
THE NONCOMMUTATIVE HAHN-BANACH THEOREMS

WILLIAM ARVESON

The Hahn-Banach theorem in its simplest form asserts that a bounded
linear functional defined on a subspace of a Banach space can be extended to
a linear functional defined everywhere, without increasing its norm. There
is an order-theoretic version of this extension theorem (Theorem 0.1 below)
that is often more useful in context. The purpose of these lecture notes is
to discuss the noncommutative generalizations of these two results and their
relation to each other. We make use of several standard terms such as op-
erator space, operator system, n-positive, n-contractive, completely positive,
completely contractive, and refer the reader to [Pau02] for definitions.

The original proof of the extension theorem for completely positive maps
is found in [Arv69]. I will sketch a somewhat simplified proof that is based
on the following theorem of M. G. Krein (see page 63 of [Nai70]).

Theorem 0.1 (Krein). Let P be a cone in a real topological vector space X
such that the interior of P is nonempty. Let M be a linear subspace of X
and let f : M → R be a linear functional such that f(M∩P ) ⊆ [0,∞). Then
f can be extended to a linear functional f̃ on X satisfying f̃(P ) ⊆ [0,∞).

A straightforward application of Krein’s theorem to the cone P of all
positive elements of a C∗-algebra leads to the following extension theorem
for complex-linear functionals defined on operator systems.

Corollary 0.2. Let S be an operator system in a unital C∗-algebra A and
let f : S → C be a complex-linear functional such that f(S+) ⊆ [0,∞), S+

denoting the set of positive elements of S. Then f can be extended to a
positive linear functional on A.

Aside from a compactness argument that will be described in the lecture,
the key assertion of the completely positive extension theorem is the follow-
ing result about extending completely positive maps into matrix algebras.

Theorem 0.3. Let S be an operator system in a unital C∗-algebra A and
let H be a finite-dimensional Hilbert space. Then every completely positive
linear map φ : S → B(H) can be extended to a completely positive map of A
into B(H).

Sketch of proof. It suffices to show that there is a Hilbert space K a rep-
resentation π : A → B(K), and a linear operator V : H → K such that
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φ(s) = V ∗π(s)V , s ∈ S; that is because the map a ∈ A �→ V ∗π(a)V is
rather obviously completely positive.

To that end, let n = dimH, let ξ1, . . . , ξn be a linearly independent set
that spans H, and consider the linear functional f defined on Mn(S) by

(0.1) f((sij)) =
n∑

i,j=1

〈φ(sij)ξj , ξi〉,

(sij) denoting the n × n matrix with entries sij . f is a positive linear
functional on Mn(S) because φ is n-positive. Corollary 0.2 implies that
there is a positive linear functional g on Mn(A) that extends f . By the
GNS construction, we obtain a Hilbert space K̄, a representation π̄ of A on
K, and a vector η̄ ∈ K such that g(x) = 〈π̄(x)η̄, η̄〉, for all x ∈Mn(A). A bit
of reflection and a straightforward computation shows that we can realize K̄
as a direct sum of n copies of a single Hilbert space K, η̄ as a column vector
with n components ηi ∈ K, and a single representation π : A→ B(K) such
that π̄((xij)) is given by an n× n operator matrix (π(xij)) as follows

g((xij)) = 〈(π(xij))η̄, η̄〉 =
∑
ij

〈π(xij)ηj , ηi〉.

If we let V be the unique linear map of H to K that satisfies V ξk = ηk,
1 ≤ k ≤ n, and choose xij = sij ∈ S, then the above formula implies
n∑

i,j=1

〈φ(sij)ξj , ξi〉 = g((sij)) =
n∑

i,j=1

〈π(sij)V ξj , V ξi〉 =
n∑

i,j=1

〈V ∗π(sij)V ξj , ξi〉.

Since the sij can be chosen arbitrarily in S, the latter formula implies that
for fixed s ∈ S and all i, j between 1 and n, we have

〈φ(s)ξj , ξi〉 = 〈V ∗π(s)V ξj , ξi〉
from which the required assertion is evident. �

After a preprint of [Arv69] was circulated, I received a letter from George
Elliott outlining the above argument. The original proof of Theorem 0.3 in
[Arv69] made no use of Krein’s theorem, but was somewhat more involved.
The basic idea of both proofs, namely that of using duality to convert state-
ments about matrix-valued maps to statements about functionals, can be
embellished. See chapter 6 of [Pau02] for a generalization and a more sys-
tematic organization of the details.

As I have already pointed out, a compactness argument allows one to
generalize Theorem 0.3 to the case of infinite dimensional Hilbert spaces,
and the latter result is a noncommutative generalization of the Hahn-Banach
theorem in its order-theoretic form, namely Krein’s Theorem 0.1. I will
sketch this compactness argument in the lecture (it is reproduced in Chapter
7 of [Pau02]). More than ten years went by before anyone looked seriously
for a version of the extension theorem for operator spaces. Finally, in 1981,
Gerd Wittstock proved the following result [Wit81].
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Theorem 0.4 (Wittstock). Let S be a linear subspace of a unital C∗-algebra
A and let φ : S → B(H) be a completely bounded linear map. Then φ can
be extended to a linear map φ̃ : A→ B(H) such that ‖φ̃‖cb = ‖φ‖cb.

Wittstock’s proof of Theorem 0.4 was somewhat involved, by way of gen-
eralizing the Hahn-Banach theorem to set-valued maps into B(H). Soon
afterward, Paulsen discovered a simple device that allows one to deduce The-
orem 0.4 from the extension theorem for completely positive maps [Pau82].
We now discuss Paulsen’s trick, then we sketch the proof of Theorem 0.4.

Lemma 0.5 (Paulsen). Let S be an operator space in a unital C∗-algebra
A, and let φ : S → B(H) be an operator-valued linear map. Consider the
operator system S̃ ⊆M2(A) defined by

S̃ = {
(
a1 s
t∗ b1

)
: s, t ∈ S, a, b ∈ C},

and the operator-valued linear map Φ : S̃ →M2(B(H)) defined by

Φ(
(
a1 s
t∗ b1

)
) =

(
a1 φ(s)
φ(t)∗ b1

)
.

If φ is completely contractive, then Φ is completely positive.

Sketch of proof. Assuming that φ is n-contractive for some n = 1, 2, . . . , we
will show that Φn : Mn(S̃) → Mn(B(H)) is positive. For this, we identify
Mn(M2(A)) with the C∗-algebra of all 2× 2 operator matrices of the form(

A X
Y ∗ B

)
, A,B,X, Y ∈Mn(A).

This follows because the natural map of Mn(M2(A)) onto M2(Mn(A)) is a
∗-isomorphism. In this identification, Mn(S̃) becomes the set of matrices(

A X
Y ∗ B

)
,

where A,B belong to Mn(C) and X,Y belong to Mn(S). Let us choose a
positive element T of this form in Mn(S̃). Then A and B are positive n×n
matrices and Y = X, so that for every ε > 0, Aε = A+ ε1 and Bε = B + ε1
are invertible positive elements of Mn(C), and we have

T + ε1 =
(
Aε X
X∗ Bε

)
=

(
A

1/2
ε 0
0 B

1/2
ε

)(
1 Yε
Y ∗ε 1

) (
A

1/2
ε 0
0 B

1/2
ε

)
,

where Yε = A
−1/2
ε XB

−1/2
ε is an element of Mn(S). Since T + ε1 is positive

it follows that
(

1 Yε
Y ∗ε 1

)
≥ 0, which in turn is equivalent to ‖Yε‖ ≤ 1.

To show that Φn(T ) is positive, it suffices to show that Φn(T + ε1) ≥ 0
for every ε > 0. After noting that Aε and Bε are scalar matrices we find
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that φn(Yε) = A
−1/2
ε φn(X)B−1/2

ε , and moreover

Φn(T + ε1) =
(

Aε φn(X)
φn(X)∗ Bε

)

=

(
A

1/2
ε 0
0 B

1/2
ε

)(
1 φn(Yε)

φn(Yε)∗ 1

) (
A

1/2
ε 0
0 B

1/2
ε

)
.

Now ‖φn(Yε)‖ ≤ 1 because φ is n-contractive, and ‖φn(Yε)‖ ≤ 1 is equivalent

to the assertion
(

1 φn(Yε)
φn(Yε)∗ 1

)
≥ 0. It follows that the right side of the

preceding equation is positive, hence Φn(T + ε1) ≥ as required. �
While we will not require the fact, we remark that the converse of Lemma

0.5 is true as well; indeed, the reader can easily adapt the above argument
to show that for every n = 1, 2, . . . , φ is n-contractive iff Φ is n-positive.

We now indicate how one deduces Theorem 0.4 from the extension theo-
rem for completely positive linear maps via Lemma 0.5.

Proof of Theorem 0.4. In order to prove Theorem 0.4 it is enough to show
that that every linear map φ : S → B(H) that is completely contractive (i.e.,
‖φ‖cb ≤ 1) has a completely contractive linear extension to a map of A into
B(H). By Lemma 0.5, the associated map Φ : S̃ →M2(B(H)) is completely
positive. By the extension theorem for completely positive maps, Φ can be
extended to a completely positive map Φ̃ of M2(A) into M2(B(H)). Let φ̃
be the linear map of A into B(H) defined by

Φ̃(
(

0 x
0 0

)
) =

(
∗ φ̃(x)
∗ ∗

)
, x ∈ A.

Obviously, φ̃ is an extension of φ. Now Φ̃ may be viewed as a completely pos-
itive unit-preserving operator valued map defined on a C∗-algebra M2(A),
and therefore it has a Stinespring decomposition of the form

Φ̃(X) = V ∗π(X)V, X ∈M2(A)

where π is a representation of M2(A) and V is a linear operator between
appropriate Hilbert spaces satisfying V ∗V = Φ̃(1) = 1. Hence V is an
isometry and Φ̃ is a completely contractive map. It is now a routine matter to
check that φ̃ must also be completely contractive (see p. 100 of [Pau02]). �
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