Math 105 Exercises due 31 March, 2003.

Exercise 1. Exercise 25, page 420, part a). You can assume that M is a complete metric space.
b) Give a simple example of an upper semicontinuous function $f:[0,1] \rightarrow \mathbb{R}$ that is not continuous.
c). Let M have its natural Borel σ-algebra, namely, the σ-algebra generated by the family of open subsets of M. Show that every upper semicontinuous function $f: M \rightarrow \mathbb{R}$ is Borel-measurable.

Exercise 2. Let (X, \mathcal{B}) be a Borel space and let $f_{1}, f_{2}, \cdots: X \rightarrow \mathbb{R}$ be a sequence of measurable functions. Show that the set of all points $x \in X$ for which the sequence $f_{1}(x), f_{2}(x), \ldots$ converges belongs to \mathcal{B}.

A probability space is a triple (Ω, \mathcal{E}, P) where Ω is a set, \mathcal{E} is a σ-algebra of subsets of Ω, and $P: \mathcal{E} \rightarrow[0,1]$ is a probability measure - a countably additive measure normalized so that $P(\Omega)=1$. Probabilists call Ω the sample space, and refer to sets of \mathcal{E} as events. A random variable is a real-valued measurable function $X: \Omega \rightarrow \mathbb{R}$; the value of X at a point $\omega \in \Omega$ is denoted by $X(\omega)$.

Exercise 3. Let $X: \Omega \rightarrow \mathbb{R}$ be a random variable. For every Borel set $E \subseteq \mathbb{R}$, let $m_{X}(E)$ be the number $P\{\omega \in \Omega: X(\omega) \in E\} . m_{X}(E)$ represents the probability of the event "X belongs to E ". Show that m_{X} is a σ-additive probability measure on the σ-algebra of all Borel sets of \mathbb{R}. The measure m_{X} is called the probability distribution of the random variable X.

Exercise 4. Let $X, Y: \Omega \rightarrow \mathbb{R}$ be two random variables.
a) Show that for every Borel set $E \subseteq \mathbb{R}^{2}$, the set $\{\omega \in \Omega:(X(\omega), Y(\omega)) \in E\}$ belongs to \mathcal{E}. Thus we can consider its probability

$$
m_{X, Y}(E)=P\{\omega \in \Omega:(X(\omega), Y(\omega)) \in E\}
$$

b) Show that $m_{X, Y}$ is a probability measure on $\mathbb{R}^{2} . m_{X, Y}$ is called the joint distribution of the pair (X, Y).
c) Show that both m_{X} and m_{Y} are uniquely determined by the joint distribution by writing down an explicit formula for m_{X} and m_{Y} in terms of $m_{X, Y}$.

Exercise 5. Let (Ω, \mathcal{B}, P) be the probability space $\Omega=\{(1,1),(1,2),(2,1),(2,2)\}$ $\mathcal{B}=2^{\Omega}$, with probabilities $P\{(i, j)\}=1 / 4,1 \leq i, j \leq 2$. Show that the converse of Exercise 4 c) is false by giving examples of two pairs of random variables X, Y, and X^{\prime}, Y^{\prime}, such that $m_{X}=m_{Y}=m_{X^{\prime}}=m_{Y^{\prime}}$ but $m_{X, Y} \neq m_{X^{\prime}, Y^{\prime}}$.

