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I will elaborate on some of these arguments in detail, since they illustrate how
one handles such issues in a coordinate-free way. Notice that almost everything to
follow reduces to the problem of making appropriate estimates. There are no rules
for making good estimates; it is something you learn only by doing it enough times
yourself, in your own way.

Exercise 2. The proofs that ‖AB‖ ≤ ‖A‖ · ‖B‖ and ‖1‖ = 1 are straightforward.
For matrices A,A0, B,B0 ∈ Mn(R) we have AB−A0B0 = (A−A0)B+A0(B−B0)
and therefore

‖AB −A0B0‖ ≤ ‖A−A0‖ · ‖B‖+ ‖A0‖ · ‖B −B0‖.

We have to show that if A1, A2, . . . and B1, B2, . . . are sequences that converge,
respectively, to A0 and B0, then AnBn converges to A0B0. For that we estimate
as follows:

‖AnBn −A0B0‖ ≤ ‖Bn‖ · ‖An −A0‖+ ‖A0‖ · ‖Bn −B0‖.

From the triangle inequality we know that |‖Bn‖ − ‖B0‖| ≤ ‖Bn − B0‖ → 0 as
n →∞, and therefore the sequence of norms ‖Bn‖ is bounded. Choosing M large
enough that ‖Bn‖ ≤ M for every n = 1, 2, . . . we conclude from the previous
inequality that

‖AnBn −A0B0‖ ≤ M · ‖An −A0‖+ ‖A0‖ · ‖Bn −B0‖ → 0,

as n →∞. [Note: of course there is an “ε-δ” proof of joint continuity of the function
f(A,B) = AB that is based on the estimates above. It might be useful for you to
reformulate the above argument in those terms]

Exercise 3. It follows from the first inequality of Exercise 2 and an obvious induc-
tion that ‖Ap‖ ≤ ‖A‖p for every p = 1, 2, . . . . Fix a matrix A ∈ Mn(R) satisfying
‖A‖ < 1, and consider the partial sums of the “geometric series”

Sn = 1 + A + A2 + · · ·+ An, n = 0, 1, 2, . . . .

For every n, k = 1, 2, . . . we can estimate the norm of Sn+k − Sn as follows

‖Sn+k − Sn‖ ≤
n+k∑

r=n+1

‖Ar‖ ≤
n+k∑

r=n+1

‖A‖r ≤ ‖A‖n+1
∞∑

r=0

‖A‖r =
‖A‖n+1

1− ‖A‖
.

Thus {Sn} is a Cauchy sequence. Since Mn(R) is a complete metric space, Sn must
converge to a matrix B as n → ∞. As in the discussion of the geometric series in
freshman calculus, we cancel terms to find that

Sn(1−A) = (1−A)Sn = 1−An+1,
1
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and since ‖An+1‖ ≤ ‖A‖n+1 → 0 as n →∞, it follows [from continuity of the maps
X 7→ X(1−A) and X 7→ (1−A)X] that

B(1−A) = lim
n→∞

Sn(1−A) = lim
n→∞

(1−A)Sn = (1−A)B = 1

Notice that we also have the following estimate, telling us how close (1 − A)−1

is to 1 in terms of ‖A‖ when ‖A‖ < 1:

(A) ‖(1−A)−1 − 1‖ = ‖B − 1‖ = ‖
∞∑

r=1

Ar‖ ≤
∞∑

r=1

‖A‖r =
‖A‖

1− ‖A‖
.

Exercise 4. Note that Exercise 3 implies that every C ∈ Mn(R) with ‖1−C‖ < 1
is invertible.

Let A be an invertible n × n matrix. We have to exhibit a positive number ε
with the property that every matrix B satisfying ‖A − B‖ ≤ ε is invertible. The
Hint shows that for every B ∈ Mn(R) we have

‖1−A−1B‖ = ‖A−1(A−B)‖ ≤ ‖A−1‖ · ‖A−B‖.

So given any B satisfying ‖A−B‖ ≤ 1
2‖A−1‖ we will have ‖1−A−1B‖ ≤ 1/2 < 1.

Exercise 3 implies that A−1B must be invertible, hence B = A(A−1B) is invertible.
Thus we can take ε = 1

2‖A−1‖ .

Exercise 5. Consider the function f(A) = A−1 defined on GL(n). For fixed
A ∈ GL(n), the result of Exercise 4 implies that A + X will be invertible whenever
‖X‖ is sufficiently small. We now show that

lim
‖X‖→0

(A + X)−1 = A−1,

by estimating the norm of (A+X)−1−A−1 as follows. Assuming that ‖X‖ is small
enough that A + X is invertible, we have

(A + X)−1 −A−1 = (A(1 + A−1X))−1 −A−1 = (1 + A−1X)−1A−1 −A−1

= ((1 + A−1X)−1 − 1)A−1.

Notice that this formula, together with Exercise 3, implies that A + X is invertible
whenever ‖X‖ is small enough that ‖A−1X‖ < 1; for example, ‖X‖ < 1/‖A−1‖ is
small enough. For such X we can use the estimate (A) above as follows:

‖(1 + A−1X)−1 − 1‖ = ‖(1− (−A−1X))−1 − 1‖ ≤ ‖A−1X‖
1− ‖A−1X‖

.

Since ‖A−1X‖ ≤ ‖A−1‖ · ‖X‖ → 0 as ‖X‖ → 0, the above inequalities imply that
‖1 − A−1X‖ → 0 as ‖X‖ → 0, and consequently ‖(A + X)−1 − A−1‖ → 0 as
‖X‖ → 0.
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Exercise 6. Let f(A) = A−1 be the inversion function defined on GL(n). We
have seen in Exercise 4 that the domain of f is an open set in Mn(R). Now we
have to show that DAf exists for every fixed A ∈ GL(n), and that A 7→ DAf is
a continuous function from GL(n) to linear operators on Mn(R). I’ll first show
that all directional derivatives exist and will compute an explicit formula for the
directional derivatives of f at a point A ∈ GL(n), defined by

DAf(X) =
d

dt
f(A + tX)|t=0 = lim

t→0

1
t
(f(A + tX)− f(A)),

for an arbitrary X ∈ Mn(R). Once that has been accomplished we will have the
formula we need (it will turn out to be DAf(X) = −A−1XA−1), and then we will
show that this linear operator X 7→ DAf(X) does indeed satisfy the criterion for
being the derivative of f at A ∈ GL(n). At that point it will be easy to check that
the map A 7→ DAf is continuous.

Fix A ∈ GL(n) and X ∈ Mn(R). Since GL(n) is open, A + tX will be invertible
provided that |t| is sufficiently small. For such small t we can use the formulas of
Exercise 5 to write

f(A + tX)− f(A) = (A + tX)−1 −A−1 = ((1 + tA−1X)−1 − 1)A−1,

and therefore

(B)
1
t
(f(A + tX)− f(A)) =

1
t
((1 + tA−1X)−1 − 1)A−1.

Note that ‖tA−1X‖ ≤ |t| · ‖A−1‖ · ‖X‖ can be made as small as we like by choosing
|t| small enough, and in particular for small enough |t| we will have ‖tA−1X‖ < 1.
For such t we can expand (1 + tA−1X)−1 into a convergent “geometric series” as
in Exercise 3, and after subtracting 1 from that expression we obtain

(1 + tA−1X)−1 − 1 = (1− (−tA−1X))−1 − 1 =
∞∑

r=1

(−t)r(A−1X)r.

Thus for all nonzero t we have

1
t
((1 + tA−1X)−1 − 1) =

∞∑
r=1

(−1)rtr−1(A−1X)r

= −A−1X +
∞∑

r=2

(−1)rtr−1(A−1X)r = −A−1X + Rt.

where Rt =
∑∞

r=2(−1)rtr−1(A−1X)r. Notice that ‖Rt‖ → 0 as |t| → 0. That is
because of the estimate

‖Rt‖ = ‖
∞∑

r=2

(−1)rtr−1(A−1X)r‖ ≤
∞∑

r=2

|t|r−1‖(A−1X)r‖

≤
∞∑

r=2

|t|r−1‖A−1X‖r =
|t| · ‖A−1X‖2

1− |t| · ‖A−1X‖
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since the last term of the preceding string of inequalities obviously tends to zero as
|t| → 0. Thus we have proved that

lim
t→0

1
t
((1 + tA−1X)−1 − 1) = −A−1X.

In view of formula (B) above, this argument shows that all directional derivatives
of the function f exist at every point of the domain of f , and that that they are
given by the explicit formula

(C) lim
t→0

1
t
(f(A + tX)− f(A)) = −A−1XA−1.

This tells us what DAf should be, namely DAf(X) = −A−1XA−1, for A ∈
GL(n) and arbitrary X ∈ Mn(R). Formula (C) is a “noncommutative” counterpart
of the formula from freshman calculus which asserts that the differential of the
function f(x) = x−1 at x = a (a 6= 0) is given by dfa(h) = −a−2h.

Now that we know what DAf must be, it is relatively easy to finish the proof.
First, we must show that for fixed A ∈ GL(n), the linear operator X 7→ −A−1XA−1

satisfies the definition of DAf , namely that

f(A + X) = f(A)−A−1XA−1 + o(‖X‖), X ∈ Mn(R).

In completely explicit terms, the assertion of the preceding line is that

(D) lim
‖X‖→0

‖f(A + X)− f(A) + A−1XA−1‖
‖X‖

= 0,

and (D) is what must be proved.
At this point, if you look back carefully through the estimates we have done above

to prove (C) (where tX was used instead of X), you will see that the same arguments
can be used to prove the somewhat more general statement (D). Thus, the estimates
required for proving (D) have already been developed in proving the existence of
directional derivatives (C) and calculating their value. It is instructive to actually
carry out the estimates required to prove (D) as variations of the estimates we have
made above; I will leave that for you to enjoy on your own time.

Finally, the continuity of DAf in A amounts to showing that the function Df
that takes A ∈ GL(n) to the linear operator X ∈ Mn 7→ DAf(X) = −A−1XA−1 is
continuous. The space L(Mn(R)) of all linear operators on Mn(R) is just another
vector space of finite dimension [its dimension is n4], and a convenient norm on
L(Mn(R)) is the operator norm associated with the norm we have been using on
Mn(R), namely

‖L‖ = sup
‖X‖≤1

‖L(X)‖.

If Ak is a sequence in GL(n) that converges to A ∈ GL(n), then the operator norms
of the differences DAk

f −DAf are given by

‖DAk
f −DAf‖ = sup

‖X‖≤1

‖ −A−1
k XA−1

k + A−1XA−1‖.

In fact, a straightforward application of the result of Exercise 5 shows that the right
side of the preceding expression must tend to zero when Ak → A. Conclusion: The
function f(A) = A−1 is of class C1.


