Math 105 Exercises due 24 February, 2003.

A set A is said to be *countable* if it is either finite, or countably infinite in the sense that there is a bijection $f : \{1, 2, 3, ...\} \to A$. Thus, the elements of any nonempty countable set can be enumerated $A = \{x_1, ..., x_n\}$ for some finite positive integer n, or else $A = \{x_1, x_2, ...\}$, with $x_i \neq x_j$ for all $i \neq j$.

A σ -algebra is a family \mathcal{A} of subsets of a fixed nonempty set X with the following properties:

- (i) $\emptyset \in \mathcal{A}$.
- (ii) $E \in \mathcal{A} \implies X \setminus E \in \mathcal{A}$, where $X \setminus E$ denotes the complement of E.
- (iii) If E_1, E_2, \ldots is a sequence of elements of \mathcal{A} then $\cup_n E_n \in \mathcal{A}$.

We have pointed out in the lecture that every set X has a smallest σ -algebra $\mathcal{A}_0 = \{\emptyset, X\}$ and a largest one $\mathcal{A}_1 = 2^X = \{\text{all subsets of } X\}$. In these problems you will look at other examples.

Exercise 1. Let X be a nonempty set and let \mathcal{A} be the family of all subsets $E \subseteq X$ which are either countable or co-countable (thus, a set E belongs to \mathcal{A} iff E is countable or $X \setminus E$ is countable). Show that \mathcal{A} is a σ -algebra.

Exercise 2. Answer true or false, or yes or no, giving a *brief* reason for your reply. The following assertions/questions relate to the σ -algebra \mathcal{A} of Exercise 1, for various sets X.

- (a) For a countable set $X, \mathcal{A} = 2^X$.
- (b) If X = [0, 1] is the unit interval then the set of rational numbers in [0, 1] belongs to \mathcal{A} .
- (c) If X = [0, 1], then the set of irrational numbers in [0, 1] belongs to \mathcal{A} .
- (d) If X = [-1, 1] does the set of rational numbers in [0, 1] belong to \mathcal{A} ?
- (e) Let X = [-1, 1] be as in (c), let B be the set of rational numbers in [0, 1]and let C be the set of irrational numbers in [-1, 0]. Does $B \cup C \in \mathcal{A}$?

Exercise 3. Let X be a set and let \mathcal{F} be an arbitrary nonempty family of subsets of X. Show that there is a smallest σ -algebra \mathcal{A} that contains every set of \mathcal{F} in the sense that 1) \mathcal{A} is a σ -algebra containing \mathcal{F} , and 2) for every other σ -algebra \mathcal{B} which contains \mathcal{F} one has $\mathcal{B} \supseteq \mathcal{A}$.

The σ -algebra \mathcal{A} associated with a family of sets \mathcal{F} as in Exercise 3 is called the σ -algebra generated by \mathcal{F} . The remaining exercises relate to the real line $X = \mathbb{R}$ and the σ -algebra \mathcal{B} generated by the family $\{(a, b) : -\infty < a < b < \infty\}$ of all open intervals in \mathbb{R} . \mathcal{B} is called the *Borel* σ -algebra of the real line, and subsets of \mathbb{R} that belong to \mathcal{B} are called *Borel* sets.

Exercise 4.

- (a) Show that every open subset of \mathbb{R} is a Borel set. Hint: show that every open set can be written as a union of open intervals with rational endpoints.
- (b) Show that every closed subset of \mathbb{R} is a Borel set.
- (c) Show that the set $(0, 1] = \{x \in \mathbb{R} : 0 < x \le 1\}$ is a Borel set.

Exercise 5. Can you exhibit a subset of \mathbb{R} that is *not* a Borel set? If your answer is "no", then just say that; if your answer is "yes" please give an example.