Math 105 Exercises due 19 February, 2003.

Exercise 1. p. 351, Exercise 30, parts b, c, d, e.
Consider the algebra $M_{n}(\mathbb{R})$ of all real $n \times n$ matrices. There is a natural way to realize this algebra as the algebra of all operators on the space \mathbb{R}^{n} with its Euclidean norm $\|x\|=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$, by causing a matrix $A=\left(a_{i j}\right)$ to act on a column vector x by matrix multiplication $A x$. Let $\|A\|$ denote the operator norm

$$
\|A\|=\sup _{\|x\| \leq 1}\|A x\| .
$$

Exercise 2. Show that $\|A B\| \leq\|A\| \cdot\|B\|$ for all $A, B \in M_{n}(\mathbb{R})$, and that $\|\mathbf{1}\|=1$, where 1 denotes the $n \times n$ identity matrix. Deduce that multiplication is jointly continuous in the sense that the function $m: M_{n}(\mathbb{R}) \times M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R})$ defined by $m(A, B)=A B$ is continuous.

Exercise 3. Show that for every $A \in M_{n}(\mathbb{R})$ satisfying $\|A\|<1$, the partial sums of the infinite series $1+A+A^{2}+A^{3}+\cdots$ converge to an $n \times n$ matrix B, and that B satisfies $B(\mathbf{1}-A)=(\mathbf{1}-A) B=\mathbf{1}$. Conclusion: $\mathbf{1}-A$ is invertible and $B=(\mathbf{1}-A)^{-1}$. Hint: you should use the properties of Exercise 2 plus the triangle inequality in a simple and direct way, along with the known completeness property of the spaces \mathbb{R}^{k}.

Exercise 4. Deduce that every $n \times n$ matrix C satisfying $\|\mathbf{1}-C\|<1$ is invertible. More generally, show that the group $G L(n)$ of all invertible matrices in $M_{n}(\mathbb{R})$ is open by proving the following: For every invertible matrix $A \in M_{n}(\mathbb{R})$, there is an $\epsilon>0$ such that if $B \in M_{n}(\mathbb{R})$ satisfies $\|A-B\|<\epsilon$, then B is invertible. Hint: $1-A^{-1} B=A^{-1}(A-B)$.

Exercise 5. Let A^{-1} denote the inverse of an invertible matrix A. Show that the function $f: G L(n) \rightarrow G L(n)$ defined by $f(A)=A^{-1}$ is continuous.

Exercise 6. Show that the the function f of Exercise 5 is continuously differentiable by calculating an explicit formula for its derivative

$$
D_{A} f: M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R}),
$$

for every fixed $A \in G L(n)$. Remember that $D_{A} f(X)$ should make sense for every $X \in M_{n}(\mathbb{R})$, and should satisfy $D_{A} f(c X+d Y)=c \cdot D_{A} f(X)+d \cdot D_{A} f(Y)$ for scalars c, d and matrices X, Y. Hint: don't try to prove this by calculating partial derivatives of matrix entries, but rather use the definition of derivative and make appropriate estimates.

