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Overview

Quantum Information Theory is quantum mechanics in matrix
algebras - the algebras B(H) with H finite dimensional. I’ll stay
in that context for this talk; but much of the following discussion
generalizes naturally to infinite dimensional Hilbert spaces.

We discuss separability of states, entanglement of states, and
propose a numerical measure of entanglement in an abstract
context. Then we apply that to compute maximally entangled
vectors and states of tensor products H = H1 ⊗ · · · ⊗ HN .

Not discussed: the physics of entanglement, how/why it is a
resource for quantum computing, the EPR paradox, Bell’s
inequalities, Alice and Bob, channels, qubits, philosophy.
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Separable states, entangled states

Consider states of a “composite" quantum system

B(H1 ⊗ · · · ⊗ HN) ∼= B(H1)⊗ · · · ⊗ B(HN), N = 2, 3, . . . .

A state ρ of B(H1 ⊗ · · · ⊗ HN) is said to be separable if it is a
convex combination of product states σ1 ⊗ · · · ⊗ σN

ρ(A1 ⊗ · · · ⊗ AN) =
s∑

k=1

tk · σk
1(A1) · · ·σk

N(AN),

with positive tk summing to 1.

An entangled state is one that is not separable. We will see
examples shortly.



Entanglement is a noncommutative phenomenon

For commutative tensor products

A = C(X1)⊗ · · · ⊗ C(XN) = C(X1 × · · · × Xn)

X1, . . . , XN being finite sets, every state of A is a convex
combination of pure states, pure states correspond to points of
X1 × · · · × XN , and point masses are pure product states.

Hence every state is a convex combination of product states,
and entangled states do not exist.

• The existence of entangled states reflects the fact that
observables are operators, not functions, and operator
multiplication is not commutative.
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Entangled pure states

• Factoid: for every unit vector ξ ∈ H1 ⊗ · · · ⊗HN , the pure state

ρ(A) = 〈Aξ, ξ〉, A ∈ B(H1 ⊗ · · · ⊗ HN)

is separable iff ξ = ξ1 ⊗ · · · ⊗ ξN , for some ξk ∈ Hk , 1 ≤ k ≤ N.

So a vector in the unit sphere S = {ξ ∈ H : ‖ξ‖ = 1} gives an
entangled pure state iff it is not decomposable. Such vectors
are generic in two senses: they are a dense open subset of S,
and they are a set whose complement has measure zero.

• The situation for mixed states is not so simple. For example,
entangled states are not generic; they are not even dense in
the state space.
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Examples in the “bipartite" case N = 2

Choose a unit vector ζ ∈ H1 ⊗H2 that does not decompose into
a tensor product ξ1 ⊗ ξ2, and define

α = sup
‖ξ1‖=‖ξ2‖=1

|〈ζ, ξ1 ⊗ ξ2〉|2.

Easy to see that the self-adjoint operator

A = α · 1− ζ ⊗ ζ̄

has the property (σ1 ⊗ σ2)(A) ≥ 0 for every product state
σ1 ⊗ σ2 and hence ρ(A) ≥ 0 for every separable state ρ.

But the choice of ζ implies that α < 1, hence the operator A is
not positive.

• Conclusion: Every state ρ such that ρ(A) < 0 is entangled.
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What are maximally entangled pure states?

The term “maximally entangled pure state" occurs frequently in
the physics literature, and several “measures of entanglement"
have been proposed in the bipartite case H = H1 ⊗ H2. For
example, when H1 = H2, everyone agrees that

1√
n

(e1 ⊗ f1 + · · ·+ en ⊗ fn)

is a maximally entangled unit vector (here, (ek ) and (fk ) are
orthonormal bases for H1 = H2).

But despite the attention it receives, in the multipartite case
H = H1 ⊗ · · · ⊗ HN with N ≥ 3, there does not seem to be
general agreement about what properties a maximally
entangled vector should have.

One needs a definition to do mathematics....
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Aside: the case N = 2 is too special

• The case H = H1 ⊗ H2 has special features that are not
available for higher order tensor products.

That is because vectors in H1 ⊗ H2 can be identified with
Hilbert Schmidt operators A : H1 → H2, so one can access
operator-theoretic invariants to analyze vectors.

Example: Using the singular value list of the operator that
corresponds to a unit vector ξ ∈ H1 ⊗ H2, it follows that there
are orthonormal sets (ek ) in H1 and (fk ) in H2 and a set of
nonnegative numbers p1, . . . , pn with sum 1 such that

ξ =
√

p1 · e1 ⊗ f1 + · · ·+
√

pn · en ⊗ fn

Physicists call this the Schmidt decomposition of ξ.
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N = 3 is more typical

In the case H = H1 ⊗ H2 ⊗ H3, one can stubbornly identify
vectors in H with various Hilbert Schmidt operators, e.g.,

A : H1 → H2 ⊗ H3, or

B : H2 → H1 ⊗ H3, or

C : H3 → H1 ⊗ H2.

Which one should we use? Maybe use the triple (A, B, C)?
Unfortunately, triples don’t have singular value lists.

The cases N > 3 don’t get easier....

I propose giving up the idea of generalizing the “Schmidt
decomposition" and starting over from scratch.
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Entanglement pairs (H, V )

We will work with pairs (H, V ) consisting of a Hilbert space H
and a norm-closed set V of unit vectors in H such that:

V1: λ · V ⊆ V for every λ ∈ C, |λ| = 1.

V2: H is the closed linear span of V .

Motivating example: a Hilbert space H = H1 ⊗ · · · ⊗ HN

presented as an N-fold tensor product of Hilbert spaces Hk ,
where V is the set of all decomposable unit vectors

V = {ξ1 ⊗ · · · ⊗ ξN : ξk ∈ Hk , ‖ξ1‖ = · · · = ‖ξN‖ = 1}.

Of course there are lots of other examples of entanglement
pairs, many/most of which have nothing to do with physics.
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Maximal vectors

Fix an entanglement pair (H, V ).

• By a maximal vector we mean a unit vector ξ ∈ H whose
distance to V is maximum:

d(ξ, V ) = max
‖η‖=1

d(η, V ),

d(ξ, V ) denoting the distance from ξ to V .

If H is finite dimensional, then maximal vectors exist; and they
exist in many infinite dimensional examples as well.

Maximal vectors are at the opposite extreme from the “central
vector" of V described in Jesse Peterson’s talk.
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The simplest examples
Take H = C2, choose two unit vectors e1, e2 ∈ H, and let

V = {λe1 : |λ| = 1} ∪ {λe2 : |λ| = 1}.

Calculation shows that a unit vector ξ ∈ C2 is maximal iff

max(|〈ξ, e1〉|, |〈ξ, e2〉|)

is as small as possible. So taking e1 = (1, 0), e2 = (0, 1) to be
the usual basis vectors, the maximal vectors turn out to be

ξ = (
λ√
2
,

λ√
2
), |λ| = 1.

In general, 0 ≤ d(ξ, V ) ≤
√

2. Note that since V is closed,

d(ξ, V ) = 0 ⇐⇒ ξ ∈ V .
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Measuring the entanglement of vectors

For every ξ ∈ H we define a preliminary norm ‖ · ‖V by

‖ξ‖V = sup
v∈V

<〈ξ, v〉 = sup
v∈V

|〈ξ, v〉|.

The “entanglement measuring" function from H to the extended
interval [0,+∞] is defined as follows:

‖ξ‖V = sup
‖η‖V≤1

<〈ξ, η〉 = sup
‖η‖V≤1

|〈ξ, η〉|, ξ ∈ H.

It is possible for ‖ξ‖V to be infinite (when dim H = ∞); but
otherwise, ‖ · ‖V behaves like a norm on H such that

‖ξ‖V ≥ ‖ξ‖, ξ ∈ H.
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The inner radius r(V )

• The inner radius r(V ) is the largest r ≥ 0 such that

{ξ ∈ H : ‖ξ‖ ≤ r} ⊆ convex hullV .

In general, 0 ≤ r(V ) ≤ 1, and r(V ) = 1 ⇐⇒ V is the entire
unit sphere of H. More significantly for our purposes:

• If dim H < ∞ then r(V ) > 0.

Theorem: Each of the three formulas characterizes r(V ):

(i) inf‖ξ‖=1 ‖ξ‖V = r(V ).

(ii) sup‖ξ‖=1 ‖ξ‖V = r(V )−1.

(iii) sup‖ξ‖=1 d(ξ, V ) =
√

2− 2 · r(V ).
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Characterization of maximal vectors

Theorem: For every unit vector ξ ∈ H, the following are
equivalent:

(i) ‖ξ‖V = r(V ) is minimum.

(ii) ‖ξ‖V = r(V )−1 is maximum.

(iii) d(ξ, V ) =
√

2− 2 · r(V ) - i.e., ξ is a maximal vector.

More significantly, ‖ · ‖V measures “degree of entanglement":

Theorem: If dim H < ∞, then ‖ · ‖V is a norm on H whose
restriction to the unit sphere S = {ξ ∈ H : ‖ξ‖ = 1} has the
following properties:

(i) Range of values: 1 ≤ ‖ξ‖V ≤ r(V )−1.

(ii) Membership in V : ξ ∈ V ⇐⇒ ‖ξ‖V = 1.

(iii) Maximal vectors: ξ is maximal ⇐⇒ ‖ξ‖V = r(V )−1.
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Entanglement of mixed states

Fix (H, V ). A state ρ of B(H) is said to be V -correlated if it is a
convex combination of vector states of the form

ω(A) = 〈Aξ, ξ〉, ξ ∈ V .

A state that is not V -correlated is said to be V -entangled, or
simply entangled.

We introduce a numerical measure of entanglement of states
as follows. Consider the convex subset of B(H)

BV = {A ∈ B(H) : |〈Aξ, η〉| ≤ 1,∀ξ, η ∈ V}.

BV contains the unit ball of B(H). For every ρ ∈ B(H)′ define

E(ρ) = sup
A∈BV

|ρ(A)|.
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Basic properties of the function E

According to the following result, the function E(·) faithfully
detects entanglement of states. Moreover, it recaptures the
entanglement norm ‖ξ‖V of unit vectors ξ ∈ H.

Theorem: When r(V ) > 0, E is a norm on B(H)′ whose
restriction to the state space behaves as follows:

(i) 1 ≤ E(ρ) ≤ r(V )−2, for every state ρ.

(ii) E(ρ) = 1 iff ρ is V -correlated.

(iii) E(ρ) > 1 iff ρ is entangled.

(iv) For every pure state ωξ(A) = 〈Aξ, ξ〉, A ∈ B(H),

E(ωξ) = (‖ξ‖V )2.
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Maximally entangled mixed states

So the maximum possible value of E(·) on states is r(V )−2.

A state ρ of B(H) is said to be maximally entangled if

E(ρ) = r(V )−2.

Theorem: The maximally entangled pure states are the vector
states ωξ where ξ is a maximal vector.

Every maximally entangled state is a convex combination of
maximally entangled pure states.
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Back to earth: Identification of ‖ · ‖V and E(·)

Back to the formative examples (H, V ), in which

H = H1 ⊗ · · · ⊗ HN ,

V = {ξ1 ⊗ · · · ⊗ ξN : ξk ∈ Hk , ‖ξk‖ = 1}.

Identify the dual of B(H) with the Banach space L1(H) of all
trace class operators A ∈ B(H) in the usual way

ρ(X ) = trace(AX ), X ∈ B(H).

• Theorem: ‖ · ‖V is the greatest cross norm of the projective
tensor product of Hilbert spaces H1⊗̂ · · · ⊗̂HN .

E(·) is the greatest cross norm of the projective tensor product
of Banach spaces L1(H1)⊗̂ · · · ⊗̂L1(HN).
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The inner radius

Continuing with the cases

H = H1 ⊗ · · · ⊗ HN ,

V = {ξ1 ⊗ · · · ⊗ ξN : ξk ∈ Hk , ‖ξk‖ = 1}.

We can arrange that nk = dim Hk satisfies n1 ≤ · · · ≤ nN .

Theorem: If nN ≥ n1n2 · · ·nN−1, then

r(V ) =
1

√
n1n2 · · ·nN−1

whereas if nN < n1n2 · · ·nN−1 then all I know is:

r(V ) >
1

√
n1n2 · · ·nN−1

.
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√
n1n2 · · ·nN−1

.



Identification of maximal vectors

We continue to assume that nN ≥ n1n2 · · ·nN−1.

Theorem: A unit vector ξ ∈ H1 ⊗ · · · ⊗ HN is maximal iff it
purifies the tracial state τ of A = B(H1 ⊗ · · · ⊗ HN−1):

〈(A⊗ 1HN )ξ, ξ〉 = τ(A), A ∈ A.

Corollary: The maximal vectors of H1 ⊗ · · · ⊗ HN are:

ξ =
1

√
n1n2 · · ·nN−1

(e1 ⊗ f1 + · · ·+ en1n2···nN−1 ⊗ fn1n2···nN1
),

where (eK ) is an orthonormal basis for H1 ⊗ · · · ⊗HN−1 and (fk )
is an orthonormal set in HN .
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Unexpected stability of maximal vectors

In more physical terms, consider a tensor product H ⊗ K with
n = dim H ≤ m = dim K < ∞. The maximal vectors are

ξ =
1√
n

(e1 ⊗ f1 + · · ·+ en ⊗ fn), (1)

where (ek ) is an ONB for H and (fk ) is an ON set in K .

Now assume H is a composite of several subsystems, so that
H = H1 ⊗ · · · ⊗ Hr . The inner radius of H1 ⊗ · · · ⊗ Hr ⊗ K does
not change, but the norms ‖ · ‖V and E(·) do change. They
depend strongly on the relative sizes of dim H1, . . . , dim Hr .

What surprises me is that the set of maximal vectors does not:
The maximal vectors of H1⊗· · ·⊗Hr ⊗K still have the form (1).
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Significant problems remain unsolved

We have much less information about N-fold tensor products

H = H1 ⊗ · · · ⊗ HN

in cases where nN < n1n2 · · ·nN−1.

Example: H = (C2)⊗N = C2 ⊗ · · · ⊗ C2.

• What is the inner radius?

• What are the maximal vectors?

• Which states ρ of B(H1 ⊗ · · · ⊗ HN−1) have maximal vectors
as “purifications"? i.e., which ρ can be written in the form

ρ(A) = 〈(A⊗ 1HN )ξ, ξ〉, A ∈ B(H1 ⊗ · · · ⊗ HN−1)

where ξ is a maximal vector in H? (Recently solved)



Significant problems remain unsolved

We have much less information about N-fold tensor products

H = H1 ⊗ · · · ⊗ HN

in cases where nN < n1n2 · · ·nN−1.

Example: H = (C2)⊗N = C2 ⊗ · · · ⊗ C2.

• What is the inner radius?

• What are the maximal vectors?

• Which states ρ of B(H1 ⊗ · · · ⊗ HN−1) have maximal vectors
as “purifications"? i.e., which ρ can be written in the form

ρ(A) = 〈(A⊗ 1HN )ξ, ξ〉, A ∈ B(H1 ⊗ · · · ⊗ HN−1)

where ξ is a maximal vector in H? (Recently solved)



Significant problems remain unsolved

We have much less information about N-fold tensor products

H = H1 ⊗ · · · ⊗ HN

in cases where nN < n1n2 · · ·nN−1.

Example: H = (C2)⊗N = C2 ⊗ · · · ⊗ C2.

• What is the inner radius?

• What are the maximal vectors?

• Which states ρ of B(H1 ⊗ · · · ⊗ HN−1) have maximal vectors
as “purifications"? i.e., which ρ can be written in the form

ρ(A) = 〈(A⊗ 1HN )ξ, ξ〉, A ∈ B(H1 ⊗ · · · ⊗ HN−1)

where ξ is a maximal vector in H? (Recently solved)



Significant problems remain unsolved

We have much less information about N-fold tensor products

H = H1 ⊗ · · · ⊗ HN

in cases where nN < n1n2 · · ·nN−1.

Example: H = (C2)⊗N = C2 ⊗ · · · ⊗ C2.

• What is the inner radius?

• What are the maximal vectors?

• Which states ρ of B(H1 ⊗ · · · ⊗ HN−1) have maximal vectors
as “purifications"? i.e., which ρ can be written in the form

ρ(A) = 〈(A⊗ 1HN )ξ, ξ〉, A ∈ B(H1 ⊗ · · · ⊗ HN−1)

where ξ is a maximal vector in H? (Recently solved)



The case N = 3 (in progress)

Let H, K be Hilbert spaces of dimensions p, q. Here is an
“operator space" formula for the inner radius r(p, q, n) of
H ⊗ K ⊗ Cn in the critical cases n ≤ pq.

Let Mpq be the operator space of p × q complex matrices,
Mpq

∼= B(K , H). We consider the following two norms on the
space of linear maps φ : Mpq → Mpq:

‖φ‖HS = (

p,q∑
i,j=1

trace |φ(Eij)|2)1/2

(the Hilbert Schmidt norm of φ : L2(K , H) → L2(K , H)), and

‖φ‖2,∞ = sup
trace |A|2≤1

‖φ(A)‖,

(the norm of φ : L2(K , H) → B(K , H)).
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Formula for the inner radius

The rank of φ is the dimension of its range dim φ(Mpq).

Theorem: For n ≤ pq, the inner radius of Cp ⊗ Cq ⊗ Cn is
determined by linear maps φ : Mpq → Mpq as follows:

r(p, q, n) = inf{‖φ‖2,∞ : ‖φ‖HS = 1, rankφ ≤ n}.

Let’s save notation by fixing p, q and writing rn = r(p, q, n) for
n = 1, 2, . . . , pq. We can prove that

r1 =
1√

min(p, q)
≥ r2 ≥ · · · ≥ rpq =

1
√

pq
.

Conjecture: r(p, q, n) > r(p, q, n + 1) for n < pq.
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Three qubits: p = q = n = 2

H = C2 ⊗ C2 ⊗ C2, V = {ξ ⊗ η ⊗ ζ : ‖ξ‖ = ‖η‖ = ‖ζ‖ = 1}.

Preceding results imply that 1√
2
≥ r(V ) > 1

2 , and we have

• Conjectured: r(V ) < 1√
2
.

This has significant consequences. For example, maximal
vectors must have “unequal weights" (and entropy less than the
expected value log 2), in the sense that

ξ =
√

θ · e1 ⊗ f1 +
√

1− θ · e2 ⊗ f2

where 0 < θ < 1/2, {ek} = ONB for C2, {fk} = ON set in C4.

There is compelling numerical evidence (thanks to Michael
Lamoureux and Geoff Price) indicating that

r(V ) ≤ 0.68 <
1√
2
∼= 0.71.
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NEWS FLASH: r(2, 2, 2) < 1√
2
!

Two days ago, I received an email from Geoff Price in which he
seems to prove that r(2, 2, 2) ≤ 2

3
∼= 0.68.

More precisely, for the unit vector

ξ = (0,
1√
3
,

1√
3
, 0,

1√
3
, 0, 0, 0) ∈ C8 = C2 ⊗ C2 ⊗ C2,

and with some trickery, he hand-calculates

‖ξ‖V = sup
‖vk‖=1

|〈ξ, v1 ⊗ v2 ⊗ v3〉| =
2
3
,

which implies r(2, 2, 2) ≤ 2/3 < 1/
√

2.

It is conceivable that r(2, 2, 2) = 2/3, but numerical evidence
suggests r(2, 2, 2) ≤ 0.65 < 2/3.
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Connects with the local theory of Banach spaces

Let H1, . . . , HN be finite dimensional Hilbert spaces, consider
the two Banach spaces

H = H1 ⊗ · · · ⊗ HN ,

E = H1⊗̂ · · · ⊗̂HN ,

and let c be the smallest constant that relates the two norms
‖ξ‖E ≤ c · ‖ξ‖H . The Banach space folks want to calculate or
estimate the value of c, and they have many results.

Our calculations provide the following new result: Arrange that
nN is is the largest of n1, . . . , nN . Then

c =
√

n1 · · ·nN−1, if nN ≥ n1 · · ·nN−1;

otherwise, c <
√

n1 · · ·nN−1.
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