Math 105 Exercises due 7 April, 2003.

Exercise 1. Consider the nonnegative Borel measurable functions f, g defined on \mathbb{R} by $f(x)=g(x)=0$ for $x \notin(0,1)$ and

$$
f(x)=\frac{1}{x}, \quad g(x)=\frac{1}{\sqrt{x}}
$$

for $x \in(0,1)$.
a) Show that $\int f d \mu=+\infty$.
b) Show that $\int g d \mu<+\infty$ and compute the value of $\int g d \mu$.

In the remaining exercises, f denotes a fixed nonnegative Borel measurable function defined on \mathbb{R}. For every Borel set $E \subseteq \mathbb{R}$, define $\int_{E} f$ by

$$
\int_{E} f d \mu=\int f \chi_{E} d \mu
$$

μ denoting Lebesgue measure.
Exercise 2. Show that the set function $\nu(E)=\int_{E} f d \mu$ is a σ-additive measure on the σ-algebra of Borel sets.

Exercise 3. Show that for every Borel set E satisfying $\nu(E)>0$, there is a Borel subset $F \subseteq E$ such that $0<\nu(F)<+\infty$.

Exercise 4. Show that ν is a σ-finite measure in the following sense: there is a sequence of Borel sets $F_{1} \subseteq F_{2} \subseteq \cdots$ such that $F_{1} \cup F_{2} \cup \cdots=\mathbb{R}$ and $\nu\left(F_{n}\right)<+\infty$ for every $n=1,2, \ldots$,

Exercise 5. Show that for every Borel set $E \subseteq \mathbb{R}$, one has

$$
\mu(E)=0 \Longrightarrow \nu(E)=0
$$

[This relation between measures μ and ν is expressed by saying that ν is absolutely continuous with respect to μ]
Exercise 6. Prove that the measure ν determines the function f almost everywhere. More precisely, show that if g is a second nonnegative Borel function such that $\int_{E} g d \mu=\int_{E} f d \mu$ for every Borel set E, then $f(x)=g(x)$ for all x in the complement of a Borel set of Lebesgue measure zero.

