## Math 105 Exercises due 14 April, 2003.

In Exercises 1 and 2, $E$ denotes a vector space that has been endowed with a norm $\|\cdot\|$, i.e., a function from $E$ to $[0, \infty)$ satisfying $\|x+y\| \leq\|x\|+\|y\|$, $\|\lambda x\|=|\lambda| \cdot\|x\|$, and $\|x\|=0 \Longrightarrow x=0$, for all $x, y \in E, \lambda \in \mathbb{R}$. $E$ can be viewed as a metric space, with distance function $d(x, y)=\|x-y\|$, and it makes good sense to say that $E$ is complete (every Cauchy sequence converges). A complete normed linear space is called a Banach space, after the Polish mathematician Stefan Banach.

Exercise 1. A formal infinite series $\sum_{n=1}^{\infty} x_{n}$ consisting of elements $x_{n} \in E$ is said to converge if the sequence of partial sums $s_{n}=x_{1}+\cdots+x_{n}$ converges. The series $\sum_{n=1}^{\infty} x_{n}$ is said to converge absolutely if the sequence of real numbers $\sum_{n=1}^{\infty}\left\|x_{n}\right\|$ converges.

Show that in a Banach space $E$, every absolutely convergent series converges.
Exercise 2. Let $E$ be a normed vector space with the property that every absolutely convergent series converges. Show that $E$ is a Banach space. Hint: if a Cauchy sequence has a convergent subsequence, then it is convergent.

Exercise 3. Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a function satisfying $|f(x, y)| \leq 1$ for all $x, y \in[0,1]$, and which is separately continuous in the sense that $f(x, y)$ is continuous in $x$ for fixed $y \in[0,1]$, and continuous in $y$ for fixed $x \in[0,1]$.
a) Show that for every $x \in[0,1]$, the function $y \mapsto f(x, y)$ belongs to $L^{1}[0,1]$.
b) Show that $g(x)=\int_{0}^{1} f(x, y) d y$ is a continuous function defined on $[0,1]$.

Exercise 4. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying $g(x)=0$ for all $|x|>M$ where $0<M<\infty$. Show that $g$ is uniformly continuous: for every $\epsilon>0$ there is a $\delta>0$ such that $|g(x)-g(y)| \leq \epsilon$ for all $x, y \in \mathbb{R}$ satisfying $|x-y| \leq \delta$.

Exercise 5. Let $g$ be as in Exercise 4, and let $f$ be an arbitrary function in $L^{1}(\mathbb{R})$.
a) Show that for every $x \in \mathbb{R}$, the function $t \in \mathbb{R} \mapsto g(x-t) f(t)$ belongs to $L^{1}(\mathbb{R})$.
b) Show that the function

$$
h(x)=\int_{-\infty}^{+\infty} g(x-t) f(t) d t
$$

is continuous. $h$ is called the convolution of $g$ with $f$, and it is written $h=g * f$.
Exercise 6. Still assuming that $g$ is as in Exercise 4 and $f \in L^{1}(\mathbb{R})$, show that the convolution $g * f$ belongs to $L^{1}(\mathbb{R})$. Notice that this implies that for fixed $g$ as in Exercise $4, T f=g * f$ is a linear transformation carrying $L^{1}(\mathbb{R})$ into itself.

What is the best estimate of $\|g * f\|_{1}$ you can give in terms of $\|f\|_{1}$ and some quantity related to $g$ ? Can you conclude that $T f=g * f$ is a bounded linear operator on $L^{1}(\mathbb{R})$ ?

