ≤ Ek+p for every p = 0, 1, . . . . Thus for n ≥ n1,

∞∑
p=0

n1∑
k=n0

Enφ
p(∆2

k) =
n1∑
k=n0

φn−k(∆2
k) = φn−n1(

n1∑
k=n0

φn1−k(∆2
k)).

This shows that when n ≥ n1, En has the form

(5.10) En = φn−n1(B),

where B is the operator

B =
n1∑
k=n0

φn1−k(∆2
k),



THE CURVATURE INVARIANT OF A HILBERT MODULE OVER C[z1, . . . , zd] 45

and (5.7) follows immediately from (5.10).
Now consider the submodule H0 ⊆ H defined by

H0 =
∞∑

n=n1

EnH.

Notice that H⊥0 is finite dimensional. Indeed, that is apparent from the fact that

H⊥0 =
n1−1∑
n=−∞

EnH

because by Proposition 5.4 (1) only a finite number of the projections {En : n < n1}
can be nonzero (indeed, here one can show that En = 0 for n < n0), and Proposition
5.4 also implies that En is finite dimensional for all n.

Let φ0 : B(H0) → B(H0) be the completely positive map of B(H0) associated
with the operators T1 �H0 , . . . , Td �H0 . Then for every k = 0, 1, . . . we have

φk0(1H0) =
∞∑

n=n1

φk(En).

From (5.7) we have φk(En) = En+k for n ≥ n1, and hence

φk0(1H0) =
∞∑

p=n1+k

Ep.

It follows that

1H0 − φk+1
0 (1H0) = En1 + En1+1 + · · ·+ En1+k

is a projection for every k = 0, 1, . . . . Thus for every k ≥ 0,

trace (1H0 − φk+1
0 (1H0)) = rank(1H0 − φk+1

0 (1H0)),

and the desired formula K(H0) = χ(H0) follows immediately from Theorems C
and D after multiplying through by d!/kd and taking the limit on k.

6. Degree.
Theorem D together with its Corollary 2 imply that both the curvature invariant

and the Euler characteristic (of a finite rank Hilbert A-module) vanish whenever
the rank function rank(1− φn+1(1)) grows relatively slowly with n. In such cases
there are other numerical invariants which must be nontrivial and which can be
calculated explicitly in certain cases. In this brief section we define these secondary
invariants and summarize their basic properties.

Let H be a finite rank Hilbert A-module. Consider the algebraic submodule

MH = span{f ·∆ξ : f ∈ A, ξ ∈ H}
and its natural filtration {Mn : n = 0, 1, 2, . . . }

Mn = span{f ·∆ξ : deg f ≤ n, ξ ∈ H}.
By Theorem 4.2 there are integers c0, c1, . . . , cd such that

(6.1) dimMn = c0q0(n) + c1q1(n) + · · ·+ cdqd(n)

for sufficiently large n. Let k be the degree of the polynomial on the right of (6.1).
We observe first that the pair (k, ck) depends only on the algebraic structure of
MH .
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Proposition 6.2. Let M be a finitely generated A-module, let {Mn : n ≥ 1} be a
proper filtration of M , and suppose M 6= {0}. Then there is a unique integer k,
0 ≤ k ≤ d, such that the limit

µ(M) = k! lim
n→∞

dimMn

nk

exists and is nonzero. µ(M) is a positive integer and the pair (k, µ(M)) does not
depend on the particular filtration {Mn}.

proof. By Theorem 4.2 there are integers c0, c1, . . . , cd such that

dimMn = c0q0(n) + c1q1(n) + · · ·+ cdqd(n)

for sufficiently large n. Let k be the degree of the polynomial on the right. Noting
that qr(x) is a polynomial of degree r with leading coefficient 1/r!, it is clear that
this k is the unique integer with the stated property and that

µ = k! lim
n→∞

dimMn

nk
= ck

is a (necessarily positive) integer.
To see that (k, µ) does not depend on the filtration, let {M ′n} be a second

proper filtration. {M ′n} gives rise to a polynomial p′(x) of degree k′ which sat-
isfies dimM ′n = p′(n) for sufficiently large n. As in the proof of Proposition 4.5,
there is an integer p such that dimMn ≤ dimM ′n+p for sufficiently large n. Thus

0 < k! lim
n→∞

dimMn

nk
≤ k! lim sup

n→∞

dimM ′n+p

nk
.

Now if k were greater than k′ then the term on the right would be 0. Hence k ≤ k′
and, by symmetry, k = k′.

We may now argue exactly as in the proof of Proposition 4.5 to conclude that
the leading coefficients of the two polynomials must be the same, hence µ = µ′.

Definition 6.3. Let H be a Hilbert A-module of finite positive rank. The degree
of the polynomial (6.1) associated with any proper filtration of the algebraic module
MH is called the degree of H, and is written deg(H).

We will also write µ(H) for the positive integer

µ(H) = deg(H)! lim
n→∞

dimMn

ndeg(H)

associated with the degree of H. If MH is finite dimensional and not {0} then
the sequence of dimensions dimMn associated with any proper filtration {Mn} is
eventually a nonzero constant, hence deg(H) = 0 and µ(H) = dim(H); conversely,
if deg(H) = 0 then MH is finite dimensional. In particular, degH is a positive
integer satisfying deg(H) ≤ d whenever the algebraic submodule MH is infinite
dimensional.
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Note too that deg(H) = d iff the Euler characteristic is positive, and in that
case we have µ(H) = χ(H). In general, there is no obvious relation between
deg(H) and rank(H), or between µ(H) and rank(H). In particular, µ(H) can be
arbitrarily large. The operator-theoretic significance of the invariant µ(H) is not
well understood. An example for which 1 < deg(H) < d is worked out in section 7.

Finally, let φ be the completely positive map associated with the canonical op-
erators T1, . . . , Td,

φ(A) = T1AT
∗
1 + · · ·+ TdAT

∗
d , A ∈ B(H).

We consider the generating function (more precisely, the formal power series) asso-
ciated with the sequence of integers rank(1− φn+1(1)), n = 0, 1, 2, . . . ,

(6.4) φ̂(t) =
∞∑
n=0

rank(1− φn+1(1))tn.

We require the following description of deg(H) and µ(H) in terms of φ̂(t).

Proposition 6.5. The series φ̂(t) converges for every t in the open unit disk of
the complex plane. There is a polynomial p(t) = a0 +a1t+ · · ·+ast

s and a sequence
c0, c1, . . . , cd of real numbers, not all of which are 0, such that

φ̂(t) = p(t) +
c0

1− t
+

c1
(1− t)2

+ · · ·+ cd
(1− t)d+1

, |t| < 1.

This decomposition is unique, and ck belongs to Z for every k = 0, 1, . . . , d. deg(H)
is the largest k for which ck 6= 0, and µ(H) = ck.

proof. The proof of Theorem D shows that rank(1 − φn+1(1)) = dimMn, where
{Mn : n = 1, 2, . . . } is the natural filtration of MH ,

Mn = span{f · ξ : deg(f) ≤ n, ξ ∈ ∆H}.

Since each qr(x) is a polynomial of degree r, formula (6.1) implies that there is a
constant K > 0 such that

dimMn ≤ Knd, n = 1, 2, . . . ,

and this estimate implies that the power series
∑
n dimMnt

n converges absolutely
for every complex number t in the open unit disk.

Note too that for every k = 0, 1, . . . , d the generating function for the sequence
qk(n), n = 0, 1, . . . is given by

(6.6) q̂k(t) =
∞∑
n=0

qk(n)tn = (1− t)−k−1, |t| < 1.

Indeed, the formula is obvious for k = 0 since q0(n) = 1 for every n; and for positive
k the recurrence formula 3.2.2, together with qk(0) = 1, implies that

(1− t)q̂k(t) = ˆqk−1(t),
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from which (6.6) follows immediately.
Using (6.1) and (6.6) we find that there is a polynomial f(x) such that

(6.7) φ̂(t) = f(t) +
d∑
k=0

ck
(1− t)k+1

,

as asserted.
(6.7) implies that φ̂ extends to a meromorphic function in the entire complex

plane, having a single pole at t = 1. The uniqueness of the representation of
(6.7) follows from the uniqueness of the Laurent expansion of an analytic function
around a pole. The remaining assertions of Propostion 6.5 are now obvious from
the relation that exists between (6.1) and (6.6).

7. Applications, Examples, Problems.
In this section we establish the existence of inner sequences for invariant sub-

spaces of H2 which contain at least one nonzero polynomial (Theorem E), and we
exhibit a broad class of invariant subspaces of H2 which define Hilbert modules
of infinite rank (Corollary of Theorem F). The latter result stands in rather stark
contrast with Hilbert’s basis theorem, which implies that submodules of finitely
generated C[z1, . . . , zd]-modules are finitely generated.

Every algebraic set in complex projective space P
d−1 gives rise to a finite rank

contractive Hilbert module over A = C[z1, . . . , zd]. We will discuss several examples
of this construction in some detail (indeed, every finitely generated graded module
over A can be “completed” to a finite rank Hilbert A-module, but we restrict at-
tention here to the simplest case of modules arising as the natural coordinate ring
of an algebraic set). We give explicit examples of pure rank-one Hilbert modules
illustrating (1) the failure of Theorem B for ungraded modules, and (2) the compu-
tation of the degree in cases where the Euler characteristic vanishes. We also give
examples of pure rank 2 graded Hilbert modules illustrating (3) the computation
of nonzero values of K(H) = χ(H) = 1 < rank (H).

Let M ⊆ H2 = H2(Cd) be a closed submodule of the rank 1 free Hilbert module.
We have seen in section 2 that there are sequences φ1, φ2, . . . of multipliers of H2

which satisfy
Mφ1M

∗
φ1

+Mφ2M
∗
φ2

+ · · · = PM ,

that any such sequence obeys
∑
n |φ(z)|2 ≤ 1 for every z ∈ Bd, and hence the

associated sequence of boundary functions φ̃n : ∂Bd → C satisfies
∑
n |φ̃n(z)|2 ≤ 1

almost everywhere dσ on the boundary ∂Bd. Recall that {φn} is called an inner
sequence if equality holds ∑

n

|φ̃n(z)|2 = 1

almost everywhere (dσ) on ∂Bd.

Problem. Is every nonzero closed submodule M ⊆ H2 associated with an inner
sequence?

The following result gives an affirmative answer for many cases of interest.
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Theorem E. Let M be a closed submodule of H2 which contains a nonzero polyno-
mial. Then every sequence φ1, φ2, . . . of multipliers satisfying

∑
nMφn

M∗φn
= PM

is an inner sequence.

proof. Consider the rank-one Hilbert module H = H2/M . The natural projection
L : H2 → H2/M provides the minimal dilation of H (see Lemma 1.4), and the
algebraic submodule of H is given by

MH = L(A) = (A+M)/M ∼= A/A ∩M,

where as usual A = C[z1, . . . , zd]. Thus the annihilator of MH is A ∩M 6= {0}.
A theorem of Auslander and Buchsbaum (Corollary 20.13 of [17], or Theorem
195 of [20]) implies that χ(MH) = 0. By Corollary 2 of Theorem D we have
K(H) = χ(H) = χ(MH) = 0, and the assertion now follows from Theorem 2.2.

Every closed invariant subspace of H2 defines a contractive Hilbert A-module
in the obvious way by restricting the d-shift, and it is natural to ask when such
submodules are of finite rank. In dimension d = 1, every nonzero submodule of
H2 is isomorphic to H2 itself and thus has rank 1. In dimension d ≥ 2 at the
algebraic level we have Hilbert’s basis theorem, which implies that every ideal in
the polynomial algebra A is finitely generated. Correspondingly, one might ask if
submodules of H2 must be of finite rank. Certainly there are examples of finite
rank submodules of H2; but the only examples we know are trivial in the sense
that the submodules are actually of finite codimension in H2. Thus we have been
led to ask the following question.

Problem. In dimension d ≥ 2, does there exist a closed submodule M ⊆ H2 of
infinite codimension in H2 such that rank (M) <∞?

We now show that the answer to this question is no for graded submodules
M ⊆ H2.

Theorem F. Let M be a graded proper submodule of H2 such that rank (M) <∞.
Then M is of finite codimension in H2 and the canonical operators T1, . . . , Td of
the quotient H2/M are all nilpotent.

proof. The defect operator of M is defined by ∆M = (1M − T1T
∗
1 − · · · − TdT ∗d )1/2

where (T1, . . . , Td) is obtained by restricting the d-shift (S1, . . . , Sd) to M . Since
TkT

∗
k = SkPMS

∗
k , we can identify ∆2

M with the following operator on H2,

PM − S1PMS
∗
1 − · · · − SdPMS∗d = PM − σ(PM ),

σ denoting the completely positive map of B(H2) associated with the d-shift σ(X) =
S1XS

∗
1 + · · ·+ SdXS

∗
d .

Let Γ be the gauge group of H2, Γ(λ)f(z1, . . . , zd) = f(λzd, . . . , λzd), f ∈ H2,
λ ∈ T. Since M is graded we have Γ(λ)M = M for every λ, hence Γ(λ) commutes
with PM . Since Γ(λ)Sk = λSkΓ(λ), it follows that for every X ∈ B(H2) we have
Γ(λ)σ(X)Γ(λ)∗ = σ(Γ(λ)XΓ(λ)∗), and hence Γ(λ) also commutes with ∆2

M =
PM − σ(PM ).

We claim first that there is a finite set of polynomials φ1, . . . , φn such that each
φk is homogeneous of some degree nk (i.e. Γ(λ)φk = λnkφk, λ ∈ T), and

(7.1) ∆2
M = φ1 ⊗ φ1 + · · ·+ φn ⊗ φn,
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φ⊗ ψ denoting the rank one operator defined on H2 by ξ 7→ 〈ξ, ψ〉φ. To see this,
let Ep be the projection of H2 onto the subspace of homogeneous polynomials of
degree p, p = 0, 1, 2, . . . . Since

Γ(λ) =
∞∑
p=0

λpEp

and since ∆2
M is a finite rank operator commuting with Γ(T), we must have

Ep∆M = ∆MEp = 0 for all but a finite number of p. Thus there is a finite
set of integers 0 ≤ p1 < · · · < pr such that

∆2
M = ∆MEp1 + · · ·+ ∆MEpr .

Each ∆MEp is a finite rank positive operator supported in the space of homogeneous
polynomials EpH2, and by the spectral theorem it can be expressed as a (finite)
sum of rank-one operators of the form f ⊗f with f ∈ EpH2. Formula (7.1) follows.

Now let φ1, . . . , φn be the polynomials of (7.1). We assert next that

(7.2) PM = Mφ1M
∗
φ1

+ · · ·+MφnM
∗
φn
,

Mφ denoting the multiplication operator φ(S1, . . . , Sd) ∈ B(H2). For that, notice
first that

PM = lim
m→∞

m∑
k=0

σk(∆2
M ).

Indeed, since ∆2
M = PM − σ(PM ) the right side telescopes to

lim
m→∞

(PM − σm+1(PM )) = PM ,

since σm+1(PM ) ≤ σm+1(1H2) ↓ 0 as m→∞. Similarly, if φ,ψ are any polynomials
then we claim

MφM
∗
ψ = lim

m→∞

m∑
k=0

σk(φ⊗ ψ).

Indeed, since S1, . . . , Sd (resp. S∗1 , . . . , S
∗
d) commutes with Mφ (resp. M∗ψ) we have

Mφσ(X)M∗ψ = σ(MφXM
∗
ψ), hence

φ⊗ ψ = Mφ(1⊗ 1)M∗ψ = MφE0M
∗
ψ = Mφ(1H2 − σ(1H2))M∗ψ

= MφM
∗
ψ −Mφσ(1H2)M∗ψ = MφM

∗
ψ − σ(MφM

∗
ψ).

Thus as before we can write

MφM
∗
ψ = lim

m→∞
(MφM

∗
ψ − σm+1(MφM

∗
ψ))

= lim
m→∞

m∑
k=0

σk(MφM
∗
ψ − σ(MφM

∗
ψ)) = lim

m→∞

m∑
k=0

σk(φ⊗ ψ)

as asserted.
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Choosing φ1, . . . , φn as in (7.1), the above two formulas imply

PM =
∞∑
k=0

σk(∆2
M ) =

∞∑
k=0

σk(φ1 ⊗ φ1 + · · ·+ φn ⊗ φn) = Mφ1M
∗
φ1

+ · · ·+Mφn
M∗φn

,

and (7.2) follows.
We claim next that the polynomials φ1, . . . , φn satisfy

|φ1(z)|2 + · · ·+ |φn(z)|2 ≡ 1, z ∈ ∂Bd.

Indeed, Theorem E implies that K(H2/M) = 0. By Theorem 2.2 φ1, . . . , φn must
be an inner sequence, hence there is a Borel set N ⊆ ∂Bd of measure zero such
that |φ1(z)|2 + · · · + |φn(z)|2 = 1 for every z ∈ ∂Bd \ N . Since the function
z ∈ C

d 7→ |φ1(z)|2 + · · · + |φn(z)|2 − 1 is everywhere continuous it must vanish
identically on ∂Bd.

Consider now the variety of common zeros

V = {z ∈ C
d : φ1(z) = · · · = φn(z) = 0}

of φ1, . . . , φn ∈ A = C[z1, . . . , zd]. We have just seen that V does not intersect
the unit sphere. V cannot be empty because that would imply that the ideal
I = (φ1, . . . , φn) ⊆ A generated by φ1, . . . , φd is all of A (a proper ideal in A must
have a nonvoid zero set because of Hilbert’s Nullstellensatz) and hence M = H2

would not be a proper submodule. Since V is a nonempty set invariant under
multiplication by nonzero scalars which misses the unit sphere, it must consist of
just the single point (0, 0, . . . , 0).

By Hilbert’s Nullstellensatz there is an integer p ≥ 1 such that zp1 , . . . , z
p
d belong

to I = (φ1, . . . , φn) ([17], Theorem 1.6). Since the A-module A/I has a cyclic
vector 1 + I and its canonical operators are all nilpotent, it follows that A/I is
finite dimensional. Finally, since the natural map f 7→ f +M of A into H2/M has
dense range and vanishes on I, it induces a linear map of A/I to H2/M with dense
range. Hence H2/M is finite dimensional and Theorem F follows.

Corollary. In dimension d ≥ 2, every graded invariant subspace of infinite codi-
mension in H2(Cd) is an infinite rank Hilbert A-module.

Remarks. We point out that in dimension d = 1 the graded submodules of H2

are simply those of the form Mn = zn · H2, n = 0, 1, 2, . . . . Hence there are no
graded submodules of infinite codimension and the preceding corollary is vacuous
in dimension 1. On the other hand, in dimension d ≥ 2 there are many interesting
graded submodules of H2(Cd). For example, with any projective variety V ⊆ P

d−1

we can associate a submodule MV ⊆ H2 consisting of all H2 functions which
“vanish on V ” as in (7.6) below. Theorem F implies that MV will be of infinite
codimension whenever V is nonempty, and rank(MV ) =∞.

One may broaden this class of examples by choosing a set {φ1, φ2, . . . , φn} of
homogeneous polynomials in A (perhaps of different degrees) and by taking for
M the closed submodule of H2 generated by {φ1, φ2, . . . , φn}. M is a graded
submodule, and hence rank (M) =∞ whenever M is of infinite codimension in H2.
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We now discuss the limits of Theorem B by presenting a class of examples for
which K(H) < χ(H) (Proposition 7.3); a concrete example of such a Hilbert A-
module is given in Example 7.4. Then we will elaborate on the method alluded to in
the preceding paragraphs which associates a graded Hilbert A-module with an alge-
braic variety in complex projective space P

d−1, and we show that for some examples
one can calculate all numerical invariants of their associated Hilbert modules.

Remark 7.3. We make use of the fact that if K1 and K2 are two closed submodules
of the free Hilbert module H2 for which H2/K1 is isomorphic to H2/K2, then
K1 = K2. In particular, no nontrivial quotient of H2 of the form H2/K with
K 6= {0} can be a free Hilbert A-module (see Corollary 2 of Theorem 7.5 in [1]).

Proposition 7.4. Let K 6= {0} be a closed submodule of H2 which contains no
nonzero polynomials, and consider the pure rank-one module H = H2/K. Then

0 ≤ K(H) < χ(H) = 1.

proof. We show first that χ(H) = 1 by proving that the algebraic submodule MH

of H is free. Let L ∈ hom(H2, H) be the natural projection onto H = H2/K. The
kernel of L is K, and L maps the dense linear subspace A ⊆ H2 of polynomials
onto MH , L(A) = MH . Since A ∩ K = {0}, the restriction of L to A gives an
isomorphism of A-modules A ∼= MH , and hence χ(H) = χ(A) = 1.

On the other hand, if K(H) were to equal 1 = rank(H) then by the extremal
property (4.13) H would be isomorphic to the free Hilbert module H2 of rank-one,
which is impossible because of Remark 7.3.

Problem. Is the curvature invariant K(H) of a pure finite rank Hilbert A-module
H always an integer?

Theorem B implies that this is the case for graded Hilbert modules, but Propo-
sition 7.4 shows that Theorem B does not always apply. In particular, it is not
known if K(H) = 0 for the ungraded Hilbert modules H of Prop. 7.4. In such
cases, the equation K(H) = 0 is equivalent to the existence of an “inner sequence”
for the invariant subspace K (see Theorem 2.2).

Example 7.5. It is easy to give concrete examples of submodules K of H2 sat-
isfying the hypothesis of Proposition 7.4. Consider, for example, the graph of the
exponential function G = {(z, ez) : z ∈ C} ⊆ C

2. Take d = 2, let H2 = H2(C2),
and let K be the submodule of all functions in H2 which vanish on the intersection
of G with the unit ball

K = {f ∈ H2 : f �G∩Bd
= 0}.

Since f ∈ H2 7→ f(z) = 〈f, uz〉 is a bounded linear functional for every z ∈ Bd
it follows that K is closed, and it is clear that K 6= {0} (the function f(z1, z2) =
ez1 − z2 belongs to H2 and vanishes on G ∩ Bd). After noting that the open unit
disk about z = −1/2 maps into G ∩Bd,

{(z, ez) : |z + 1/2| < 1} ⊆ G ∩Bd
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an elementary argument (which we omit) establishes the obvious fact that no
nonzero polynomial can vanish on G ∩Bd.

An algebraic set in complex projective space P
d−1 can be described as the set of

common zeros of a finite set of homogeneous polynomials f1, . . . , fn ∈ C[z1, . . . , zd],

V = {z ∈ C
d : f1(z) = · · · = fn(z) = 0}

[17], pp 39–40. One can associate with V a graded rank-one Hilbert A-module in
the following way. Let MV be the submodule of H2 = H2(Cd) defined by

(7.6) MV = {f ∈ H2 : f �V ∩Bd
= 0}.

As in example 7.5, MV is a closed submodule of H2. Moreover, since λV ⊆ V
for complex scalars λ, MV is invariant under the action of the gauge group of H2

and hence it is a graded submodule of H2. Thus, H = H2/MV is a graded, pure,
rank-one Hilbert A-module.

We will show how to explicitly compute H2/MV and its numerical invariants in
certain cases, using operator-theoretic methods. The simplest member of this class
of examples is the variety V defined by the range of the quadratic polynomial

F : (x, y) ∈ C
2 7→ (x2, y2,

√
2xy) ∈ C

3,

that is,
V = {(x2, y2,

√
2xy) : x, y ∈ C} ⊆ C

3.

However, one finds more interesting behavior in the higher dimensional example

(7.7) V = {(x2, y2, z2,
√

2xy,
√

2xz,
√

2yz) : x, y, z ∈ C} ⊆ C
6,

and we will discuss the example (7.7) in some detail.
Notice first that V can be described in the form (7.6) as the set

(7.8) V = {z ∈ C
6 : f1(z) = f2(z) = f3(z) = f4(z) = 0}

of common zeros of the four homogeneous polynomials fk : C
6 → C,

f1(z) = z2
4 − 2z1z2 = 0

f2(z) = z2
5 − 2z1z3 = 0

f3(z) = z2
6 − 2z2z3 = 0

f4(z) = z4z5z6 − 23/2z1z2z3 = 0.

The equivalence of (7.7) and (7.8) is an elementary computation which we omit.
Note, however, that the fourth equation f4(z) = 0 is necessary in order to exclude
points such as z = (1, 1, 1,−

√
2,
√

2,
√

2), which satisfy the first three equations
f1(z) = f2(z) = f3(z) = 0 but which do not belong to V . Note too that f1, f2, f3

are quadratic but that f4 is cubic.
We will describe the Hilbert module H = H2(C6)/MV by identifying its as-

sociated 6-contraction (T1, . . . , T6). These operators act on the even subspace
H of H2(C3), defined as the closed linear span of all homogeneous polynomials
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f(z1, z2, z3) of even degree 2n, n = 0, 1, 2, . . . . Let S1, S2, S3 ∈ B(H2(C3)) be the
3-shift. The even subspace H is not invariant under the Sk, but it is invariant
under any product of two of these operators SiSj , 1 ≤ i, j ≤ 3. Thus we can define
a 6-tuple of operators T1, . . . , T6 ∈ B(H) by

(7.9) (T1, . . . , T6) = (S2
1 �H , S

2
2 �H , S

2
3 �H ,

√
2S1S2 �H ,

√
2S1S3 �H ,

√
2S2S3 �H).

(T1, . . . , T6) is a 6-contraction because

6∑
k=1

TkT
∗
k =

3∑
i,j=1

SiSj(PH)S∗j S
∗
i ≤ PH ,

and in fact H becomes a pure Hilbert C[z1, . . . , z6]-module.
If f is a sum of homogeneous polynomials of even degrees then

Γ(eiθ)f(z1, z2, z3) = f(eiθ/2z1, e
iθ/2z2, e

iθ/2z3)

gives a well-defined unitary action of the circle group on the subspace H ⊆ H2(C3),
and H becomes a graded Hilbert module.

Proposition 7.10. H is a rank-one graded Hilbert C[z1, . . . , z6]-module which is
isomorphic to H2(C6)/MV . The invariants of H are given by K(H) = χ(H) = 0,
deg(H) = 3, µ(H) = 4.

proof. Let φ(A) = T1AT
∗
1 + · · ·+ T6AT

∗
6 be the canonical completely positive map

of B(H) and, considering H as a subspace of H2(C3), let σ : B(H2) → B(H2) be
the map associated with the 3-shift

σ(B) = S1BS
∗
1 + S2BS

∗
2 + S3BS

∗
3 .

φ and σ are related in the following simple way: for every A ∈ B(H) we have

(7.11) φ(A) =
6∑
k=1

TkAT
∗
k =

3∑
i,j=1

SiSjAPHS
∗
j S
∗
i = σ2(APH).

If En ∈ B(H2) denotes the projection onto the subspace of homogeneous polyno-
mials of degree n, then

φ(1H) = σ2(
∞∑
n=0

E2n) =
∞∑
n=0

E2n+2.

It follows that
∆2 = 1H − φ(1H) = E0

is the one-dimensional projection onto the space of constants. Since

φn(1H) = σ2n(
∞∑
p=0

E2p) =
∞∑
p=n

E2p
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obviously decreases to 0 as n → ∞, we conclude that H is a pure Hilbert module
of rank one.

Hence the minimal dilation L : H2(C6)→ H of H is given by

L(f) = f ·∆1 = f(T1, . . . , T6)∆1.

If we evaluate this expression at a point z = (z1, z2, z3) ∈ B3 we find that

L(f)(z1, z2, z3) = f(z2
1 , z

2
2 , z

2
3 ,
√

2z1z2,
√

2z1z3,
√

2z2z3).

The argument on the right is a point in the ball B6, and thus the preceding formula
extends immediately to all f ∈ H2(C6). Notice too that L is a graded morphism
in that LΓ0(λ) = Γ(λ)L, λ ∈ T, where Γ0 is the gauge group of H2(C6). The
precding formula shows that the kernel of L is MV , and thus we conclude that H
is isomorphic to H2(C6)/MV , as asserted in Proposition 7.9.

It remains to calculate the power series φ̂(t) of Proposition 7.7 which determines
the numerical invariants of H. Since 1H − φn+1(1H) is the projection

1H − φn+1(1H) = E0 + E2 + · · ·+ E2n,

it follows that

φ̂(t) =
∞∑
n=0

dim(E0 + E2 + · · ·+ E2n)tn,

and therefore

(7.12) (1− t)φ̂(t) =
∞∑
n=0

dimE2nt
n.

Setting

σ̂(t) =
∞∑
p=0

dimEpt
p,

we find that for 0 < t < 1

∞∑
n=0

dimE2nt
n = 1/2(

∞∑
p=0

dimEp(
√
t)p +

∞∑
p=0

dimEp(−
√
t)p)

= 1/2(σ̂(
√
t) + σ̂(−

√
t)),

and hence from (7.12) we have

(7.13) φ̂(t) =
σ̂(
√
t) + σ̂(−

√
t)

2(1− t)
, 0 < t < 1.

The dimensions dimEp were computed in Appendix A of [1], where it was shown
that dimEp = q2(p), q2(x) being the polynomial defined in (3.7). Thus

σ̂(t) =
∑

q2(n)tn =
1

(1− t)3
;
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and finally (7.13) becomes

φ̂(t) =
(1−

√
t)−3 + (1 +

√
t)−3

2(1− t)
=

(1 +
√
t)3 + (1−

√
t)3

2(1− t)4
=

1 + 3t
(1− t)4

.

The right side of the last equation can be rewritten

φ̂(t) =
−3

(1− t)3
+

4
(1− t)4

,

hence the coefficients (c0, c1, . . . , c6) of Prop. 6.5 are given by (0, 0,−3, 4, 0, 0, 0).
One now reads off the numerical invariants listed in Proposition 7.9.

Finally, we compute nontrivial values of the curvature invariant K(H) for certain
examples of pure rank-two graded Hilbert modules H. Let φ be a homogeneous
polynomial of degree N = 1, 2, . . . in A = C[z1, . . . , zd] and let M be the graph of
its associated multiplication operator

M = {(f, φ · f) : f ∈ H2} ⊆ H2 ⊕H2.

M is a closed submodule of the free Hilbert module F = H2 ⊕H2, and H = F/M
is a pure Hilbert module of rank 2 whose minimal dilation L : F → H is given by
the natural projection of F onto the quotient Hilbert module H = F/M .

We make H into a graded Hilbert module as follows. Let Γ be the gauge group
defined on F = H2 ⊕H2 by

Γ(λ)(f, g) = (Γ0(λ)f, λ−NΓ0(λ)g), f, g ∈ H2,

where Γ0 is the natural gauge group of H2 defined by

Γ0(λ)f(z1, . . . , zd) = f(λz1, . . . , λzd).

One verifies that Γ(λ)M ⊆ M , λ ∈ T. Thus the action of Γ can be promoted
naturally to the quotient H = F/M , and H becomes a graded rank 2 pure Hilbert
module whose gauge group has spectrum {−N,−N + 1, . . . }. L : F → H becomes
a graded dilation in that LΓ(λ) = Γ(λ)L for all λ ∈ T.

Proposition 7.14. For these rank 2 examples we have K(H) = χ(H) = 1.

proof. By Theorem B, K(H) = χ(H), and it suffices to show that χ(H) = 1.
Let Hn = {ξ ∈ H : Γ(λ)ξ = λnξ}, n ∈ Z, be the spectral subspaces of H. It is

clear that Hn = {0} if n < −N , and since L : H2⊕H2 → H is the minimal dilation
of H, the algebraic submodule MH is given by MH = L(A⊕A), A = C[z1, . . . , zd].
Hence MH is the (algebraic) sum

MH =
∞∑

n=−∞
Hn.

Consider the proper filtration M1 ⊆M2 ⊆ . . . of MH defined by

Mk =
∑
n≤k

Hn, k = 1, 2, . . . .
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By the Corollary of Proposition 3.10 we have

(7.15) χ(MH) = d! lim
k→∞

dimMk

kd
,

and thus we have to calculate the dimensions

(7.16) dimMk = dim(
∑
n≤k

Hn) = dimH−N + · · ·+ dimHk−1 + dimHk

for k = 1, 2, . . . .
In order to calculate the dimension ofHn it is easier to realizeH as the orthogonal

complement M⊥ ⊆ F , with canonical operators T1, . . . , Td given by compressing
the natural operators of F = H2 ⊕ H2 to M⊥. Since M is the graph of the
multiplication operator Mφf = φ · f , f ∈ H2, M⊥ is given by

M⊥ = {(−M∗φg, g) : g ∈ H2}.

We compute

Hn = (M⊥)n = {ξ ∈M⊥ : Γ(λ)ξ = λnξ, λ ∈ T}.

Since Γ0(λ)M∗φΓ0(λ)−1 = (Γ0(λ)MφΓ0(λ)−1)∗ = (λNMφ)∗ = λ−NM∗φ , we have

Γ(λ)(−M∗φg, g) = (−Γ0(λ)M∗φg, λ
−NΓ0(λ)g) = (−λ−NM∗φΓ0(λ)g, λ−NΓ0(λ)g),

thus Γ(λ)(−M∗φg, g) = λn(−M∗φg, g) iff Γ0(λ)g = λn+Ng, λ ∈ T. For n < −N there
are no nonzero solutions of this equation, and for n ≥ −N the condition is satisfied
iff g is a homogeneous polynomial of degree n+N .

We conclude that dimHn = 0 if n < −N and dimHn = dimAn+N = qd−1(n+N)
if n ≥ −N . Thus for k ≥ −N we see from (7.16) that

dimMk =
k∑

n=−N
Hn =

k∑
n=−N

qd−1(n+N).

The recurrence formula qd−1(x) = qd(x)− qd(x− 1) of (3.6) implies that the right
side of the preceding formula telescopes to qd(k +N)− qd(−1) = qd(k +N). Thus
(7.15) implies that

χ(H) = χ(MH) = d! lim
k→∞

qd(k +N)
kd

= lim
k→∞

(k +N + 1) . . . (k +N + d)
kd

= 1,

as asserted.



58 WILLIAM ARVESON

References

1. Arveson, W., Subalgebras of C∗-algebras III: Multivariable operator theory, Acta Math 181
(1998), 159–228.

2. , The Curvature of a Hilbert module over C[z1, . . . , zd], to appear, Proc. Nat. Acad.

Sci. (USA).

3. Athavale, A., On the intertwining of joint isometries, Jour. Op. Th. 23 (1990), 339–350.

4. Bagchi, B. and Misra, B., Homogeneous operators and systems of imprimitivity, Contemp.
Math. 185 (1995), 67–76.

5. , Homogeneous tuples of multiplication operators and twisted Bergman spaces, J.
Funct. Anal. 136 (1996), 171–213.

6. Chen, X. and Douglas, R., Localization of Hilbert modules, Mich. Math. J. (1992), 443–454.

7. Chern, S.-S., A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian

manifolds, Ann. Math. 45 (1944), 741–752.

8. Cowen, M. and Douglas, R., Complex geometry and operator theory, Acta Math. 141 (1976),
187–261.

9. , Equivalence of Connections, Advances in Math., 56 (1985), 39–91.

10. , Operators possessing an open set of eigenvalues, Colloq. Math. Soc. Janas Bolyai,
Fejer-Riesz conference proceedings, vol. 135, 1980, pp. 323–341.

11. Curto, R. and Vasilescu, F.-H., Automorphism invariance of the operator-valued Poisson
transform, Acta Sci. Math. (Szeged) 57 (1993), 65–78.

12. Douglas, R., Hilbert modules for function algebras, Operator Theory: Advances and Applica-

tions, vol. 17, Birkhauser Verlag, Basel, 1986, pp. 125–139.

13. Douglas, R. and Misra, G., Geometric invariants for resolutions of Hilbert modules, Operator
Theory: Advances and Applications, vol. 104, Birkhauser Verlag, Basel, 1998, pp. 83–112.

14. Douglas, R., Misra, G. and Varughese, C., On quotient modules, the case of arbitrary multi-
plicity, preprint.

15. Douglas, R. and Yan, K., Hilbert-Samuel polynomials for Hilbert modules, Indiana Univ.
Math. J. 42, no. 3 (1993), 811–820.

16. Douglas, R. and Paulsen, V., Hilbert Modules over Function Algebras, Pitman Research Notes

in Mathematics, vol. 217, Longman Scientific & Technical, Harlow, Essex, UK.

17. Eisenbud, D., Commutative Algebra with a view toward algebraic geometry, Graduate Texts
in Mathematics, vol. 150, Springer-Verlag, 1994.
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