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An operator A ∈ B(H) whose self-commutator A∗A − AA∗ is compact
is called essentially normal. Two operators A ∈ B(H) and B ∈ B(K) are
said to be approximately equivalent if they are unitarily equivalent modulo
compact operators; more precisely, if there is a unitary operator U : H → K
such that B − UAU∗ is compact. This relation is written A ∼ B, whereas
the stronger relation of unitary equivalence will be written A ∼= B. Roughly
speaking, A ∼= B means that A and B have the same geometric properties,
while A ∼ B means that A and B have the same asymptotic properties
(see Chapter 3 of [Arv01]). We begin by discussing the classification of
essentially normal operators, and its generalization to the computation of
Ext(X), originating in work of Brown, Douglas and Fillmore during the
mid seventies [BDF77]. In a subsequent lecture we will describe the connec-
tion between those results, quasicentral approximate units and the lifting
theorem for nuclear C∗-algebras.

1. Essentially Normal Operators and Extensions

Every operator A ∈ B(H) has an essential spectrum σe(A), defined as the
spectrum of the image of A in the Calkin algebra B(H)/K. The essential
spectrum of A is a nonvoid compact subset of the complex plane, and it
provides an invariant for approximate equivalence:

A ∼ B =⇒ σe(A) = σe(B).

On the surface of it, one might guess that the essential spectrum is a complete
invariant for essentially normal operators. But the unilateral shift S and
its adjoint S∗ provide a simple example of two essentially normal operators
having the same essential spectrum which are not approximately equivalent.
Indeed, elementary computations show that both S and S∗ are essentially
normal operators with essential spectrum the unit circle T. It follows that
both S and S∗ are Fredholm operators, and one observes that

indS = −1, indS∗ = +1.

So if S∗ ∼ S then S∗ would be unitarily equivalent to a compact perturbation
of S; but that would imply indS∗ = indS because the Fredholm index is
stable under unitary equivalence and compact perturbations (see [Arv01]).

Given a compact subset X of the complex plane, one may consider the
class EN (X) of all essentially normal operators A that act on a separable
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Hilbert space and have essential spectrum σe(A) = X. Strictly speaking, one
must be careful in order to avoid set-theoretic anomalies in forming EN (X),
and the easiest way to do that is to select a particular infinite-dimensional
separable Hilbert space H0 and define EN (X) to be the indicated subset of
operators on H0. With this convention, the direct sum of two operators A,
B ∈ B(H0) should be defined as W ∗(A ⊕ B)W , where W : H0 → H0 ⊕H0

is a unitary operator that is, once and for all, fixed. We will systematically
ignore such issues, and instead we treat the proper class EN (X) as if it
were a set, and treat the direct sum A ⊕ B in the usual way. Such set-
theoretically naive conventions will not cause trouble so long as we limit
ourselves to countable operations.

For a nonvoid compact subset X ⊆ C, we define Ext(X) to be the set of
equivalence classes EN (X)/ ∼. Ext(X) is in general an honest set, and it
carries a natural binary operation + defined by [A] + [B] = [A⊕B], where
[A] denotes the equivalence class of an operator A ∈ EN (X). This addi-
tion is commutative and associative, making Ext(X) into a commutative
semigroup. The problem of classifying essentially normal operators having
essential spectrum X becomes that of a) determining any additional struc-
ture that may exist on Ext(X) and b) describing a set of concrete invariants
for distinguishing between the elements of Ext(X).

We have already alluded to the fact that the Fredholm index provides a
nontrivial invariant. More precisely, choose any operator A ∈ B(H) having
essential spectrum X. For every complex number λ in the complement of X,
the operator A−λ = A−λ1 is a Fredholm operator whose index ind(A−λ)
is a function of λ that is constant throughout each connected component of
C \ X, which vanishes identically on the unbounded component of C \ X,
and which is stable under compact perturbations. Thus we have defined an
integer-valued function from the set of bounded components of C \X that
provides a concrete invariant for approximate equivalence in EN (X). The
theorem of Brown, Douglas and Fillmore for subsets of the plane implies
that this is a complete invariant:

Theorem 1.1 (BDF Theorem). Let A and B be essentially normal opera-
tors having the same essential spectrum X ⊆ C. Then A ∼ B iff

ind(A− λ) = ind(B − λ), λ /∈ X.
Moreover, with respect to the operation defined by [A]+[B] = [A⊕B], Ext(X)
is an abelian group and the map X → Ext(X) defines a homotopy-invariant
functor from compact subsets of C to abelian groups.

To say that Ext(X) is an abelian group involves two concrete assertions:
(i) There is an essentially normal operator N having essential spectrum

X which acts as a neutral element in that N ⊕ A ∼ A for every
A ∈ EN (X).

(ii) For every A ∈ EN (X) there is a B ∈ EN (X) such that A⊕B ∼ N ,
where N is the “neutral” operator of (i).
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Indeed, the main results of [BDF77] addressed a more general problem, in
which X → Ext(X) was shown to be a homotopy-invariant functor from
the category of compact metric spaces X to abelian groups, that in fact
gives a concrete realization of K-homology by way of the theory of exten-
sions of commutative C∗-algebras by the compact operators. It is significant
that in the broader category of compact metric spaces X (or even compact
C∞ manifolds), there are invariants for Ext(X) that are more subtle than
those associated with the Fredholm index. For example, the group Ext(X)
can have torsion - while on the other hand, any invariant associated with
the Fredholm index cannot detect torsion elements of Ext(X). Thus, the
realization of Ext(X) as the K-homology of X provided essentially new
information about almost commuting sets of operators on Hilbert spaces.

We now describe some of the key issues in the more general BDF theorem.
Let X be a compact metrizable space and let C(X) be the commutative C∗-
algebra of complex-valued continuous functions on X. We will write K for
the ideal of all compact operators on a given separable infinite-dimensional
Hilbert spaceH. By an extension of K by C(X) we mean a ∗-monomorphism
σ : C(X)→ B(H)/K such that σ(1) = 1. Given two Hilbert spaces H1, H2

and extensions σk : C(X)→ B(Hk)/K we write σ1 ∼ σ2 if there is a unitary
operator U : H1 → H2 such that

θU (σ1(f)) = σ2(f), f ∈ C(X)

where θU is the ∗-isomorphism of Calkin algebras induced by the spatial ∗-
isomorphism T ∈ B(H1)→ UTU∗ ∈ B(H2). Ext(X) is defined as the set of
equivalence classes of such maps σ. It is a good exercise to show that when
X is a compact subset of the complex plane C, a) extensions of C(X) by K
correspond to essentially normal operators with essential spectrumX, b) two
operators determine the same extension iff they differ by a compact operator,
and c) equivalence of extensions corresponds to approximate equivalence of
operators.

It is useful to view extensions as short exact sequences of C∗-algebras in
the following way. Given a ∗-monomorphism σ : C(X)→ B(H)/K as above,
let T ∈ B(H) �→ Ṫ ∈ B(H)/K be the natural projection onto the Calkin
algebra, and consider the associated short exact sequence

(1.1) 0 −→ K −→ E −→π C(X) −→ 0,

where E = {T ∈ B(H) : Ṫ ∈ σ(C(X))}, the map of K to E is inclusion,
and π : E → C(X) is given by composing the natural map of E to the
Calkin algebra with the inverse of σ, π(T ) = σ−1(Ṫ ). Conversely, every
exact sequence of the form (1.1) arises from a uniquely determined extension
σ : C(X)→ B(H)/K as defined in the preceding paragraph.

Notice that an exact sequence of the form (1.1) is defined uniquely by
specifying a pair (E , π) consisting of a C∗-algebra E of operators on H that
contains K together with a surjective ∗-homomorphism π : E → C(X) that
satisfies kerπ = K. Two sequences such as (1.1) are said to be equivalent if
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their associated pairs (Ek, πk) are related as follows: there is a ∗-isomorphism
θ : E1 → E2 such that π2 ◦ θ = π1. This equivalence relation can also be
viewed as an equivalence relation existing between short exact sequences of
the form (1.1), and it is denoted∼. Since both E1 and E2 contain the compact
operators and kerπk = K, it is a straightforward exercise to show that
both the equivalence map θ and its inverse must carry compact operators
to compact operators, and is therefore implemented by a unitary operator
U : H1 → H2 by way of θ(T ) = UTU∗, T ∈ E1. In this way one sees that
two short exact sequences of the form (1.1) with pairs (E1, π1) and (E2, π2)
are equivalent iff their associated extensions σ1 and σ2 are equivalent.
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