Math 105 Exercises due 24 February, 2003.

A set A is said to be countable if it is either finite, or countably infinite in the sense that there is a bijection $f:\{1,2,3, \ldots\} \rightarrow A$. Thus, the elements of any nonempty countable set can be enumerated $A=\left\{x_{1}, \ldots, x_{n}\right\}$ for some finite positive integer n, or else $A=\left\{x_{1}, x_{2}, \ldots\right\}$, with $x_{i} \neq x_{j}$ for all $i \neq j$.

A σ-algebra is a family \mathcal{A} of subsets of a fixed nonempty set X with the following properties:
(i) $\emptyset \in \mathcal{A}$.
(ii) $E \in \mathcal{A} \Longrightarrow X \backslash E \in \mathcal{A}$, where $X \backslash E$ denotes the complement of E.
(iii) If E_{1}, E_{2}, \ldots is a sequence of elements of \mathcal{A} then $\cup_{n} E_{n} \in \mathcal{A}$.

We have pointed out in the lecture that every set X has a smallest σ-algebra $\mathcal{A}_{0}=\{\emptyset, X\}$ and a largest one $\mathcal{A}_{1}=2^{X}=\{$ all subsets of $X\}$. In these problems you will look at other examples.
Exercise 1. Let X be a nonempty set and let \mathcal{A} be the family of all subsets $E \subseteq X$ which are either countable or co-countable (thus, a set E belongs to \mathcal{A} iff E is countable or $X \backslash E$ is countable). Show that \mathcal{A} is a σ-algebra.

Exercise 2. Answer true or false, or yes or no, giving a brief reason for your reply. The following assertions/questions relate to the σ-algebra \mathcal{A} of Exercise 1, for various sets X.
(a) For a countable set $X, \mathcal{A}=2^{X}$.
(b) If $X=[0,1]$ is the unit interval then the set of rational numbers in $[0,1]$ belongs to \mathcal{A}.
(c) If $X=[0,1]$, then the set of irrational numbers in $[0,1]$ belongs to \mathcal{A}.
(d) If $X=[-1,1]$ does the set of rational numbers in $[0,1]$ belong to \mathcal{A} ?
(e) Let $X=[-1,1]$ be as in (c), let B be the set of rational numbers in $[0,1]$ and let C be the set of irrational numbers in $[-1,0]$. Does $B \cup C \in \mathcal{A}$?

Exercise 3. Let X be a set and let \mathcal{F} be an arbitrary nonempty family of subsets of X. Show that there is a smallest σ-algebra \mathcal{A} that contains every set of \mathcal{F} in the sense that 1) \mathcal{A} is a σ-algebra containing \mathcal{F}, and 2) for every other σ-algebra \mathcal{B} which contains \mathcal{F} one has $\mathcal{B} \supseteq \mathcal{A}$.

The σ-algebra \mathcal{A} associated with a family of sets \mathcal{F} as in Exercise 3 is called the σ-algebra generated by \mathcal{F}. The remaining exercises relate to the real line $X=\mathbb{R}$ and the σ-algebra \mathcal{B} generated by the family $\{(a, b):-\infty<a<b<\infty\}$ of all open intervals in \mathbb{R}. \mathcal{B} is called the Borel σ-algebra of the real line, and subsets of \mathbb{R} that belong to \mathcal{B} are called Borel sets.

Exercise 4.

(a) Show that every open subset of \mathbb{R} is a Borel set. Hint: show that every open set can be written as a union of open intervals with rational endpoints.
(b) Show that every closed subset of \mathbb{R} is a Borel set.
(c) Show that the set $(0,1]=\{x \in \mathbb{R}: 0<x \leq 1\}$ is a Borel set.

Exercise 5. Can you exhibit a subset of \mathbb{R} that is not a Borel set? If your answer is "no", then just say that; if your answer is "yes" please give an example.

