Math 105 Exercises due 10 March, 2003.

Consider the space \mathbb{R}^{2}. A rectangle is a subset of \mathbb{R}^{2} of the form $R=I_{1} \times I_{2}$ where each I_{k} is an interval in \mathbb{R}. Recall that intervals in \mathbb{R} can be open or closed, neither, bounded, semi-infinite, or \mathbb{R} itself. \mathcal{B} will denote the σ-algebra of subsets of \mathbb{R}^{2} generated by the set of all bounded open rectangles, of the form $(a, b) \times(c, d)$; and sets in \mathcal{B} are called Borel sets.

Exercise 1. A set $U \subseteq \mathbb{R}^{2}$ is called open if for every $x \in U$ there is an $\epsilon>0$ such that U contains the ball $\left\{y \in \mathbb{R}^{2}:\|y-x\|<\epsilon\right\}$. Show that every open set is a Borel set. Hint: show that there is a countable family of open rectangles with the property that every open set is a union of some of the rectangles of this family.

Exercise 2. A half-space is a subset of \mathbb{R}^{2} of the form $\mathbb{R} \times(a, \infty)$ or $(a, \infty) \times \mathbb{R}$. where $a \in \mathbb{R}$. Show that the σ-algebra generated by the half-spaces is the Borel σ-algebra \mathcal{B}.
Exercise 3. Give a precise definition of Lebesgue outer measure m^{*} in \mathbb{R}^{2} using countable covers by bounded open rectangles, where the area of an open rectangle $R=I_{1} \times I_{2}$ is defined by $|R|=\left|I_{1}\right| \cdot\left|I_{2}\right|$.

Exercise 4. Show that the outer measure of any vertical line $\{a\} \times \mathbb{R}$ or any horizontal line $\mathbb{R} \times\{a\}, a \in \mathbb{R}$, is zero.

Exercise 5. Use your definition in Exercise 3 to show that all half-spaces $\mathbb{R} \times(a, \infty)$ and $(a, \infty) \times \mathbb{R}$ are m^{*}-measurable. Deduce that every Borel subset of \mathbb{R}^{2} is m^{*} measurable.

