
NONCOMMUTATIVE POISSON BOUNDARIES

WILLIAM ARVESON

Abstract. In these notes we give a proof of associativity of the the
Choi-Effros multiplication, and we apply that to the noncommutative
Poisson boundary.

These are lecture notes and are not intended for publication

1. Background

While the following exposition of idempotent completely positive con-
tractions and the basic properties of noncommutative Poisson boundaries
is essentially complete, I have not included adequate references. Moreover,
I will occasionally refer to topics that are not discussed here, such as the
lifting theorem for UCP maps, nuclearity, and the extension theorems for
operator valued maps. The reader can find more discussion of these and re-
lated matters – and more references – in the notes for several lectures given
in a seminar last fall. The Fall ’03 lectures are posted on the same web page
that contains this note.

2. Completely positive idempotents

Let A be a C∗-algebra and let E : A → A be a completely positive
contraction satisfying E2 = E. The range S = E(A) is a norm-closed self-
adjoint subspace of A, and Choi and Effros showed that S can be made into
a C∗-algebra with respect to the multiplication s1 ◦ s2 = E(s1s2); we now
prove that result.

We are especially interested in the case where A has a unit 1. Some
terminology will be convenient. A UCP map φ : A → B between unital
C∗-algebras is a completely positive map such that φ(1A) = 1B. Such maps
always have norm 1 (by the Schwarz inequality). If E : A → A is a UCP
idempotent map, then its range E(A) is an operator system, i.e., a norm-
closed self-adjoint linear subspace of A that contains 1.

Remark 2.1. Idempotent UCP maps arise frequently and naturally. For
example, given an exact sequence of C∗-algebras

0 −−−−→ K −−−−→ A −−−−→
π

B −−−−→ 0

with A and B unital, π(1) = 1 and with B nuclear, there is a UCP map
φ : B → A that lifts π in the sense that π(φ(b)) = b, b ∈ B. In this
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case, E = φ ◦ π : A → A is a UCP map satisfying E2 = E whose range
S = E(A) is an operator system with the property that π maps S completely
isometrically onto B. In particular, the operator system S = E(A) is linearly
completely isometrically isomorphic to a C∗-algebra.

Let A be a unital C∗-algebra and let S ⊆ A be an operator system
in A. Suppose that S is completely order isomorphic to a C∗-algebra B.
This means that there is a bijective UCP map φ : B → S whose inverse
φ−1 : S → B is also completely positive. One can think of this as specifying
a multiplication of S that makes it into a C∗-algebra. We first want to point
out that when such a structure exists, it is unique.

Proposition 2.2. Let S ⊆ A be an operator system, and suppose that we
have two C∗-algebras Bk and complete order isomorphisms φk : Bk → S,
k = 1, 2. Then the composition φ−1

2 φ1 is a ∗-isomorphism of B1 on B2.

Proof. It suffices to show that a UCP map φ : B1 → B2 between two C∗-
algebras that has a UCP inverse is multiplicative. By the Schwarz inequality,
we have φ(x∗x) ≥ φ(x∗)φ(x) for all x ∈ B1. Hence

x∗x = φ−1(φ(x∗x)) ≥ φ−1(φ(x∗)φ(x)) ≥ φ−1(φ(x∗))φ−1(φ(x)) = x∗x,

by the Schwarz inequality applied to φ−1. After applying φ to the preceding
inequality we obtain φ(x∗x) = φ(x∗)φ(x) for all x ∈ B1. Since both φ(y∗x)
and φ(y∗)φ(x) are sesquilinear forms in x, y, a polarization argument implies
that φ(y∗x) = φ(y∗)φ(x) for all x, y ∈ B1, hence φ is multiplicative. �

Remark 2.3 (Unital completely isometric maps). It is not hard to show
that a unit-preserving linear map φ : S1 → S2 between operator systems is
completely positive iff it is completely contractive. Thus, one can deduce the
following consequence from Proposition 2.2: If an operator system S ⊆ A
in a unital C∗-algebra admits a multiplication ◦ that makes it into a C∗-
algebra with respect to the given norm on S, then the resulting C∗-algebraic
structure of S is uniquely determined.

What this means is that if ◦1 and ◦2 are two multiplications in S that make
it into a C∗-algebra, then there is a completely isometric complete order
isomorphism α of S onto itself that fixes 1 and satisfies α(u ◦1 v) = u ◦2 v,
u, v ∈ S. One should think carefully about why the indicated maps of C∗-
algebras in the preceding statement are completely isometric rather than just
isometric.

Remark 2.4 (Positive idempotents in B(H)). We remind the reader of the
elementary but infrequently cited fact that an idempotent contraction P ∈
B(H) must be positive. Indeed, the positive operator (1−P ∗P )1/2 restricts
to zero on PH because A = (1− P ∗P )1/2P satisfies

A∗A = P ∗(1− P ∗P )P = P ∗P − P ∗P = 0.

Hence (1− P ∗P )P = 0, from which P = P ∗P ≥ 0 follows.



NONCOMMUTATIVE POISSON BOUNDARIES 3

Lemma 2.5. Let A be a C∗-algebra and let E : A → A be a contractive
completely positive linear map satisfying E2 = E. Then E(x∗E(x)) ≥ 0 for
every x ∈ A.

Proof. We have to show that ρ0(E(x∗E(x))) ≥ 0 for every positive linear
functional ρ0 on A. Fix such a ρ0 and set ρ = ρ0 ◦ E. ρ is a a positive
linear functional satisfying ρ ◦ E = ρ. By the GNS construction there is a
representation π of A on a Hilbert space H and a cyclic vector ξ for π(A)
such that ρ(x) = 〈π(x)ξ, ξ〉, x ∈ A. Note that there is a unique contraction
P ∈ B(H) that maps π(x)ξ to π(E(x))ξ for every x ∈ A. Indeed, since E
satisfies the Schwarz inequality E(x)∗E(x) ≤ E(x∗x),

‖π(E(x))ξ‖2 = 〈π(E(x)∗E(x))ξ, ξ〉 = ρ(E(x)∗E(x))

≤ ρ(E(x∗x)) = ρ(x∗x) = ‖π(x)ξ‖2,
from which the existence of P follows. P must be idempotent because
E2 = E, and an idempotent contraction in B(H) must be a self-adjoint
projection (see Remark 2.4). Hence ρ(x∗E(x)) = 〈Pπ(x)ξ, π(x)ξ〉 ≥ 0, and
ρ0(E(x∗e(x))) ≥ 0 follows. �
Theorem 2.6 (Choi-Effros). Let A be a C∗-algebra and let E : A → A be
an idempotent completely positive contraction with range E(A). Then

(2.1) E(xE(y)) = E(E(x)y), x, y ∈ A.
Moreover, E(A) becomes a C∗-algebra with respect to the multiplication

x ◦ y = E(xy), x, y ∈ E(A),

and the norm, involution and vector space structure inherited from A.

Proof. The sesquilinear map x, y ∈ A → E(y∗E(x)) ∈ A, being positive
semidefinite, must be self-adjoint by a familiar polarization argument. It
follows that E(y∗E(x)) = E(x∗E(y))∗ = E(E(y)∗x) = E(E(y∗)x) for all
x, y ∈ A, and the identity (2.1) follows.
E(A) is clearly a norm-closed linear subspace of A, and since a positive

linear map must preserve adjoints, it is closed under the ∗-operation as well.
What remains to be shown is that the multiplication ◦ is associative, and it
satisfies ‖u∗ ◦ u‖ = ‖u‖2 for all u = E(x) ∈ E(A).

Choose u, v, w ∈ E(A). Then by (2.1) we have

u ◦ (v ◦ w) = E(uE(vw)) = E(E(u)vw) = E(uvw),

and hence

(u ◦ v) ◦ w = E(E(uv)w) = E(uvE(w)) = E(uvw) = u ◦ (v ◦ w).

For the second assertion, choose u ∈ E(A) and use the Schwarz inequality
E(u∗u) ≥ E(u)∗E(u) for completely positive contractions to write

‖u∗ ◦ u‖ = ‖E(u∗u)‖ ≥ ‖E(u)∗E(u)‖ = ‖u∗u‖ ≥ ‖E(u∗u)‖ = ‖u∗ ◦ u‖.
Hence ‖u∗ ◦ u‖ = ‖u∗u‖ = ‖u‖2, as required. �
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3. The Poisson Boundary

We now move into the category of von Neumann algebras. We define
the Poisson boundary of a noncommutative harmonic space and develop its
most basic properties. The reader is referred to Masaki Izumi’s exposition
[Izu04] which contains a slightly different approach, significant examples,
and background material for forthcoming lectures to be given by others.

Let P : M →M be a normal UCP map of a von Neumann algebra M to
itself, and let

H(M) = {x ∈M : P (x) = x}
be the space of all harmonic elements ofM . H(M) is a weak∗-closed operator
system, and hence it is the dual of a Banach space (namely H(M)∗). The
purpose of this section is to show that there is a (unique) von Neumann
algebra bH(M) that has H(M) as its operator system structure. bH(M) is
called the Poisson boundary of the noncommutative harmonic space H(M).

Let us assume, for the moment, that there is an associative multiplication
◦ defined in H(M) that makes it into a C∗-algebra in the sense of the
preceding section. Then this C∗-algebra is actually a von Neumann algebra.
That follows from a theorem of Sakai asserting the following: if a unital C∗-
algebra A is isometrically isomorphic to the dual of a Banach space, then
there is a faithful representation π : A → B(H) on a Hilbert space H such
that π(A) = π(A)′′ is a von Neumann algebra.

One obtains the von Neumann algebra structure on H(M) in three steps.
First, we show that there is a (non-normal) UCP idempotent E mapping
M onto H(M). Second, we apply the results of the preceding section to
deduce that there is a C∗-algebraic structure on H(M), and then we make
use of Sakai’s result to conclude that this is actually a von Neumann algebra
structure.

Consider the unit ball B1(M) in the Banach space B(M) of all bounded
linear maps of M into itself. There is a natural topology on B(M) that
makes B1(M) into a compact convex set. Let’s call this the BW topology
(the term BW refers to “bounded weak” topology for historical reasons).
The BW topology is defined by the family of finite sums of seminorms of
the form

|L| = |ρ(L(x))|, ρ ∈M∗, x ∈M.

A net {Lα : α ∈ I} in B(M) converges to zero in the BW topology iff
for every x ∈ M , Lα(x) converges to zero in the weak∗-topology of M . It
is a now-classical result that the unit ball of B(M) is compact in its BW
topology (a proof can be found in [Arv69]).

For every n = 1, 2, . . . , let An be the nth average

An(x) =
1
n

(x+ P (x) + · · ·+ Pn−1)(x)), x ∈M,

and let Kn be the BW-closed set of maps

Kn = {An, An+1, An+2, . . . }
BW

.
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We have K1 ⊇ K2 ⊇ · · · , and since each Kn is compact and nonempty, the
intersection

K∞ = ∩∞n=1Kn = ∩∞n=1{An, An+1, An+2, . . . }
BW

consisting of all BW-limit points of A1, A2, A3, . . . , must be nonempty.
Choose any element E ∈ K∞. We claim that E is a UCP idempotent

with range H(M). Indeed, E is obviously a unital completely positive map
of M into itself, and since

PAn(x)−An(x) =
1
n

(P (x) + · · ·+ Pn(x))− 1
n

(x+ P (x) + · · ·+ Pn−1(x))

=
1
n
Pn(x)− 1

n
x

we find that
‖PAn −An‖ ≤

2
n
→ 0

as n → ∞. Hence ‖PAn(x) − An(x)‖ → 0 as n → ∞, for each x ∈ M .
Since P is normal, this implies that PE = E, hence E(M) ⊆ H(M). On
the other hand, it is obvious that each P k, and therefore each An, must fix
every element of H(M). Hence E must fix the elements of H(M) as well,
and the claim is established.

By Theorem 2.6, H(M) admits an associative multiplication making it
into a C∗-algebra, and by Sakai’s theorem this C∗-algebra is a von Neumann
algebra. To summarize, we have proved the following result, which estab-
lishes the existence and uniqueness of the noncommuative Poisson boundary:

Theorem 3.1. Let P : M →M be a normal UCP map on a von Neumann
algebra and let H(M) = {x ∈ M : P (x) = x} be the space of harmonic
elements. Then there is a von Neumann algebra N and a unit preserving
linear bijection φ : N → H(M) with the following properties:

(i) Both φ and φ−1 are completely positive.
(ii) Both φ and φ−1 are weak∗-continuous.

Moreover, if N1, N2 are von Neumann algebras and φk : Nk → H(M)
are maps satisfying (i) and (ii), then φ−1

2 φ1 : N1 → N2 is a normal ∗-
isomorphism of von Neumann algebras.

Theorem 3.1 concerns discrete semigroups {Pn : n = 0, 1, 2, . . . } of normal
UCP maps acting on M . However, the classical contexts involving harmonic
functions and the heat flows of complete Riemannian manifolds, and their
noncommutative generalizations, involve semigroups {Pt : t ≥ 0} of normal
UCP maps. The reader should have no difficulty in finding appropriate
variations on the proof of Theorem 3.1 that lead to its continuous time
counterpart for von Neumann algebras M :

Theorem 3.2. Let {Pt : t ≥ 0} be a semigroup of normal UCP maps
accting on M and let H(M) = {x ∈ M : Pt(x) = x, t ≥ 0} be its space
of harmonic elements. Then H(M) is completely order isomorphic to a
uniquely determined von Neumann algebra bH(M).
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