
EXTENSIONS AND LIFTINGS

WILLIAM ARVESON

There are three important steps in the proof the BDF theorem for essen-
tially normal operators having essential spectrum X ⊆ C.

(1) Ext(X) has a neutral element.
(2) Ext(X) is a group (i.e., has inverses).
(3) Ext(X) depends only on the homotopy class of X.

In this lecture we will exhibit the neutral element of Ext(X) and describe
the generalization of that result to noncommutative C∗-algebras (without
proof). We then show that Ext(X) is a group by the method of [Arv75],
using a lifting theorem.

The third and most difficult step (homotopy invariance) has not been
satisfactorily simplified. An account of the best proof known to date can be
found in [Dav96].

1. Ext(X) has an identity

We have already pointed out that the direct sum of two operators in
EN (X) is an operator in EN (X), so that the set Ext(X) of equivalence
classes becomes a commutative semigroup with respect to the addition de-
fined by [A] + [B] = [A ⊕ B]. In this section we exhibit a neutral element
for this operation. It is an instructive exercise to prove:

Proposition 1.1. For a normal operator N , the following are equivalent.
(i) N has no isolated eigenvalues of finite multiplicity.
(ii) The C∗-algebra generated by N and 1 satisfies C∗(N) ∩ K = {0}.
(iii) σ(N) = σe(N).

In order to obtain such a normal operator with given spectrum X, one
can choose a sequence λ1, λ2, . . . of complex numbers that is dense in X and
has the additional property that every isolated point of X occurs infinitely
many times, and let N be a diagonal operator with the λk as its diagonal
terms. The key fact is that the equivalence class of such an operator [N ]
defines the neutral element of Ext(X). In more concrete terms, one has the
following absorbption principle from [BDF77]:

Theorem 1.2 (BDF). Let X be a compact subset of C and let N be a
normal operator with σ(N) = X that satisfies the hypotheses of Proposition
1.1. Then for every A ∈ EN (X), the direct sum of operators A ⊕ N is
unitarily equivalent to a compact perturbation of A.
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For example, Theorem 1.2 implies that any two unitary operators U , V
having full spectrum T must be approximately equivalent, since by Theorem
1.2 we have U ∼ U ⊕ V ∼ V ⊕ U ∼ V . It also implies that the unilateral
shift S absorbs every unitary operator U in the sense that S ⊕ U ∼ S.

Responding to a question of Halmos [Hal70] - Is every operator on a
separable Hilbert space a norm limit of reducible operators? - Voiculescu
showed by a very ingenious argument [Voi76] that the answer is yes by es-
tablishing a general result about compact perturbations of representaations
of separable C∗-algebras. Voiculescu’s result was recognized as the assertion
that Ext(A) has a neutral element for arbitrary separable C∗-algebras A in
[Arv77], where a more conceptual proof was given by introducing quasicen-
tral approximate units. We now discuss Voiculescu’s theorem briefly and
show how it generalizes the Brown-Douglas-Fillmore result above. In the
statement of this theorem, all Hilbert spaces are understood to be separable
and infinite-dimensional.

Theorem 1.3 (Voiculescu). Let A ⊆ B(H) be a separable C∗-algebra con-
taining the identity operator, let π : A → B(K) be a ∗-representation of
A on a separable Hilbert space K with the property that π vanishes on the
(possibly trivial) ideal A∩K, and let id be the identity representation of A,
id(A) = A, A ∈ A.

Then id⊕π ∼ id in the sense that there is a sequence of unitary operators
Un : H ⊕K → H such that for every T ∈ A one has

Un(T ⊕ π(T ))U∗n − T ∈ K, and lim
n→∞

‖Un(T ⊕ π(T ))U∗n − T‖ = 0.

In order to deduce Theorem 1.2 from Theorem 1.3, one chooses an es-
sentially normal operator A ∈ B(H) having essential spectrum X, a normal
operator N ∈ B(K) satisfying the hypotheses of Proposition 1.1, and con-
siders the C∗-algebra A = C∗(A) ⊆ B(H). Since the essential spectrum
of A is X = σ(N), an elementary argument shows that there is a unique
∗-representation π : C∗(A) → B(K) that vanishes on C∗(A) ∩ K and satis-
fies π(A) = N . By Theorem 1.3, there is a sequence of unitary operators
Un : H⊕K → H such that Un(A⊕N)U∗n−A is compact for every n = 1, 2, . . .
and ‖Un(A ⊕N)U∗n − A‖ → 0 as n → ∞. In particular, one may conclude
from this that A⊕N ∼ A.

2. Ext(X) is a group

Let X ⊆ C be compact. We have just seen that the identity element of
Ext(X) is the equivalence class [N ] of any normal operator N satisfying the
conditions of Proposition 1.1. Thus, the assertion that Ext(X) is a group
reduces to the following one:

Theorem 2.1. For every operator A ∈ EN (X) there is an operator B ∈
EN (X) such that A⊕B is unitarily equivalent to an operator N +K where
K is compact and N is a normal operator satisfying the hypotheses of Propo-
sition 1.1.
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The original BDF proof of Theorem 2.1 was difficult. We now sketch a
simpler proof from [Arv75], which makes use of the following lifting theorem
of T.-B. Andersen and J. Vesterstrøm (see [And74] and [Ves73]).

Theorem 2.2 (Andersen-Vesterstrøm). Let J be a closed ideal in a unital
C∗-algebra A with the property that A/J is commutative and let π : A →
A/J be the natural projection. There is a positive linear map φ : A/J → A
satisfying φ(1) = 1 and π ◦ φ(x) = x for every x ∈ A/J .

Sketch of proof of Theorem 2.1. Fix an operator A ∈ EN (X). The critical
assertion of Theorem 2.1 is that there is a B ∈ EN (X) such that A⊕B is a
compact perturbation N +K of a normal operator N ; one can then change
N into another normal operator that satisfies the hypothesis of Proposition
1.1 by making use of Theorem 1.2 in a straightforward way (we omit that
argument, see [Arv75]).

The operator B is obtained as follows. Consider the C∗-algebra A =
C∗(A) + K generated by A, 1, and the compact operators. We are given
a faithful ∗-homomorphism θ : C(X) → A/K that satisfies θ(ζ) = A + K,
ζ denoting the current variable ζ(λ) = λ, λ ∈ X. Theorem 2.2 provides a
unit-preserving positive linear map of A/K into A and, composing that map
with θ, we obtain a positive linear map φ : C(X)→ A having the following
properties:

(i) φ(1) = 1,
(ii) φ(fg)− φ(f)φ(g) ∈ K for all f, g ∈ C(X),
(iii) φ(ζ) = A+K, for some compact operator K.

Since a positive linear map of C(X) must be completely positive, we can
apply Stinespring’s theorem to find a ∗-representation π of C(X) on some
other Hilbert space K and a bounded linear map V : H → K such that
φ(f) = V ∗π(f)V , f ∈ C(X). We may also assume that the pair (π, V ) is
minimal in the sense that K is spanned by the set of vectors π(C(X))V H,
so that K is separable and π is nondegenerate, i.e., π(1) = 1. Since V ∗V =
φ(1) = 1, V must be an isometry; so we can use V to identify H with a
subspace of K in such a way that the Stinespring representation becomes
φ(f) = Pπ(f) �H , f ∈ C(X), P denoting the projection of K onto its
subspace H.

If we write K as a direct sum K = H ⊕L, then we obtain a 2× 2 matrix
representation for operators π(f) of the form

(2.1)
(
φ(f) ∗
∗ ψ(f)

)

where ψ : C(X)→ B(L) is the unital CP map ψ(f) = P⊥π(f) �H⊥ and the
off-diagonal terms are linear maps of C(X) into appropriate spaces of linear
operators from one space to another.

The key observation is that the off-diagonal terms of (2.1) are compact,
or equivalently, that Pπ(f)− π(f)P is compact for every f ∈ C(X). To see
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that, choose f, g ∈ C(X) and write

Pπ(f)P⊥π(g)P = Pπ(f)π(g)P − Pπ(f)Pπ(g)P

= Pπ(fg)P − Pπ(f)Pπ(g)P = φ(fg)− φ(f)φ(g).

By property (ii) above, it follows that Pπ(f)P⊥π(g)P is compact; since f
and g are arbitrary in C(X) the compactness of Pπ(f)−π(f)P for f ∈ C(X)
follows.

Now let N be the normal operator on K = H ⊕ L defined by N = π(ζ).
Using the fact that φ(ζ) is a compact perturbation of A, we find that

N =
(
φ(ζ) 0

0 ψ(ζ)

)
+ compact =

(
A 0
0 ψ(ζ)

)
+ compact.

So if we let B = ψ(ζ) ∈ B(L) then we have shown that A⊕B is a compact
perturbation of the normal operator N .

Note that B is an essentially normal operator satisfying σe(B) ⊆ X.
Indeed, essential normality of B follows from the fact that both A and A⊕B
are essentially normal, and a similar argument shows that σe(B) is contained
in the spectrum ofN , namelyX. Finally, if we replace B with the direct sum
B′ = B ⊕M of B with a normal operator M having essential spectrum X,
then B′ will belong to EN (X) and will satisfy A⊕B′ = normal + compact,
as required. �
Remark 2.3. We have only defined Ext(A) when A = C(X) is a separable
commutative C∗-algebra with unit. But there is a natural way to generalize
the definitions we have given in these lectures to define Ext in this more
general context. For example, one can define an extension of the compact
operators by A to be a short exact sequence

(2.2) 0 −→ K −→ E −→ A −→ 0,

where E ⊆ B(H) is a unital separable concrete C∗-algebra containing the
compact operators, the map of K into E is inclusion, and the map of E to
A is a ∗-homomorphism having kernel K. Once that is done, we have the
three questions (1), (2), (3) of the introduction. The third question relating
to homotopy invariance remains somewhat mysterious in this more general
setting. But the first two questions relating to the existence of neutral
elements and inverses are by now well-understood, as we now describe.

As pointed out in [Arv77], Theorem 1.3 can be used to show that Ext(A)
has a neutral element whenever A is a separable unital C∗-algebra. The exis-
tence of inverses was recalcitrant. The proof of Theorem 2.1 sketched above
obviously will work for any C∗-algebra A for which one has an analogue of
the lifting theorem of Andersen and Vesterstrøm, and for several years that
problem was publicized. A solution was found for nuclear C∗-algebras by
Choi and Effros in [CE76], and that will be the topic of my next (and hope-
fully last) lecture. In subsequent work, Choi and Effros [CE77] showed that
that there are quotients of separable C∗-algebras whose natural projection
cannot be lifted, and Joel Anderson built on that example to show that there
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is a separable unital C∗-algebra A such that Ext(A) is not a group [And78].
But the nature of Anderson’s counter example was somewhat mysterious.
Very recently, it was shown by Haagerup and Thorbjornsen that Ext(A)
is not a group when A is the reduced C∗-algebra of the free group on two
generators.

Finally, the reader may have already noted that there is a further general-
ization that is possible, namely by choosing a pair of separable C∗-algebras
A and B, B being nonunital, and replacing extensions of K by A with ex-
tensions of B by A, giving rise to an object Ext(B,A). In fact, it appears
that one should allow B to be unital, but should replace the sequence (2.2)
with a sequence of the form

0 −→ K⊗B −→ E −→ A −→ 0.

Final note: A currently popular way of approaching such issues is by way
of Kasparov’s bivariate KK functor. However, homotopy invariance is built
into the definition of KK(A,B), so that KK-theory in itself cannot shed
light on the issue of homotopy-invariance for generalizations of the theory
of extensions as we have described them above.
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