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In these notes we discuss the canonical anticommutation relations, the C∗-
algebra associated with them (the CAR algebra), second quantization, and the
construction of KMS states for so-called free Fermi gasses. We only scratch the
surface. For more, I refer you to Gert Pedersen’s book C∗-algebras and their au-
tomorphism groups [3] and volume 2 of Operator algebras and quantum statistical
mechanics, by Ola Bratteli and Derek Robinson [2].

Two operators X, Y are said to anticommute if XY + Y X = 0. Suppose we are
given two sets of self-adjoint operators p1, . . . , pn, q1, . . . , qn acting on some Hilbert
space (or more generally, belonging to some C∗-algebra) which satisfy the following

pkpj + pjpk = qkqj + qjqk = 2δjk1

pkqj + qjpk = 0

for all k, j. These are the canonical anticommutation relations in their self-adjoint
form for a Fermionic quantum system having n degrees of freedom. Taking j = k
we find that p2

k = q2
k = 1 (a self-adjoint unitary operator is called a reflection).

Thus, we simply have an even number of reflections which mutually anticommute
with each other. The above equations make sense for infinite sequences p1, p2, . . . ,
q1, q2, . . . and we allow that possibility as well (indeed, most of the discussion to
follow will be directed primarily to infinite systems).

These relations are best reformulated in their “complex” form, by introducing
the sequence of n operators

ak =
1
2
(qk + ipk).

After a straightforward calculation one finds that

akaj + ajak = 0,(1)

a∗kaj + aja
∗
k = δjk1,(2)

for all 1 ≤ j, k ≤ n if n is finite, and for all j, k ≥ 1 otherwise. The relations (1)
and (2) are called the canonical anticommutation relations (abbreviated CARs) for
n degrees of freedom.

It is also a good idea to carry this a step further, and reformulate the canonical
anticommutation relations in a coordinate-free way. Assuming for the moment that
n is finite and that a1, . . . , an ∈ B(H) satisfy (1) and (2) we can define a linear map
a : Cn → B(H) in the obvious way

a(z) = z1a1 + · · ·+ znan,
1
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z denoting (z1, . . . , zn) ∈ Cn, and we find that

a(z)a(w) + a(w)a(z) = 0,(3)

a(w)∗a(z) + a(z)a(w)∗ = 〈z, w〉1,(4)

where 〈z, w〉 denotes the usual inner product in Cn, z1w̄1 + · · · + znw̄n. If n is
infinite then we replace Cn with `2(N), define a(z) = z1a1 + z2a2 + . . . for the
dense subspace of all z ∈ `2(N) satisfying zk = 0 for all but finitely many k ∈ N.
Equation (4) implies that the linear map a(·) is bounded and therefore extends
uniquely to a linear map of `2(N) into B(H), and the relations (3) and (4) persist
for all z, w ∈ `2(N).

We can now free ourselves of coordinates entirely by starting with a separable
complex Hilbert space Z and a linear map a : Z → B(H) which satisfies (3) and
(4). Such a linear map is also called a representation of the CARs, and the number
of degrees of freedom is the dimension of Z. If one chooses an orthonormal basis
{e1, e2, . . . } for Z and sets ak = a(ek) then we recover equations (1) and (2), but
of course there are many ways of choosing an orthonormal basis for Z.

There are a number of interesting things that one can deduce from (3) and (4)
almost immediately. For example, the following result can be proved easily and I
recommend that you supply that proof.

Proposition 1. Let a : Z → B(H) be a representation of the canonical anticom-
mutation relations. Then for every unit vector z ∈ Z the operator U = a(z) is a
partial isometry such that UH and U∗H are orthocomplements of each other. The
four operators e11 = U∗U , e12 = U∗, e21 = U , e22 = UU∗ are a system of 2 × 2
matrix units, and

(
a b

c d

)
7→ ae11 + be12 + ce21 + de22 defines a ∗-isomorphism of

M2(C) onto C∗(U).

Proposition 1 implies that the linear map a(·) associates to every nonzero vector
z ∈ Z a 2 × 2 matrix subalgebra of B(H), namely C∗(a(z)). Notice that the
relation between these C∗-algebras for different z is quite complicated (for example,
C∗(a(z1)) neither commutes nor anticommutes with C∗(a(z2)), even when z1 ⊥ z2).
We will sort out the nature of this relationship presently.

It is also remarkable that the linear space of operators a(Z) is actually a Hilbert
space relative to the operator norm. Indeed, since each operator a(z) has the form
‖z‖U where U is a partial isometry, we have

‖a(z)‖ = ‖z‖,

which shows that the operator norm on a(Z) is given by the inner product structure
of Z. We have seen this phenomenon before when studying the Cuntz C∗-algebras.
Some people like to call linear spaces of operators with this property operator Hilbert
spaces.

We now show how to construct representations of the CARs out of more elemen-
tary data, in a way that brings out the relation between the CARs and inductive
limits of matrix algebras M2n(C), n = 1, 2, . . . . Suppose we are given a sequence
A1, A2, . . . , An of C∗-subalgebras of B(H), each containing the identity operator,
such that the operators in Ak commute with the operators in Aj for k 6= j, and
such that each Ak is isomorphic to the 2× 2 matrix algebra M2(C).
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For each k we choose a partial isometry uk ∈ Ak satisfying

uku∗k + u∗kuk = 1.

We know that Ak must contain such a partial isometry because it is isomorphic to
M2(C). Notice first that, regardless of how one chooses uk, it must generate Ak as
a C∗-algebra (for example, noting that that u2

k = 0 we may construct a set of 2× 2
matrix units as in Proposition 1 to see that C∗(uk) is itself isomorphic to M2(C)
and thus both Ak and its subalgebra C∗(uk) are four-dimensional).

Fix k = 1, . . . , n. Since uku∗k is a projection, (1 − 2uku∗k) is a reflection which
satisfies uk(1− 2uku∗k) = uk and (1− 2uku∗k)uk = −uk. It follows that (1− 2uku∗k)
anticommutes with uk,

(1− 2uku∗k)uk + uk(1− 2uku∗k) = 0,

while of course 1− 2uku∗k commutes with uj for j 6= k. Thus

vk = (1− 2u1u
∗
1)(1− 2u2u

∗
2) . . . (1− 2uku∗k), k = 1, . . . , n,

anticommutes with u1, . . . , uk and commutes with the remaining ones uk+1, . . . , un.
The vk are mutually commuting reflections.

With these relations in hand, one easily verifies that the sequence

ak = ukvk, k = 1, 2, . . . , n

satisfies the CARs (1) and (2) for n degrees of freedom. Finally, we claim that

C∗(a1, . . . , an) = C∗(u1, . . . , un) = C∗(A1 ∪ · · · ∪An) ∼= M2n(C).

Indeed, since aka∗k = uku∗k it follows that both sets a1, . . . , an and u1, . . . , un gen-
erate the same C∗-algebra; and by the preceding remarks this is the C∗-algebra
generated by A1 ∪ · · · ∪ An. It only remains to show that the latter is isomorphic
to M2n(C). We have already seen that Ak

∼= M2(C), and hence we can find a set
{eij(k) : 1 ≤ i, j ≤ 2} of 2× 2 matrix units for Ak, k = 1, . . . , n. Since these 2× 2
systems mutually commute with each other their n-fold products

ei1j1(1)ei1j2(2) . . . einjn(n), 1 ≤ ik, jk ≤ 2, k = 1, . . . , n

defines a system of 2n × 2n matrix units which generates C∗(A1 ∪ · · · ∪An), hence
all three C∗-algebras are isomorphic to M2n(C).

Now we will show that such a sequence a1, . . . , an ∈ B(H) is equivalent to any
other representation b1, . . . , bn ∈ B(K) of the CARs in the sense that there is a
unique ∗-isomorphism π : C∗(a1, . . . , an) → C∗(b1, . . . , bn) such that π(ak) = bk for
every k. To see that, notice that since the two sets {bk, b∗k} and {bj , b

∗
j} mutually

anticommute with each other for k 6= j, bjb
∗
j must commute with bkb∗k for k 6= j.

Thus we can define mutually commuting reflections ṽ1, . . . ṽn by

ṽk = (1− 2b1b
∗
1)(1− 2b2b

∗
2) . . . (1− 2bnb∗n)

and corresponding operators ũ1, . . . , ũn by ũk = bkṽk. Noting that bk = ũkṽk, a
calculation (essentially reversing what was done before) shows that ũk is a partial
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isometry satisfying ũkũ∗k + ũ∗kũk = 1, and ũk commutes with both ũj and ũ∗j for all
j 6= k. Thus we can make a 2n× 2n system of matrix units out of the ũk exactly as
we made one out of the uk above, and since now we are talking about two systems
of 2n × 2n matrix units, there is a unique ∗-isomorphism π : C∗(u1, . . . , un) →
C∗(ũ1, . . . , ũn) such that π(uk) = ũk for k = 1, . . . , n. This π must carry ak to bk

in view of the relations we have seen between the ak, uk, vk and their bedfellows
bk, ũk, ṽk.

What we have just done implies the following assertion about uniqueness even
in the case of infinitely many degrees of freedom.

Theorem A. Let a1, a2, · · · ∈ B(H) and b1, b2, · · · ∈ B(K) be two sequences of
operators satisfying (1) and (2). Then there is a unique ∗-isomorphism

π : C∗(a1, a2, . . . ) → C∗(b1, b2, . . . )

such that π(ak) = bk for every k = 1, 2, . . . .

proof. For each n = 1, 2, . . . let An = C∗(a1, . . . , an), Bn = C∗(b1, . . . , bn). The
previous argument implies that for every n there is a unique ∗-isomorphism πn :
An → Bn such that πn(ak) = bk, k = 1, 2, . . . , n.

We have already seen that An is isomorphic to a full matrix algebra, hence it
is simple; and being an injective morphism of C∗-algebras, π must be isometric.
Because of the coherence property πn+1 �An

= πn, there is a unique isometric ∗-
homomorphism of ∪An onto ∪Bn which provides a common extension of the πn.
The closure of the latter map is the desired isomorphism π of C∗(a1, a2, . . . ) onto
C∗(b1, b2, . . . ). The uniqueness of π is clear.

Theorem A implies that the C∗-algebra A generated by any representation of
the infinite CARs is well-defined up to ∗-isomorphism. It is a separable C∗-algebra
with unit. It also simple, in that it is obtained as the norm closure of an increasing
sequence An ⊆ An+1 of (unital) C∗-subalgebras such that each An is isomorphic to
the full matrix algebra M2n(C). A is called the CAR algebra (the acronym stands
for the mouth-filling canonical anticommutation relations, but it is pronounced as
in “car”).

It is important to reformulate Theorem A in the following coordinate-free form.

Corollary 1. Let Z1, Z2 be two (separable, infinite dimensional) Hilbert spaces
and let a : Z1 → B(H) and b : Z2 → B(K) be linear maps satisfying (3) and (4).
Then for every unitary operator U : Z1 → Z2 there is a unique ∗-isomorphism
αU : C∗(a(Z1)) → C∗(b(Z2)) such that αU (a(z)) = b(Uz) for every z ∈ Z1.

sketch of proof. Choose any orthonormal basis e1, e2, . . . for Z1 and let f1, f2, . . .
be the orthonormal basis for Z2 defined by fk = Uek, k = 1, 2, . . . . Then ak =
a(ek) ∈ B(H), bk = b(fk) ∈ B(K) define two representations of the infinite CARs.
Theorem A provides a ∗-isomorphism αU : C∗(a1, a2, . . . ) → C∗(b1, b2, . . . ) which
carries ak to bk for every k. One verifies easily that these C∗-algebra are respectively
C∗(a(Z1)) and C∗(b(Z2)), and that the required formula for αU follows after taking
linear combinations and limits.

Let a : Z → B(H) satisfy (3) and (4) and let A = C∗(a(Z)) be the corresponding
realization of the CAR algebra. Corollary 1 implies that every unitary operator in
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B(Z) gives rise to a natural ∗-automorphism of A. But what is more important for
quantum physics is the following observation.

Corollary 2. Let a : Z → B(H) and A be as above. Let U = {Ut : t ∈ R} be
a strongly continuous one-parameter unitary group acting on Z. Then there is a
unique one-parameter group α = {αt : t ∈ R} of ∗-automorphisms of A satisfying

αt(a(z)) = a(Utz), z ∈ Z, t ∈ R.

Moreover, (A, α, R) is a C∗-dynamical system.

proof. The only thing that is not immediate from Corollary 1 is continuity,

(5) lim
t→0

‖αt(X)−X‖ = 0, X ∈ A.

But for X = a(z), z ∈ Z, we have

‖αt(a(z))− a(z)‖ = ‖a(Utz)− a(z)‖ = ‖a(Utz − z)‖ = ‖Utz − z‖,

which tends to zero as t → 0 by strong continuity of U . Since the set of elements
a(Z) generate A as a C∗-algebra, (5) follows from a now-familiar argument.

Gauge group. Taking the scalar one-parameter unitary group Utz = eitz, we
obtain a C∗-dynamical system (A, γ, R) by defining

γt(a(z)) = a(eitz) = eita(z), z ∈ Z, t ∈ R.

γ is called the gauge group of A. It is periodic with period 2π: γt+2π = γt, t ∈ R.

Hamiltonians. The one-parameter unitary groups U = {Ut : t ∈ R} ⊆ B(Z)
associated with the flow of time in quantum theory usually have spectrum that is
bounded below in the sense that the spectral measure P associated with U ,

Ut =
∫ ∞

−∞
eitλ dP (λ),

satisfies P ((−∞, λ0)) = 0 for some λ0 ∈ R. In such cases we can replace U with
the phase-shifted version of itself

Vt = e−itλ0Ut,

and this new group V has nonnegative spectrum. If we choose λ0 carefully (by
taking it to be as large as possible) then we can ensure that the closed support of
the spectral measure of V a) is contained in the nonnegative reals [0,∞) and b)
contains 0. Of course, such a λ0 is uniquely determined.

If we write Vt = eitH , then H is an unbounded positive operator whose spectrum
contains 0. We will make further restrictions on H presently (i.e., that it has discrete
spectrum and its eigenvalues grow moderately rapidly), and for such a unitary
group V we will show how to write down a KMS state for the C∗-dynamical system
(A, α, R) associated with it.
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KMS states. Let (A,α, R) be a C∗-dynamical system. If A is unital then there
are always states on A which are invariant under the action of the group of ∗-
automorphisms α (see the current exercises). We want to single out a particularly
important class of invariant states, called KMS states after the physicists Kubo,
Martin, Schwinger. These are abstractions of the so-called Gibbs canonical ensem-
bles to the setting of C∗-dynamical systems associated with flows. KMS states are
very important not only for physical applications [2], but for the basic theory of
C∗-dynamical systems as well (see [3]).

For (A,α, R) as above, one can always find a dense ∗-subalgebra A0 of A whose
elements are entire with respect to the action of α in the following sense: for every
a ∈ A0 and every bounded linear functional ρ on A, the function t ∈ R 7→ ρ(αt(a))
can be extended to an entire function of a complex variable t. One constructs
elements of A0 in the following way. Choose an arbitrary element x ∈ A and let
f ∈ L1(R) be an integrable function on R whose Fourier transform has compact
support. It is not hard to show that the element

a =
∫ ∞

−∞
f(t)αt(x) dt ∈ A

is entire with respect to α, and in fact one can take A0 to be the subalgebra of
A generated by such elements a (see [2]). For every element a ∈ A0 the function
t ∈ R → αt(a) can be extended uniquely to an entire function from the complex
plane C into A, and for t ∈ C we will write αt(a) for the value of this entire function
at t.

Fix a positive real number β. A state ω of A is called a KMS state (for the
automorphism group α at inverse temperature β) if for every pair of elements
a, b ∈ A0 we have

(6) ω(aαiβ(b)) = ω(ba).

Notice that on the left side of (6) we have evaluated αt(b) at a point t = iβ on the
imaginary axis. We also point out that, when discussing KMS states, mathemati-
cians frequently (but not always) take β = 1.

Here are two very instructive exercises about KMS states. Consider a matrix
algebra A = Mn(C), n = 2, 3, . . . . Let H be a self-adjoint operator in A and
consider the C∗-dynamical system (A, α, R) defined by the automorphism group

αt(X) = eitHXe−itH , X ∈ A, t ∈ R.

Exercise 1. Show that for every β > 0,

ωβ(X) =
trace (e−βHX)
trace (e−βH)

, X ∈ A

is a KMS state for (A, α, R) at inverse temperature β.

Notice that in this case standard power series methodology provides us with an
entire function z ∈ C 7→ eizH without having to appeal to the subtler methods
sketched in the previous paragraphs. Note too that the state ωβ is invariant under
the action of the automorphism group α = {αt : t ∈ R}.
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Exercise 2. Show that the state ωβ of exercise 1 is the only KMS state at inverse
temperature β.

We now show how to construct KMS states associated with some of the the
natural flows on the CAR algebra A that are defined by Corollary 2. In order to
do that we must say something about the irreducible representations of A. A is
perhaps the most elementary example of a separable simple C∗-algebra which has
uncountably many mutually inequivalent irreducible representations. Worse, we do
not even know what its irreducible representations are (indeed, we can never know
a complete list of mutually inequivalent irreducible representations which is “Borel
measurable”, since it is known that such a list does not exist for a C∗-algebra such
as A [1]). This has serious consequences: if one needs to work with an irreducible
representation of the infinite canonical anticommutation relations, which irreducible
representation should one choose?

Fortunately, there is a “natural” irreducible representation, which we will now
discuss. While it has many favorable properties and while it is possible to single out
this particular representation in terms of certain natural requirements (axioms), it
is still in some fundamental sense an arbitrary choice.

Antisymmetric Fock space F−(Z). We start with a separable infinite dimen-
sional Hilbert space Z. For every n = 1, 2, . . . let

∧n
Z denote the antisymmetric

subspace of the n-fold tensor product of Hilbert spaces Z⊗n.
∧0

Z is defined as C,
and F−(Z) is the direct sum

F−(Z) = C⊕ Z ⊕ (Z ∧ Z)⊕ . . . .

For each n ≥ 2 and z1, . . . , zn ∈ Z, the wedge product z1∧z2∧· · ·∧zn is defined by
projecting the elementary tensor z1 ⊗ z2 ⊗ · · · ⊗ zn ∈ Z⊗n onto the antisymmetric
subspace

∧n
Z.

∧n
Z is the closed linear span of all such expressions. If we pick an

orthonormal basis e1, e2, . . . for Z, then we obtain an orthonormal basis for
∧n

Z
by taking all products of the form

(7) ei1 ∧ ei2 ∧ · · · ∧ ein , 1 ≤ i1 < · · · < in.

It is an instructive exercise to prove the following.

Proposition. For every z ∈ Z there is a unique bounded operator a(z) ∈ B(F−(Z))
satisfying

a(z)z1 ∧ · · · ∧ zn = z ∧ z1 ∧ z2 ∧ · · · ∧ zn

for n = 1, 2, . . . , and a(z)1 = z. This defines an irreducible representation of the
canonical anticommutation relations on F−(Z).

Remarks on other conventions and other mores. It is appropriate to comment here
on the vagaries of notation. The operators a(z) defined in the preceding propo-
sition are called creation operators, since when z is a unit vector a(z) creates a
particle in the state z. Their adjoints a(z)∗ are called annihilation operators. Un-
fortunately, this terminology is not universal. Some people (physicists are the most
likely perpretrators) like to think of the letter “a” appearing in a(z) as representing
“annihilation”. Correspondingly, their a(z) would be my a(z)∗. If one pursues that
point of view, one is lead to define the anticommutation relations in terms of an
antilinear map a : z ∈ Z → a(z) ∈ B(H) rather than by a linear map as we have
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done. The problem arising from these other conventions are not serious, but they
can be irritating for someone who is attached to linear maps.

Finally, none of this is significant for the mathematics of the situation since
by the work we have already done, any representation a1, a2, . . . of the canonical
anticommutation relations is isomorphic to the sequence of adjoints b1 = a∗1, b2 =
a∗2, . . . since the bk satisfy the same CARs as the ak!

Second quantization. Let A ∈ B(Z) be a contraction, ‖A‖ ≤ 1. The set of
contractions is closed under operator multiplication, under the adjoint operation,
and it has a natural strong and weak operator topology. Multiplication is strongly
continuous (on the unit ball), but the adjoint operation is not.

The operator n-fold tensor product A⊗n acts naturally on Z⊗n, and it leaves the
antisymmetric subspace

∧n
Z invariant. Thus we can define a contraction operator

Γ−(A) on F−(Z) in a natural way

Γ−(A) = 1⊕A⊕ (A⊗A �∧2 Z)⊕ (A⊗A⊗A �∧3 Z)⊕ . . . .

One has Γ−(A)z1 ∧ · · · ∧ zn = Az1 ∧ · · · ∧ Azn for every n ≥ 1, and it is a simple
matter to verify that Γ−(AB) = Γ−(A)Γ−(B), Γ−(A∗) = Γ−(A)∗, Γ−(1) = 1,
and that A 7→ Γ−(A) is strongly continuous. The mapping Γ− is called second
quantization (for Fermions).

In particular, if U = {Ut : t ∈ R} is a strongly continuous one-parameter unitary
group acting on the one-particle space Z, then Vt = Γ−(Ut) defines a strongly
continuous one-parameter unitary group acting on F−(Z). More significantly, from
the definition of the operator a(z) and the formulas above, we see that Vta(z)V ∗t =
a(Utz) = αt(a(z)) for every t ∈ R, z ∈ Z. It follows that the “second quantized”
unitary group V implements the action of the automorphism group α of Corollary
2 on the CAR algebra A = C∗(a(Z)) ⊆ B(F−(Z)) in the sense that

(8) VtXV ∗t = αt(X), X ∈ A, t ∈ R.

Let us look more carefully at (8) and the relation between Ut and Vt = Γ−(Ut).
If we write H and K for the generators of U and V respectively,

Ut = eitH , Vt = eitK , t ∈ R,

then by definition of V we have eitK = Γ−(eitH). If one likes to think by analogy
with the exponential map of Lie group theory, then one can interpret the preced-
ing formula as K = dΓ−(H), meaning that the unbounded self-adjoint operator
dΓ−(H) is defined as the generator of the one parameter unitary group Γ−(eitH)
by way of

Γ−(eitH) = eitdΓ−(H), t ∈ R.

We will not have to make use of this formalism.
More significantly, suppose now that the generator H of {Ut : t ∈ R} is positive

in the sense described in the preceding pages. Letting P be the spectral measure
of H, we have

Ut =
∫ ∞

0

eitλ dP (λ),



THE CANONICAL ANTICOMMUTATION RELATIONS 9

and thus for every s ≥ 0 in R we can define a contraction e−sH ∈ B(H) by

e−sH =
∫ ∞

0

e−sλ dP (λ).

The family of operators {e−sH : s ≥ 0} is in fact a strongly continuous semigroup
of positive contractions in B(Z), which is formally related to the original unitary
group U by e−sH = Uis. While the latter can be made precise, we will not have to
do so.

If one now second quantizes this semigroup, one would expect that Γ−(e−sH)
should agree with e−sK , that is, that K should have nonnegative spectrum, and
that its associated semigroup satisfies the expected relation with e−sH . This is the
case, it is not hard to prove, but we omit the argument, see [3].

We now make the key hypothesis on H, namely that for some positive s0 > 0,
e−s0H belongs to the trace class

(9) trace e−s0H < ∞.

(9) implies that the spectrum of H is discrete, and that if we enumerate its eigen-
values (including multiplicity) in increasing order 0 ≤ λ1 ≤ λ2 ≤ . . . then we
have

(10)
∞∑

n=1

e−s0λn < ∞.

This means that the eigenvalues λn must grow with n, but slow growth is good
enough. For example, the sequence λn = log(n) satisfies (10) for any s0 > 1.

What we require is that the quantized semigroup e−sK should also be trace-class
for sufficiently large s, and the following result establishes this. This remarkable
result is associated with the antisymmetry of F−(Z), and in fact the corresponding
property fails for symmetric “Bosonic” second quantization (the symmetric second
quantization of a rank-one projection is a projection of infinite rank!).

Theorem B. Let A ∈ B(H) be a positive contraction with finite trace, and let
λ1, λ2, . . . be the eigenvalues of A, repeated according to multiplicity. Then

(11) trace Γ−(A) =
∞∏

k=1

(1 + λk),

and in particular, trace Γ−(A) ≤ etrace A < ∞.

Remarks. The term on the right of (11) is the product of the eigenvalues of the
operator 1 + A, and this suggests that one can think of (11) as the formula
trace Γ−(A) = det(1 + A) (of course, we have not actually given a coherent defini-
tion of the determinant of an operator on an infinite dimensional Hilbert space).

Note too that since Γ−(A) is a positive operator which restricts to A on the one-
particle subspace Z ⊆ F−(Z), we also have the inequality trace A ≤ trace Γ−(A).
Conclusion: for any positive contraction A ∈ B(H) one has

trace A < ∞ ⇐⇒ trace Γ−(A) < ∞.
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proof. We can find an orthonormal basis e1, e2, . . . for Z such that Aek = λkek,
k = 1, 2, . . . . Let Pn be the projection on the span of e1, . . . , en, and let An = APn.
Then An has finite rank and An ↑ A (strongly) as n →∞.

Fix m = 1, 2, . . . and consider the restriction of Γ−(An) to
∧m

Z. Since

{ei1 ∧ ei2 ∧ · · · ∧ eim
: 1 ≤ i1 < i2 < · · · < im}

is an orthonormal basis for
∧m

Z and Anei = 0 for i > n, we see that Γ−(An)
vanishes on

∧m
Z for m > n, and for m ≤ n we have

trace Γ−(An) �∧m Z =
∑

1≤i1<···<im≤n

〈Aei1 ∧ · · · ∧Aeim
, ei1 ∧ · · · ∧ eim

〉

=
∑

1≤i1<···<im≤n

λi1λi2 . . . λim
.

Thus

trace Γ−(An) = 1 +
n∑

m=1

trace Γ−(An) �∧m Z= 1 +
n∑

m=1

∑
1≤i1<···<im≤n

λi1λi2 . . . λim

= (1 + λ1)(1 + λ2) . . . (1 + λn).

Since An ↑ A strongly as n → ∞ we have Γ−(An) ↑ Γ−(A), and since the trace is
lower semicontinuous we conclude that

trace Γ−(A) = lim
n→∞

(1 + λ1)(1 + λ2) . . . (1 + λn) =
∞∏

k=1

(1 + λk).

Since 1 + λ ≤ eλ for every real number λ, we can estimate the right side of the
preceding formula in the obvious way

∞∏
k=1

(1 + λk) ≤ eλ1+λ2+... ≤ etrace A

to complete the proof.

Returning now to the case e−sK = Γ−(e−sH) under discussion, let us assume
that there is a β > 0 such that trace e−βH < ∞. Theorem B implies that e−βK is
a positive trace class operator on F−(Z), and hence we can define a normal state
ωβ of B(F−(Z)) by

(12) ωβ(X) =
trace (e−βKX)
trace (e−βK)

, X ∈ B(F−(Z)).

ωβ is called the Gibbs state (at inverse temperature β). It can be shown that it is
the only normal state of B(F−(Z)) whose restriction to the CAR algebra A satisfies
the KMS condition (at inverse temperature β), relative to the automorphism group
α = {αt : t ∈ R} of A defined by

αt(a(z)) = a(eitHz), z ∈ Z, t ∈ R
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(the proof can be found around page 40 of [2]).

Concluding Remarks. Let us look back over what has been done. We started with
a one parameter unitary group U acting on Z and formed the associated C∗-
dynamical system (A, α, R) by way of Corollary 2. Our goal was to construct a
KMS state for (A, α, R). We got going on this by first picking a particular irre-
ducible representation of A in which the action of α could be implemented spatially
by a one-parameter unitary group (obtained through the second quantization pro-
cedure).

In order to proceed further, we had to make additional hypotheses on Ut = eitH ,
namely that a) H is positive, and b) e−βH is trace-class for some β > 0. Under
these conditions, Theorem B gave us the machinery we needed to write down the
Gibbs state of (12) (we did not verify the KMS condition, but it is verified in [2]).

I do not know how to prove either existence or uniqueness of KMS states for the
C∗-dynamical systems obtained in this way without the additional hypotheses of
the preceding paragraph. More information can be found in [3].
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