Math 105 Exercises due 31 March, 2003.

Exercise 1. Exercise 25, page 420, part a). You can assume that M is a complete metric space.

b) Give a simple example of an upper semicontinuous function $f : [0, 1] \to \mathbb{R}$ that is not continuous.

c). Let M have its natural Borel σ -algebra, namely, the σ -algebra generated by the family of open subsets of M. Show that every upper semicontinuous function $f: M \to \mathbb{R}$ is Borel-measurable.

Exercise 2. Let (X, \mathcal{B}) be a Borel space and let $f_1, f_2, \dots : X \to \mathbb{R}$ be a sequence of measurable functions. Show that the set of all points $x \in X$ for which the sequence $f_1(x), f_2(x), \dots$ converges belongs to \mathcal{B} .

A probability space is a triple (Ω, \mathcal{E}, P) where Ω is a set, \mathcal{E} is a σ -algebra of subsets of Ω , and $P : \mathcal{E} \to [0, 1]$ is a probability measure – a countably additive measure normalized so that $P(\Omega) = 1$. Probabilists call Ω the sample space, and refer to sets of \mathcal{E} as events. A random variable is a real-valued measurable function $X : \Omega \to \mathbb{R}$; the value of X at a point $\omega \in \Omega$ is denoted by $X(\omega)$.

Exercise 3. Let $X : \Omega \to \mathbb{R}$ be a random variable. For every Borel set $E \subseteq \mathbb{R}$, let $m_X(E)$ be the number $P\{\omega \in \Omega : X(\omega) \in E\}$. $m_X(E)$ represents the probability of the event "X belongs to E". Show that m_X is a σ -additive probability measure on the σ -algebra of all Borel sets of \mathbb{R} . The measure m_X is called the *probability distribution* of the random variable X.

Exercise 4. Let $X, Y : \Omega \to \mathbb{R}$ be two random variables.

a) Show that for every Borel set $E \subseteq \mathbb{R}^2$, the set $\{\omega \in \Omega : (X(\omega), Y(\omega)) \in E\}$ belongs to \mathcal{E} . Thus we can consider its probability

$$m_{X,Y}(E) = P\{\omega \in \Omega : (X(\omega), Y(\omega)) \in E\}.$$

b) Show that $m_{X,Y}$ is a probability measure on \mathbb{R}^2 . $m_{X,Y}$ is called the *joint distribution* of the pair (X, Y).

c) Show that both m_X and m_Y are uniquely determined by the joint distribution by writing down an explicit formula for m_X and m_Y in terms of $m_{X,Y}$.

Exercise 5. Let (Ω, \mathcal{B}, P) be the probability space $\Omega = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$ $\mathcal{B} = 2^{\Omega}$, with probabilities $P\{(i, j)\} = 1/4, 1 \leq i, j \leq 2$. Show that the converse of Exercise 4 c) is false by giving examples of two pairs of random variables X, Y, and X', Y', such that $m_X = m_Y = m_{X'} = m_{Y'}$ but $m_{X,Y} \neq m_{X',Y'}$.