
NOTES ON PRODUCT SYSTEMS

WILLIAM ARVESON

Abstract. We summarize the basic properties of continuous tensor
product systems of Hilbert spaces and their role in non-commutative
dynamics.

1. Concrete Product Systems

Let α = {αt : t ≥ 0} be an E0-semigroup acting on B(H), where as
always, H denotes a separable Hilbert space. The product system of α gives
rise to a classifying structure for cocycle conjugacy, and is defined as follows.
For every t > 0 let E(t) be the following linear space of operators

E(t) = {T ∈ B(H) : αt(X)T = TX, X ∈ B(H)}.
The first thing to notice is that there is a natural inner product 〈·, ·〉 on E(t)
that makes it into a Hilbert space. Indeed, if S, T ∈ E(t), then one finds
that for every X ∈ B(H), one has

T ∗SX = T ∗αt(X)S = (αt(X∗)T )∗X = (TX∗)∗S = XT ∗S,

so that T ∗S must be a scalar multiple of the identity operator. Thus we can
define an inner product 〈S, T 〉 by

T ∗S = 〈S, T 〉1.

This inner product makes the operator space E(t) into a Hilbert space with
the property that the operator norm agrees with the Hilbert space norm, as
one sees from

T ∗T = 〈T, T 〉1,

using the fact that the operator norm satisfies ‖T ∗T‖ = ‖T‖2.
The second property of these inner products is also a straightforward

consequence of the definition of the various spaces E(t), namely the following.
For every s, t > 0, E(s)E(t) ⊆ E(s + t); moreover, for all S1, S2 ∈ E(s) and
T1, T2 ∈ E(t), one has

〈S1T1, S2T2〉 = 〈S1, S2〉 · 〈T1, T2〉.
Note that the inner product 〈S1T1, S2T2〉 is formed in the Hilbert space
E(s + t), 〈S1, S2〉 is the inner product of E(s), and 〈T1, T2〉 is the inner
product of E(t). Finally, it is not hard to show that E(s + t) is the norm-
closed linear span of the set of products E(s)E(t).
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The third property of these spaces E(t) is less obvious, and follows from
a result of Dixmier (see [Arv03], pp 36–38). It asserts (in the case of E0-
semigroups) that there is a measurable family {Ut : t > 0} of unitary oper-
ators in B(H) with the property

(1.1) UtE(1) = E(t), t > 0.

We may now assemble this structure into a family p : E → (0,∞) of
Hilbert spaces over the interval (0,∞), by setting

E = {(t, T ) : t > 0, T ∈ E(t)}
and taking for p the projection p(t, T ) = t. If we view B(H) as a topological
space in its weak∗-topology, then E becomes a closed subset of (0,∞)×B(H),
and in this way it can be viewed as a standard Borel space. The mapping

((s, S), (t, T )) ∈ E × E 	→ (s + t, ST ) ∈ E
defines an associative multiplication on this structure which (in the precise
sense of the above paragraphs) when restricted to a bilinear map of fibers
E(s) × E(t) → E(s + t), acts as if it were the tensor product operation.

Finally, the unitary operators Ut of (1.1) give rise to a bimeasurable iso-
morphism θ of E onto the trivial family (0,∞) × E(1) in which

θ(t, T ) = (t, U−1
t T ), t > 0, T ∈ E(t).

This structure p : E → (0,∞) is called the concrete product system of the
E0-semigroup α.

2. Abstract Product Systems

We now put the structures introduced in the preceding section into a
general setting. The abstract formulation emphasizes the connection with
continuous tensor products of Hilbert spaces [Arv03].

Definition 2.1. A product system is a family of separable Hilbert spaces
over the open semi-infinite interval (0,∞)

p : E → (0,∞)

with fiber Hilbert spaces E(t) = p−1(t), t > 0, which is endowed with an
associative multiplication that restricts to a bilinear map on fibers

(x, y) ∈ E(s) × E(t) 	→ xy ∈ E(s + t)

that acts like tensoring in the sense that for every u, v ∈ E(s), x, y ∈ E(t),
one has

(2.1) 〈ux, vy〉E(s+t) = 〈u, v〉E(s)〈x, y〉E(t),

together with

(2.2) E(s + t) = spanE(s)E(t), s, t > 0.

In addition, E should be endowed with the structure of a standard Borel
space that is compatible with the projection p : E → (0,∞), multiplication,



NOTES ON PRODUCT SYSTEMS 3

the vector space operations and the inner product. Finally, we assume there
is a separable Hilbert space H such that E is isomorphic as a measurable
family of Hilbert spaces to the trivial family p; (0,∞) × H → (0,∞), p
denoting the projection onto the first component p(t, x) = t, t > 0, x ∈ H.

While it does not make precise mathematical sense, it is often helpful to
think of E(t) as a “continuous tensor product”

E(t) = ⊗
0≤s≤t

Ks, Ks = K

of copies of a single Hilbert space K. However, one should keep in mind
that for many (if not most) of the important examples of product systems,
the “germ” K does not exist!

In the trivial family p : (0,∞) × H → (0,∞), the fibers E(t) = H , t > 0
do not vary with t, and a measurable section is simply a Borel-measurable
function f : (0,∞) → H. Given an abstract product system p : E → (0,∞),
the triviality axiom is equivalent to the assertion that there is a measurable
family of orthonormal bases, that is to say, a sequence of Borel-measurable
sections

en : t ∈ (0,∞) 	→ en(t) ∈ E(t), t > 0, n = 1, 2, . . . ,

with the property that for every t > 0, {e1(t), e2(t), . . . } is an orthonormal
basis for E(t). This requirement is also equivalent to the assertion that there
is a sequence of measurable sections

fn : t ∈ (0,∞) 	→ f(t) ∈ E(t)

with the property that E(t) is the closed linear span of {f1(t), f2(t), . . . } for
every t > 0. The fact that these two assertions are equivalent follows from
a judicious application of the Gram-Schmidt procedure.

3. Alternate Descriptions of Product Systems

It is convenient to refer to a product system p : E → (0,∞) with the
simpler notation E, in which E(t) denotes the Hilbert space over t. In order
to carry out effective analysis with a product system E, one must form
certain structures associated with it, such as the “continuous Fock space”
L2(E) that it defines, and the spectral C∗-algebra C∗(E). One also needs to
carry out operations on product systems. For example, the tensor product
E ⊗ F of two product systems E and F corresponds to the tensor product
operation of E0-semigroups (see Section 5). For these and related issues,
Definition 2.1 provides the most useful working context.

On the other hand, the measurability axioms of product systems are some-
what redundant. In order to understand that issue it is useful to view a
product system in the wrong coordinates, in which it appears as a “flat”
family of Hilbert spaces with “curved” multiplication. We now describe this
alternate description.
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Let E be an abstract product system. By the triviality axiom, there is a
separable Hilbert space H such that E can be identified with (0,∞)×H as
a measurable family of Hilbert spaces. Thus, there is a Borel isomorphism
θ : E → (0,∞) × H that restricts to a unitary operator from E(t) to H for
every t > 0, and we may use θ to identify E with (0,∞)×H, in which E(t)
is identified with H for every t > 0.

Let us look at the multiplicative structure. Fixing s, t > 0, note that the
multiplication of E restricts to a bilinear map of E(s)×E(t) = H ×H onto
E(s + t) = H. The characteristic property of the tensor product operation
in the category of vector spaces implies that there is a unique linear map

Us,t : H � H → H

such that

Us,t(ξ � η) = ξη, ξ ∈ E(s) = H, η ∈ E(t) = H,

H � H denoting the algebraic tensor product of complex vector spaces.
Properties (2.1) and (2.2) imply that Us,t extends uniquely to a unitary
operator from the Hilbert space tensor product H ⊗ H to H, which we
denote by the same letter Us,t. The total map associated with these unitary
operators is the multiplication of E, namely

(3.1) ((s, ξ), (t, η)) ∈ E × E 	→ (s, ξ) · (t, η) = (s + t, Us,t(ξ ⊗ η)) ∈ E.

Remark 3.1 (Dimension of H). If a unitary operator from H ⊗ H to H
exists, then dim(H ⊗ H) = (dimH)2 = dimH. It follows that H is either
infinite-dimensional (and separable, as are all our Hilbert spaces) or it is
one-dimensional. The case of product systems E with one-dimensional fibers
E(t) is discussed at length in [Arv03], where it was shown that such an E is
isomorphic to the trivial product system (0,∞) × C, where C has its usual
inner product and where multiplication is defined by

(s, z) · (t, w) = (s + t, zw), s, t > 0, z, w ∈ C.

Thus we can safely rule out this example in the discussion to follow, in which
we assume that H is a separable infinite-dimensional Hilbert space.

Using standard methods, one verifies easily that the measurability prop-
erty of the multiplication map reduces to the following measurability re-
quirement on U , namely that for fixed ζ1 ∈ H ⊗ H, ζ2 ∈ H, the map

(3.2) (s, t) ∈ (0,∞) × (0,∞) 	→ 〈Us,t(ζ1), ζ2〉
should be measurable. Thus, the multiplication operation gives rise to a
Borel-measurable selection Us,t of unitary operators from H ⊗ H to H.

Most significantly, this multiplication must be associative – and in turn,
that requirement leads to a functional equation:

Proposition 3.2. Let {Us,t : s, t > 0} be an arbitrary family of unitary
operators from H ⊗H to H, and let x · y be the binary operation defined on
the trivial family (0,∞) × H by (3.1). The following are equivalent:
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(i) x · (y · z) = (x · y) · z for all x, y, z ∈ (0,∞) × H.
(ii) The family {Us,t : s, t > 0} satisfies the functional equation

(3.3) Ur,s+t(1 ⊗ Us,t) = Ur+s,t(Ur,s ⊗ 1), r, s, t > 0.

Proof. Note that the operator products exhibited on both sides of (3.3) are
well-defined unitary operators from H ⊗H ⊗H to H; for example, 1⊗Us,t

is the unitary operator from H ⊗ H ⊗ H to H ⊗ H defined uniquely by

1 ⊗ Us,t : ξ ⊗ ω 	→ ξ ⊗ Us,tω, ξ ∈ H, ζ ∈ H ⊗ H,

so that the composition Ur,s+t(1 ⊗ Us,t) belongs to B(H ⊗ H ⊗ H, H).
To verify the implication (i) =⇒ (ii), choose vectors ξ, η, ζ ∈ H. Using

the definition of multiplication (3.1), one calculates

(r, ξ) · ((s, η) · (t, ζ)) = (r, ξ) · (s + t, Us,t(η ⊗ ζ))

= (r + s + t, Ur,s+t(ξ ⊗ Us,t(η ⊗ ζ))

= (r + s + t, Ur,s+t(1 ⊗ Us,t)(ξ ⊗ η ⊗ ζ),

while on the other hand,

((r, ξ) · (s, η)) · (t, ζ)) = (r + s, Ur,s(ξ ⊗ η) · (t, ζ)

= (r + s + t, Ur+s,t(Ur,s(ξ ⊗ η) ⊗ ζ))

= (r + s + t, Ur+s,t(Ur,s ⊗ 1)(ξ ⊗ η ⊗ ζ),

and (3.3) follows since H ⊗ H ⊗ H = (H ⊗ H) ⊗ H = H ⊗ (H ⊗ H) is
spanned by vectors of the form ξ ⊗ η ⊗ ζ. The opposite implication is
equally apparent. �

More generally, the basic facts of this description of product systems are
summarized as follows:

Proposition 3.3. Let {Us,t : s, t > 0} be a family of unitary operators
from H ⊗ H to H that is measurable in the sense of (3.2) and satisfies the
functional equation (3.3). Then the multiplication defined by (3.1) makes
the trivial family of Hilbert spaces (0,∞) × H into a product system. Con-
versely, every nontrivial product system is isomorphic to one obtained by
this construction.

Let {Us,t : s, t > 0}, {Ũs,t : s, t > 0} be two such families of unitary
operators that give rise to product systems E, Ẽ respectively. Then E and
Ẽ are isomorphic as product systems iff there is a Borel-measurable family
of unitary operators Wt ∈ B(H), t > 0, such that

(3.4) Ũs,t = Ws+tUs,t(Ws ⊗ Wt)−1, s, t > 0.

Remark 3.4 (Remarks on the Equivalence Relation (3.4)). The description
of abstract product systems given in Proposition 3.3 is undeniably more
concrete than Definition 2.1. For example, it is clear from this description
that some of the measurability assertions of Definition 2.1 are redundant.
On the other hand, while the so-called type I product systems can be defined
relatively easily by specifying such a family of unitaries {Us,t : s, t > 0} (see
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Section 2.6 of [Arv03] for related discussion), that is not the way examples
of type II and III have been constructed. Those examples are obtained
by other methods – either using properties of the CAR algebra a la Powers,
or via rather deep methods of probability theory a la Tsirelson and Vershik
(see Chapters 13 and 14 of [Arv03] and references therin for more detail).

On the other hand, the fundamental problem in this subject is the problem
of classifying product systems up to isomorphism – for reasons outlined in
the following sections. Equivalently, given two families of unitaries {Us,t}
and {Ũs,t}, one wants to know when they are equivalent in the sense that
there is a family of unitaries {Wt} that satisfies (3.4). This question has a
cohomological flavor, and formulating the isomorphism problem in terms of
solving such functional equations is of little help, if any. Rather, what is
required here is a set of effective tools - invariants - for distinguishing between
different isomorphism classes of product systems. The numerical index is
the simplest example of such an invariant. The index is a complete invariant
for product systems of type I, it is a nontrivial invariant for examples of type
II, but it gives no information about examples of type III. Thus, the basic
problem of the subject is to find new invariants that are a) computable, and
b) of similar utility as the index.

4. Product Systems and Cocycle Perturbations

In following two sections we give a brief survey of the role of product
systems in dynamics. We give no proofs, confining ourselves to brief de-
scriptions of the main ideas, including statements of some of the key results.

Two E0-semigroups α = {αt : t ≥ 0} (acting on B(H)) and β = {βt :
t ≥ 0} (acting on B(K)) are said to be conjugate if there is a ∗-isomorphism
θ : B(H) → B(K) such that θ ◦αt = βt ◦ θ for all t ≥ 0. After noting that ∗-
isomorphism such as θ are implemented by unitary operators, it follows that
conjugate E0-semigroups are indistinguishable: one can be brought into the
other by a “change of coordinates”. There are too many conjugacy classes
of E0-semigroups to hope for an effective classification up to conjugacy;
indeed, there are concrete theorems which imply that such a classification
is impossible. Instead, one seeks to classify E0-semigroups up to a weaker
notion of equivalence, which we now discuss.

Let α = {αt : t ≥ 0} be an E0-semigroup acting on B(H). By an α-cocycle
we mean a strongly continuous family of unitary operators {Ut : t ≥ 0} in
B(H) that satisfy the cocycle equation

Us+t = Usαs(Ut), s, t ≥ 0.

Given an α-cocycle U = {Ut : t ≥ 0}, one can form a second E0-semigroup
β as follows

βt(X) = Utαt(X)U∗
t , t ≥ 0, X ∈ B(H).

It is a simple but worthwhile exercise to verify that the cocycle condition is
precisely what is required to show that β satisfies the semigroup property
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βs+t = βsβt, s, t ≥ 0. An E0-semigroup β obtained in this way from an
α-cocycle is called a cocycle perturbation of α.

Definition 4.1. Two E0-semigroups α, β are said to be cocycle conjugate
if β is conjugate to a cocycle perturbation of α.

One verifies easily that cocycle conjugacy is an equivalence relation. The
fundamental problem of the dynamics of E0-semigroups is to obtain effec-
tive invariants for cocycle conjugacy. The following result shows that the
internal structure of the concrete product system of an E0-semigroup serves
to classify it up to cocycle conjugacy.

Theorem 4.2. Let α and α̃ be E0-semigroups acting on B(H) and B(H̃)
respectively, with concrete product systems E and Ẽ. Then α̃ is conjugate to
a cocycle perturbation of α iff Ẽ is isomorphic to E.

Given Theorem 4.2, it is natural to ask if the problem of classifying E0-
semigroups up to cocycle conjugacy is actually equivalent to the problem
of classifying product systems; in other words, is every abstract product
system associated with an E0-semigroup? The following result answers this
in the affirmative.

Theorem 4.3. For every abstract product system E, there is an E0-semigroup
α whose concrete product system is isomorphic to E.

On the surface, this would appear to be a solution to the problem of
classifying E0-semigroups. However, Theorems 4.2 and 4.3 simply provide
a reduction of the problem to a somewhat more concrete one - the reason
being that an effective and general classification of product systems up to
isomorphism is unknown. In the following section we will summarize some
of the key results that have been obtained concerning the latter problem.

5. Units and Index

For most of us, the concept of index is most naturally formulated in the
more concrete dynamical context of E0-semigroups - the context in which
the concept first emerged. But since these notes concern product systems,
we use that context to introduce the index, referring the reader to [Arv03]
for a discussion of the equivalence of the two notions.

Let E be a product system. A unit of E is a measurable cross section

u : t ∈ (0,∞) 	→ u(t) ∈ E(t)

of the natural projection p : E → (0,∞) which is not the zero section u ≡ 0
and which satisfies

(5.1) u(s + t) = u(s)u(t), s, t > 0.

The set of units of E will be denoted UE . It is significant that UE can
be empty. There is a rough classification of product systems into types, in
which a product system E is said to be of type I if there are sufficiently
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many units to generate E in a certain sense (see [Arv03]), type II if it is
not type I but UE �= ∅, and type III if UE = ∅.

All product systems have a numerical index that is defined as follows.
Given two units u, v ∈ UE , and given t > 0, we can form the inner product
〈u(t), v(t)〉 in the Hilbert space E(t), and it is a nontrivial fact that the
function f(t) = 〈u(t), v(t)〉 is continuous. Property (5.1), together with the
tensor product structure of E, imply that f(s + t) = f(s)f(t). Hence there
is a unique complex number c(u, v) that satisfies

〈u(t), v(t)〉 = f(t) = ec(u,v)t, t > 0.

The bivariate function c : UE × UE → C is called the covariance function
of the product system E. The covariance function is conditionally positive
definite, hence one can use it to construct a Hilbert space HE .

In cases where UE �= ∅, the index of E is defined by

index(E) = dim(HE).

Another nontrivial fact is that HE is a separable Hilbert space when UE �= ∅,
so in such cases the index takes values in the set {0, 1, 2, . . . ,∞}, ∞ denoting
the denumerable cardinal ℵ0. All values can occur, even for type I product
systems. This defines a numerical invariant for product systems E for which
UE �= ∅, and it is convenient to extend the index to cover the remaining cases
by setting index(E) = c to be the cardinality of the continuum when U = ∅.

There is a natural way of forming the tensor product of two E0-semigroups
α (acting on B(H)) and β (acting on B(K)), and in fact α⊗β is the unique
E0-semigroup that acts on B(H ⊗ K) and satisfies

(α ⊗ β)t(A ⊗ B) = αt(A) ⊗ βt(B), A ∈ B(H), B ∈ B(K), t ≥ 0.

There is also a natural notion of tensor product E ⊗ F in the category of
product systems which we leave for the reader to discover, and which has the
property that the concrete product system of α⊗ β is isomorphic to E ⊗F ,
where E and F are the concrete product systems of α and β respectively.
The first key property of the index is that it is logarithmically additive in
general:

Theorem 5.1. For any two product systems E, F , one has

(5.2) index(E ⊗ F ) = index(E) + index(F ).

The difficult element in the proof of Theorem 5.2 is establishing the fact
that, in general, every unit of E ⊗ F decomposes into a tensor product of
units u ⊗ v, where u ∈ UE and v ∈ UF . In particular, (5.2) implies that
E ⊗ F is of type III if and only if either E or F is of type III.

The second key property of the index is that it is a complete invariant for
the simplest class of product systems:

Theorem 5.2. Two product systems E, F of type I are isomorphic if and
only if index(E) = index(F ).
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Not surprisingly, there is a corresponding notion of index in the category
of E0-semigroups; indeed, that is the context in which the concept of index
first appeared (see Sections 2.5 and 2.10 of [Arv03]). As one would expect,
the index of an E0-semigroup agrees with the index of its concrete product
system in all cases. Thus, when combined with Theorem 4.2, Theorem 5.2
gives the following information about the classification problem of noncom-
mutative dynamics:

Corollary 5.3. Let α and β be two type I E0-semigroups. Then α and β
are cocycle-conjugate iff they have the same index.

The index is certainly not a complete invariant for type II examples, and
it contains no information whatsoever about product systems of type III.
The classification problem for such systems remains mysterious: we have not
seen all possible examples of such E0-semigroups, and we lack appropriate
invariants for distinguishing between the ones we have seen.
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