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Abstract. We show that the notion of asymptotic lift generalizes nat-
urally to normal positive maps φ : M → M acting on von Neumann
algebras M . We focus on cases in which the domain of the asymptotic
lift can be embedded as an operator subsystem M∞ ⊆ M , and charac-
terize when M∞ is a Jordan subalgebra of M in terms of the asymptotic
multiplicative properties of φ.

1. Introduction

Let φ : M → M be a normal unit preserving positive linear map acting
on a dual operator system M ; we refer to such a pair (M, φ) as a UP map.
While we are primarily interested in UP maps that act on von Neumann
algebras M , it is useful to broaden the context as above. The powers of φ
form an irreversible dynamical semigroup {φn : n = 0, 1, 2, . . . } acting on
M . In this paper we generalize work begun in [Arv04] and [Arv06], together
with complementary results in [Stø06], to further develop the asymptotic
theory of such semigroups.

One may view UP maps as the objects of a category, in which a homo-
morphism from φ1 : M1 → M1 to φ2 : M2 → M2 is a UP map E : M1 → M2

such that E ◦ φ1 = φ2 ◦ E. There is a natural notion of isomorphism in
this category. Our first general result is that every normal unit-preserving
positive linear map acting on a dual operator system has an asymptotic lift
which is unique up to isomorphism. This generalizes one of the main results
of [Arv06], which dealt with the subcategory in which the objects are uni-
tal normal completely positive maps (UCP maps) on dual operator systems,
with UCP maps as morphisms.

We are primarily concerned with UP maps that act on von Neumann
algebras M . In [Arv06] it was shown that the asymptotic lift (N, α, E) of a
UCP map φ : M → M acting on a von Neumann algebra M also acts on a
von Neumann algebra N . Moreover, it was shown that the W ∗-dynamical
system (N, α) can be identified with the tail flow of the minimal dilation of
φ to a ∗-endomorphism of a larger von Neumann algebra in most cases –
namely those in which the dilation endomorphism has trivial kernel, which
includes all UCP maps acting on factors M . Since the minimal dilation
of a UCP map on a von Neumann algebra can be constructed explicitly in
principle, that provided a concrete identification of the asymptotic lift.
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It is significant that the asymptotic lift (N, α, E) of a UP map acting on
a von Neumann algebra need not act on a von Neumann algebra N . In
this paper we show that in general, N is order-isomorphic to a unique JW∗-
algebra – namely a dual operator system that is closed under the Jordan
product x ◦ y = (xy + yx)/2 – in such a way that α becomes a Jordan
automorphism of N . Thus, the asymptotic behavior of a UP map on a von
Neumann algebra is always associated with a JW ∗-dynamical system (N, α).

Naturally, one would like to identify (N, α) more concretely in terms of
the asymptotic properties of the semigroup φ, φ2, φ3, . . . . But since there is
no dilation theory for semigroups of UP maps – and perhaps an effective
dilation theory is impossible, there seems to be no candidate to replace
the “tail flow” identification described above for UCP maps. Thus, this
identification problem becomes a significant issue for UP maps.

In many cases, N can be embedded as an operator system N ⊆ M in such
a way that α = φ �N . While the operator system N is order-isomorphic to
a JW∗-algebra in general, it need not be closed under the ambient Jordan
multiplication of M , and we address that issue in Section 4. We identify N
concretely in terms of the action of φ on M , and when N is a Jordan subal-
gebra of M , we are able to go farther by identifying N with the multiplicative
core of φ that was introduced in [Stø06].

The problem of finding a satisfactory concrete description of the JW∗-
dynamical system (N, α) when N does not embed in M remains untouched.

2. Asymptotic lifts of positive maps

In this section we describe how the notion of asymptotic lift (of a com-
pletely positive map) can be generalized to normal unit-preserving maps
that are merely positive. We summarize the basic properties of asymptotic
lifts, indicating briefly how proofs of [Arv06] should be modified.

Remark 2.1 (Dual operator systems, norm, and order). Every von Neumann
algebra is the dual of a unique Banach space, and hence it carries a natural
weak∗ topology (aka the ultraweak or σ-weak topology). A dual operator
system is a linear space of operators M ⊆ B(H) that contains the identity 1,
is self-adjoint M∗ = M , and is closed in the weak∗-topology of B(H). Such
an M also has a unique predual M∗, and its intrinsic M∗-topology coincides
with the relative weak∗-topology of B(H). A map of dual operator systems
φ : M → N is called normal when it is weak∗-continuous. There is an
intrinsic characterization of dual operator systems that we do not require.

Let us recall the basic properties of unit-preserving normal positive linear
maps φ : M → N (UP maps) between dual operator systems. A UP map
φ : M → N defined on a C∗-algebra M must satisfy ‖φ‖ = 1. That is most
easily seen by making use of the Russo-Dye theorem [RD66] which implies
that ‖φ‖ = sup ‖φ(u)‖, u ranging over the unitary group of M , together with
the fact that for every unitary u, the restriction of φ to the commutative
C∗-algebra C∗(u) is completely positive and therefore satisfies the strong
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Schwarz inequality φ(u)∗φ(u) ≤ φ(u∗u) = φ(1M ) = 1N . More generally, if
M is merely an operator system then one has 1 ≤ ‖φ‖ ≤ 2 in general, but
the C∗-algebraic upper bound ‖φ‖ = 1 often fails.

On the other hand, since the norm of a self-adjoint operator x is the
smallest α ≥ 0 such that −α1 ≤ x ≤ α1, the restriction of φ to the real
Banach space M sa of self-adjoint elements of M has norm 1. Conversely, if a
linear map φ : M → N carries self-adjoint elements to self-adjoint elements,
maps 1M to 1N , and satisfies ‖φ �Msa ‖ = 1, then φ must also preserve
positivity. In particular, an order isomorphism in the category of UP maps
is characterized as a ∗-preserving linear map φ : M → N of operator systems
that carries 1M to 1N and restricts to an isometry of M sa onto N sa.

Definition 2.2. A reversible lift of a UP map φ : M → M is a triple
(N, α, E) consisting of a UP automorphism α : N → N of another dual
operator system N and a UP map E : N → M satisfying E ◦ α = φ ◦ E.

A reversible lift (N, α, E) of φ is said to be nondegenerate if

(2.1) E(α−n(y)) = 0, n = 0, 1, 2, . . . =⇒ y = 0.

Significantly, if (2.1) fails, one can replace (N, α, E) with another reversible
lift (Ñ , α̃, Ẽ) that is nondegenerate, as in Remark 2.3 of [Arv06].

Definition 2.3. Let φ : M → M be a UP map on a dual operator sys-
tem. An asymptotic lift of φ is a reversible lift (N, α, E) of φ that satisfies
nondegeneracy (2.1), together with

(2.2) ‖ρ ◦ E �Nsa ‖ = lim
k→∞

‖ρ ◦ φk �Msa ‖, ρ ∈ M∗.

Remark 2.4. We shall make use of the dual formulation of (2.2), and we
record that now for later reference: For every nondegenerate reversible lift
(N, α, E) of φ, (2.2) is equivalent to the following assertion:

(2.3) E(ballr N sa) =
∞⋂

n=1

φn(ballr M sa), r > 0,

where ballr X denotes the closed ball of radius r in a real or complex Banach
space X. The proof of equivalence of (2.2) and (2.3) follows the lines of the
proof of the corresponding result of [Arv06].

There are two fundamental results on asymptotic lifts of UP maps. The
first concerns existence and uniqueness:

Theorem 2.5. Every UP map φ : M → M of a dual operator system
has an asymptotic lift. If (N1, α1, E1) and (N2, α2, E2) are two asymptotic
lifts for φ, then there is a unique UP-isomorphism of dual operator systems
θ : N1 → N2 such that θ ◦ α1 = α2 ◦ θ and E2 ◦ θ = E1.

As in the case of completely positive maps, the existence issue is settled by
a direct construction based on inverse sequences, namely bounded bilateral
sequences (xn) of elements of M that satisfy xn = φ(xn+1), n ∈ Z. The
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space of all inverse sequences is a dual operator system N , the bilateral shift
α : (xn) 
→ (xn−1) is an automorphism of N , and the connecting map E
carries (xn) to x0. The proof that (N, α, E) is an asymptotic lift is a minor
(and somewhat simpler) variation of the proof of the corresponding result
of [Arv06]. Similarly, the proof of uniqueness is a straightforward variation
of arguments in [Arv06]; we omit the details.

If a UP map φ : M → M on a von Neumann algebra M is completely
positive, then its asymptotic lift (N, α, E) gives rise to a W ∗-dynamical
system (N, α) [Arv06]. While this need not be true for asymptotic lifts of
UP maps, one can make the following assertion in general:

Theorem 2.6. Let φ : M → M be a UP map on a von Neumann algebra
M and let (N, α, E) be its asymptotic lift. Then N is order isomorphic to a
unique JW∗-algebra in such a way that α is a Jordan automorphism of N .

Again, the proof follows along the lines of arguments in [Arv06], by intro-
ducing a Jordan multiplication on the range of a positive idempotent map as
in Corollary 1.6 of [ES79]. The key step is to show that the for constructed
asymptotic lift (N, α, E) in which N is the space of inverse sequences, there
is a projection of norm one Q : �∞(M) → N . The existence of such a pro-
jection Q follows from the argument of [Arv06]. Once one has a positive
projection (which in the current setting is typically not completely positive)
with these properties, one can introduce a Jordan project in N by way of

x ◦ y = Q(
1
2
(xy + yx)), x, y ∈ N,

and at this point one can show that N is order isomorphic to a JW∗-algebra
by imitating arguments in [Arv06].

3. Embeddable asymptotic lifts

Let (N, α, E) be the asymptotic lift of a UP map φ : M → M acting on a
dual operator system. In this section we fix attention on those cases in which
the asymptotic lift can be embedded as a subsystem of M in the following
particular way. We say that (N, α, E) embeds in M if E is restricts to an
isometry on the self-adjoint part of N ,

(3.1) ‖E(y)‖ = ‖y‖, y = y∗ ∈ N.

This is equivalent to the assertion that E implements an order isomorphism
of N onto E(N). Since all asymptotic lifts of φ : M → M are isomorphic,
this definition does not depend on the particular choice of (N, α, E). In
such cases, the range E(N) of E is an operator subsystem of M with the
property that φ restricts to an automorphism of E(N), α is identified with
φ �E(N), and E is identified with the inclusion map ι : E(N) ⊆ M .

The purpose of this section is to make a precise summary of those facts,
and especially to give an explicit description of E(N) in terms of the action of
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φ on M . We begin by introducing the following operator system M∞ ⊆ M :

M∞ =
⋃
r>0

∞⋂
n=1

φn(ballr M).

M∞ consists of all y ∈ M for which there is a bounded sequence xn ∈ M with
y = φn(xn), n = 1, 2, . . . . In general, M∞ is a self-adjoint linear subspace
of M containing the identity operator, it is invariant under φ, and in fact
φ(M∞) = M∞. Moreover, from (2.3) we may infer that

(3.2) E(N sa) =
⋃
r>0

E(ballr N sa) =
⋃
r>0

∞⋂
n=1

φn(ballr M sa) = M sa
∞,

hence M∞ = E(N) is precisely the range of E in all cases. We sometimes
refer to M∞ as the tail operator system of M .

Remark 3.1. It is clear that M∞ ⊆ ∩nφn(M), but the inclusion is typically
proper. As a simple example, let M = M2(C) and consider the completely
positive map φ : M → M defined by

φ

(
a b
c d

)
=

(
a λb
λc d

)

where λ is a constant satisfying 0 < λ < 1. One has ∩nφn(M) = M , but in
this case M∞ is the two-dimensional subalgebra of diagonal matrices.

Proposition 3.2. Let (N, α, E) be an asymptotic lift of φ : M → M . Then
kerE = {0} iff the restriction of φ to M∞ is both injective and surjective.

Proof. In general, one has φ(M∞) = M∞ by definition of M∞. Assuming
that kerE = {0}, choose a ∈ M∞ such that φ(a) = 0. Since E(N) = M∞,
there is a y ∈ N such that a = E(y), hence 0 = φ(a) = φ(E(y)) = E(α(y)),
and therefore α(y) = 0 because E is injective. y = 0 follows because α is an
automorphism of N , hence a = E(y) = 0.

Conversely, if the restriction of φ to M∞ is injective, choose a nonzero
element y ∈ N . Since the norms ‖E(α−n(y))‖ increase to ‖y‖ as n ↑ ∞ (see
Lemma 3.7 of [Arv06]), we must have E(α−n(y)) �= 0 for sufficiently large
n ≥ 1. Since each power φn restricts to an injective map on M∞ = E(N),
it follows that

E(y) = φn(E(α−n(y))) �= 0
for large n, hence E is injective. �

We conclude that whenever kerE = {0}, the restriction of φ to M∞
defines an order-preserving linear bijection on M∞. However, M∞ itself
need not be closed in any topology in general, and the restriction of φ to
M∞ need not be an order automorphism. The following result implies that
when E restricts to an isometry on N sa, such anomalies cannot occur.

Theorem 3.3. For every UP map φ : M → M on a dual operator system,
the following are equivalent.
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(i) The asymptotic lift of φ : M → M embeds in M .
(ii) M∞ is weak∗-closed and φ restricts to an order automorphism of it.
(iii) The asymptotic lift of φ : M → M is isomorphic to the triple

(M∞, φ �M∞ , ι), where ι : M∞ ⊆ M is the inclusion map.

Proof. Let (N, α, E) be an asymptotic lift of φ : M → M .
(i) =⇒ (ii): By hypothesis, E restricts to an isometry of N sa onto the

self-adjoint part of E(N) = M∞. Since M∞ is a self-adjoint linear space of
operators and the adjoint operation is weak∗-continuous, M∞ will be weak∗-
closed provided we show that its self-adjoint part M sa

∞ is weak∗-closed. By a
standard result on the weak∗-closure of convex sets in dual Banach spaces,
this will follow if we show that for every r > 0, the intersection M sa

∞∩ballr M
of M sa

∞ with the r-ball of M is weak∗-closed. Now the connecting map
E : N → M restricts to a weak∗-continuous isometry of N sa onto M sa

∞, and
by (2.3), it carries ballr N sa onto M sa

∞ ∩ ballr M . Since the unit ball of N
is weak∗-compact, it follows that M sa

∞ ∩ ballr M = E(ballr N sa) is weak∗-
compact, hence weak∗-closed. We conclude that M sa

∞ is weak∗-closed.
Making use of Proposition 3.2, let ψ be the linear automorphism of M∞

inverse to φ �M∞ . Then since E ◦α = φ◦E, we have E ◦α−1 = ψ ◦E. Since
both E and α−1 restrict to isometries on N sa, it follows that ψ restricts
to an isometry on M sa

∞ = E(N sa). Since ψ(1) = 1, ψ must also be order-
preserving, and we conclude that φ �M∞ is an order automorphism.

(ii) =⇒ (iii): Under the hypothesis (ii), (M∞, φ �M∞ , ι) becomes a re-
versible lift of φ : M → M that is obviously nondegenerate. We show that it
is the asymptotic lift of φ : M → M by establishing (2.2). For that, consider
the decreasing sequence of weak∗-compact sets

φn(ballM sa), n = 1, 2, . . .

and choose a normal linear functional ρ ∈ M∗. By (2.3), we have
∞⋂

n=1

φn(ballM sa) = E(ballN sa).

Since ρ is weak∗-continuous, it follows from Lemma 3.5 of [Arv06]) that

‖ρ ◦ φn �Msa∞ ‖ = sup{ρ(x) : x ∈ φn(ballM sa)} ↓ sup{ρ(x) : x ∈ E(ballN sa)}
= ‖ρ ◦ E �Nsa ‖,

as n ↑ ∞, and (iii) follows.
The implication (iii) =⇒ (i) is obvious. �

Taken together, theorems 3.3 and 2.6 imply:

Corollary 3.4. Let φ : M → M be a UP map on a von Neumann algebra
M whose asymptotic lift embeds in M . Then the tail operator system M∞
is order-isomorphic to a JW∗-algebra in such a way that the restriction of φ
to M∞ becomes a Jordan automorphism, and the asymptotic lift of φ is the
triple (M∞, φ � M∞, ι), ι being the inclusion map ι : M∞ ⊆ M .
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The asymptotic lifts of many UP maps are embeddable. That is true for
all examples covered by the hypotheses of [Arv04], and in Section 5 below
we elaborate on the special case of maps on finite-dimensional algebras. Not
all infinite-dimensional UP maps are embeddable, and the following example
illustrates the fact.

Remark 3.5 (An Example). Let L2 = L2(T, dθ
2π ), let H2 ⊆ L2 be the usual

Hardy space, and let s ∈ B(H2) be the unilateral shift. Consider the UCP
map φ defined on M = B(H2) by

φ(x) = s∗xs, A ∈ B(H2).

Let u ∈ B(L2) be the bilateral shift and let p be the projection of L2 on H2.
Then the asymptotic lift of φ is the triple (B(L2), α, E), where α(y) = u∗bu
and E is the compression map E(y) = py �H2 . Since kerE �= {0}, the
asymptotic lift of φ is not embeddable. We omit the calculations.

4. Embedding and the multiplicative core

If the asymptotic lift of a UP map φ : M → M acting on a von Neumann
algebra embeds in M , then by Corollary 3.4, M∞ is order isomorphic to
a JW∗-algebra and the restriction of φ to M∞ becomes a Jordan automor-
phism of M∞. Notice that this does not imply that M∞ itself is closed under
the Jordan product x◦y = 1

2(xy+yx) inherited from M . Section 5 contains
a simple example that illustrates the phenomenon.

In the present section we study the Jordan structure of M∞ in more detail
in the case when the asymptotic lift embeds in M . In particular, we show
that if M∞ is itself a JW∗-algebra then it coincides with the multiplicative
core Cφ of φ introduced in [Stø06]. We also give necessary and sufficient
conditions for (Cφ, φ �Cφ

, ι) to be the asymptotic lift.
Following [Stø06], the definite set of a UP map φ : M → M is defined by

(4.1) Mφ = {x ∈ M : φ(x∗ ◦ x) = φ(x)∗ ◦ φ(x)};
it is a JW∗-algebra, and we have

φ(x ◦ y) = φ(x) ◦ φ(y), x ∈ Mφ, y ∈ M.

Continuing as in [Stø06], one can show that

Bφ = {x ∈ M : φn(x) ∈ Mφ, n = 0, 1, 2, . . . }
is a JW∗-algebra on which φ restricts to a Jordan endomorphism, and one
forces surjectivity on φ by restricting it to the “tail” subalgebra

Cφ =
∞⋂

n=1

φn(Bφ).

Cφ is called the multiplicative core of φ. We require the following variation
of Lemma 6 of [Stø06].

Lemma 4.1. The multiplicative core is characterized as the largest JW∗-
subalgebra N ⊆ M with the following two properties:
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(i) φ(N) = N .
(ii) φ(x ◦ y) = φ(x) ◦ φ(y) for all x, y ∈ N .

Proof. Let N be a JW∗-subalgebra of M with properties (i) and (ii), and
choose x ∈ N . Then we have

φ(φn(x)∗ ◦ φn(x)) = φn+1(x)∗ ◦ φn+1(x), n ≥ 0,

because φ is a Jordan endomorphism of N , hence N ⊆ Bφ. It follows that
N = φn(N) ⊆ φn(Bφ) for every n ≥ 0, so that N ⊆ ∩nφn(Bφ) = Cφ. �

The following result associates the multiplicative core with asymptotic
lifts that are embeddable as Jordan subalgebras:

Theorem 4.2. For every UP map φ : M → M acting on a von Neumann
algebra M , the tail operator system M∞ contains the multiplicative core Cφ.

Assume that the asymptotic lift embeds in M . Then M∞ is a Jordan
subalgebra of M precisely when M∞ = Cφ.

Proof. By definition, Cφ = ∩nφn(Bφ), and φ restricts to a Jordan endomor-
phism of Bφ. Since each power φn of φ restricts to a Jordan endomorphism
on Bφ and a Jordan homomorphism maps the unit ball of the self-adjoint
part of its domain onto the unit ball of the self-adjoint part of its range, we
have φn(ballr Bsa

φ ) = ballr(φn(Bφ)sa) for every r > 0 and every n = 1, 2, . . . ,
hence

ballr Csa
φ =

∞⋂
n=1

ballr φn(Bsa
φ ) =

∞⋂
n=1

φn(ballr Bsa
φ ) ⊆ M∞.

The asserted inclusion Cφ = Csa
φ +iCsa

φ ⊆ M∞ follows after taking the union
over all positive r.

Assume that the asymptotic lift of φ : M → M embeds in M . If M∞
is closed under the Jordan multiplication of M , then by Theorem 3.3 (iii),
φ �M∞ is an order automorphism of M∞, and an application of Kadison’s
Schwarz inequality for positive linear maps implies that φ is a Jordan au-
tomorphism of M∞. By Lemma 4.1, M∞ ⊆ Cφ, and we conclude that
M∞ = Cφ. The converse is trivial. �

It is significant that when M∞ is not itself closed under the Jordan prod-
uct, it contains a largest JW∗-algebra that is characterized as follows.

Proposition 4.3. Let φ : M → M be a UP map whose asymptotic lift
embeds in M . Then the weak∗-closed linear span of all projections in M∞
is a JW∗-algebra.

Proof. By Corollary 3.4, there is a JW∗-algebra B and an order isomorphism
α of B onto M∞. Viewing α as a UP map of B into the JW∗-algebra M , it
makes sense to speak of its definite set Bα. Since Bα is a JW∗-subalgebra
of B and the restriction of α to Bα is a Jordan homomorphism, it follows
that α(Bα) ⊆ M∞ is a JW∗-subalgebra of M .
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Being a JW∗-algebra, α(Bα) is generated by its projections. Conversely,
we claim that every projection e ∈ M∞ belongs to α(Bα). To see that, fix
such an e and choose f ∈ B such that α(f) = e. Then 0 ≤ f ≤ 1 because
α is a UP order isomorphism, so by Kadison’s Schwarz inequality

0 = e − e2 = α(f) − α(f)2 ≥ α(f − f2) ≥ 0,

hence α(f − f2) = 0 and finally f = f2. Since α(f2) = α(f)2, f belongs to
the definite set of α, hence e = α(f) ∈ α(Bα). �

We conclude the section by describing intrinsic conditions on a UP map
which imply that its asymptotic lift is embeddable as the multiplicative core;
note that the sufficient conditions of Theorem 4.5 are clearly necessary as
well.

For a linear functional ρ on M and a set of operators S ⊆ M , we write
ρ ⊥ S whenever ρ(S) = {0}. We require the following result characterizing
the equality M∞ = Cφ in terms of the action of φ on the predual of M :

Lemma 4.4. Let φ : M → M be a UP map. Then M∞ = Cφ iff for every
ρ ∈ M∗ satisfying ρ ⊥ Cφ, one has

(4.2) lim
n→∞

‖ρ ◦ φn‖ = 0.

Proof. We claim first that ρ ∈ M∗ satisfies (4.2) iff ρ ⊥ M∞. Indeed, setting
M∞(r) = ∩nφn(ballr M) for r > 0, and noting that the compact convex
sets φn(ballr M) decrease to M∞(r) as n ↑ ∞, we can apply Lemma 3.5 of
[Arv06] to conclude that (4.2) is equivalent to the assertion

sup{|ρ(x)| : x ∈ M∞(r)} = lim
n→∞

sup{|ρ(x)| : x ∈ φn(ballr M)}
= r · lim

n→∞
‖ρ ◦ φn‖ = 0,

for every r > 0. Noting that M∞ = ∪r>0M∞(r), the claim follows.
The preceding paragraph, together with a standard separation theorem,

shows that the assertion

(4.3) ρ ⊥ Cφ =⇒ lim
n→∞

‖ρ ◦ φn‖ = 0

is equivalent to the assertion M∞
w∗ ⊆ Cφ; and since in general we have

Cφ ⊆ M∞ ⊆ M∞
w∗, (4.3) is seen to be equivalent to Cφ = M∞. �

Theorem 4.5. Let φ : M → M be a UP map such that
(i) The positive linear map obtained by restricting φ to Cφ is faithful.
(ii) limn→∞ ‖ρ ◦ φn‖ = 0 for every ρ ∈ M∗ satisfying ρ ⊥ Cφ.

Then M∞ = Cφ, the restriction of φ to Cφ is a Jordan automorphism of
Cφ, and the asymptotic lift of φ is (Cφ, φ �Cφ

, ι).

Proof. Hypothesis (i) implies that the restriction of φ to Cφ is a Jordan
automorphism. Thus, the triple (Cφ, φ �Cφ

, ι) is a nondegenerate reversible
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lift of φ. To show that it is the asymptotic lift, we must establish the
following inequality for every ρ ∈ M∗:

(4.4) lim
n→∞

‖ρ ◦ φn‖ ≤ ‖ρ �Cφ
‖.

For that, fix ρ and, for every n = 1, 2, . . . , choose an element xn ∈ M
satisfying ‖xn‖ = 1 and |ρ(φn(xn))| = ‖ρ ◦ φn‖. We can find a subsequence
n1 < n2 < . . . such that φnk(xnk

) converges to y ∈ M weak∗ as k → ∞.
Since the weak∗-compact sets φn(ballM) decrease with increasing n, y must
belong to their intersection ∩nφn(ballM) = M∞, and of course ‖y‖ ≤ 1.

Making use of hypothesis (ii) and Lemma 4.4, we conclude that M∞ = Cφ,
so that y ∈ ballCφ. Hence

lim
n→∞

‖ρ ◦ φn‖ = lim
k→∞

‖ρ ◦ φnk‖ = lim
k→∞

|ρ(φnk(xnk
))| = |ρ(y)| ≤ ‖ρ �Cφ

‖,

and the desired inequality (4.4) follows. �

Remark 4.6. The conclusion of Theorem 4.5 can be significantly strength-
ened whenever there is a normal positive projection E of M onto Cφ - in
particular, whenever M is a finite von Neumann algebra. In such cases, a
simple argument (that we omit) shows that the automorphism α = φ �Cφ

of
Cφ satisfies

lim
n→∞

‖ρ ◦ φn − ρ ◦ αn ◦ E‖ = 0, ρ ∈ M∗.

5. UP maps on finite-dimensional algebras

In this section we show that the asymptotic lift of every UP map acting
on a finite-dimensional algebra M embeds in M . We identify M∞ with the
multiplicative core whenever there is a faithful φ-invariant state, and more
generally, we identify the multiplicative core when φ is faithful. We conclude
with an elementary example exhibiting nontrivial asymptotic dynamics, for
which M∞ is not closed under the Jordan product of M and hence differs
from the multiplicative core.

Theorem 5.1. Let φ : M → M be a UP map on a finite-dimensional von
Neumann algebra. Then (M∞, φ �M∞ , ι) is the asymptotic lift of φ. If, in
addition, for every positive operator x ∈ M one has

(5.1) lim
n→∞

‖φn(x)‖ = 0 =⇒ x = 0,

then M∞ is the multiplicative core Cφ. Condition (5.1) is satisfied whenever
there is a faithful state ρ of M satisfying ρ ◦ φ = ρ.

The proof requires a known elementary result (see [ES79]):

Lemma 5.2. Let M be a unital C∗-algebra and let E : M → M be an
idempotent UP map that is faithful: x ∈ M+, E(x) = 0 =⇒ x = 0. Then
E(M) is a Jordan subalgebra of M .
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Proof. Choose a self-adjoint element x ∈ E(M). Then E(E(x2) − x2) =
E(x2) − E(x2) = 0. By Kadison’s Schwarz inequality, x2 = E(x)2 ≤ E(x2),
so that E(x2)−x2 ≥ 0. Since E is faithful, E(x2) = x2 ∈ E(M). This shows
that E(M)sa is closed under the Jordan product, hence E(M) is a Jordan
subalgebra of M . �

Proof of Theorem 5.1. There is a sequence n1 < n2 < · · · of positive inte-
gers such that φnk converges to a unique idempotent E (this is a result of
Kuperberg, see Theorem 4.1 of [Arv04] et. seq.). Note that E(M) = M∞.
Indeed, for every x ∈ M ,

E(x) = lim
k

φnk(x) ∈ ∩n{φn(x), φn+1(x) . . . } ⊆ ∩nφn(ball‖x‖ M),

hence E(x) ⊆ M∞. For the opposite inclusion, choose y ∈ M∞. Then there
is a bounded sequence xk ∈ M such that y = φnk(xk) for every k. Let k′ be
a subsequence of k such that xk′ converges to x ∈ M . Then

‖y − φnk′ (x)‖ ≤ ‖y − φnk′ (xk′)‖ + ‖φnk′ (xk′) − φnk′ (x)‖ ≤ ‖xk′ − x‖,
and the right side tends to zero as k′ → ∞.

It was also shown in [Arv04] that φ restricts to a surjective isometry on
M∞ and that the powers of φ tend to zero on kerE, so that

lim
n→∞

‖φn ◦ E − φn‖ = 0.

It follows that for every bounded linear functional ρ on M , we have

lim sup
n→∞

| ‖ρ �M∞ ‖ − ‖ρ ◦ φn‖ | = lim sup
n→∞

| ‖ρ ◦ φn ◦ E‖ − ‖ρ ◦ φn‖ |

≤ lim
n→∞

‖ρ ◦ φn ◦ E − ρ ◦ φn‖ = 0.

The latter implies that (M∞, φ �M∞ , ι) is the asymptotic lift of φ.
Assuming that (5.1) is satisfied, we claim that M∞ = Cφ. By Theorem

4.2, it is enough to show that M∞ is closed under the Jordan multiplication
of M . Note that E is must be faithful. Indeed, if x ≥ 0 and E(x) = 0, then

lim
k

‖φnk(x)‖ = ‖E(x)‖ = 0,

and since the sequence of norms ‖φn(x)‖ is decreasing, (5.1) implies that
x = 0. By Lemma 5.2, M∞ is a Jordan subalgebra of M .

Finally, assuming that there is a faithful φ-invariant state ρ, we claim
that (5.1) holds. Indeed, if x is a positive operator satisfying ‖φn(x)‖ → 0
as n → ∞, then

|ρ(x)| = |ρ ◦ φn(x))| ≤ ‖φn(x)‖ → 0

as n → ∞. Hence ρ(x) = 0, and x = 0 follows because ρ is faithful. �

We conclude with the following result, which identifies the multiplicative
core Cφ in many cases where Cφ �= M∞.
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Corollary 5.3. Let φ : M → M be a faithful UP map on a finite-dimensional
von Neumann algebra. Then the multiplicative core of φ is the linear space
spanned by the projections in M∞.

Proof. Let A be the linear span of all projections in M∞. We claim that
φ(A) = A. Indeed, if e is a projection in A then since φ is an order auto-
morphism of M∞ there is an operator f ∈ M∞ such that 0 ≤ f ≤ 1 and
φ(f) = e. As in the proof of Proposition 4.3, this implies φ(f−f2) = 0, hence
f = f2 is a projection because φ is faithful. This implies that A ⊆ φ(A)
and, since A is finite-dimensional, φ(A) = A.

Proposition 4.3 implies that A is the largest Jordan algebra in M∞. The
multiplicative core Cφ is a Jordan algebra in M∞ by Theorem 4.2, hence
Cφ ⊆ A. Lemma 4.1 now implies that Cφ = A. �

We conclude by describing an example of a UP map on the 3-dimensional
commutative C∗-algebra M = C

3 for which M∞ is not closed under the
ambient Jordan multiplication of M . While there are simpler examples with
that specific property, this one exhibits nontrivial asymptotic dynamics that
are not detected by the multiplicative core. Viewing the elements of M as
column vectors, the map φ is multiplication by the stochastic matrix

φ =

⎛
⎝

1
3

1
3

1
3

0 0 1
0 1 0

⎞
⎠ .

The even and odd powers of φ are

φ2n =

⎛
⎝

1
9n

1
2 − 1

2·9n
1
2 − 1

2·9n

0 1 0
0 0 1

⎞
⎠ , φ2n+1 =

⎛
⎝

1
3·9n

1
2 − 1

6·9n
1
2 − 1

6·9n

0 0 1
0 1 0

⎞
⎠ ,

and the unique idempotent limit point of {φ, φ2, φ3, . . . } is given by

E = lim
n→∞

φ2n =

⎛
⎝0 1

2
1
2

0 1 0
0 0 1

⎞
⎠ .

The range of E is the two-dimensional space (written as row vectors)

M∞ = E(M) = {(a + b

2
, a, b) : a, b ∈ C}.

We summarize the basic properties of this example without proof:
Relative to the intrinsic (Jordan) multiplication defined by x ◦ y = E(xy),
M∞ is isomorphic to the two-dimensional commutative C∗-algebra C

2. This
identification implements a conjugacy of φ �M∞ with the order 2 automor-
phism (a, b) 
→ (b, a), a, b ∈ C. The multiplicative core of φ is the one-
dimensional C∗-algebra Cφ = C · 1.
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Remark 5.4 (Invariant states of φ). Perhaps it is worth pointing out that
the above UP map φ : C

3 → C
3 has a unique invariant state, namely

ρ(a, b, c) =
b + c

2
, (a, b, c) ∈ C

3.

This state is not faithful of course, so there is no conflict with Theorem 5.1.
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