Math 105 Exercises due 5 May, 2003.

These exercises all deal with the problem of finding uniform approximations to arbitrary continuous functions by simpler functions with specified properties.

Exercise 1. Consider the algebra $C(X)$ of all complex-valued continuous functions on a compact metric space X. Let $A \subseteq C(X)$ satisfy the following properties:
(i) A is closed under the (complex) vector space operations, and multiplication.
(ii) For every $p \neq q \in X$ there is a function $g \in A$ such that $g(p) \neq g(q)$.
(iii) A contains the constants.
(iv) A is closed under the operation $f \mapsto f^{*}$, where $f^{*}(p)=\overline{f(p)}$ denotes the complex conjugate of f.
a) Show that the set of all real-valued functions in A is dense (with respect to the sup-norm $\left.\|f\|_{\infty}=\sup _{p \in X}|f(p)|\right)$ in the algebra $C_{\mathbb{R}}(X)$ of all real-valued continuous functions on X. Hint: use the "real" Stone-Weierstrass theorem proved in class.
b) Deduce that for every $f \in C(X)$ and $\epsilon>0$, there is a function $g \in A$ such that $\|f-g\|_{\infty} \leq \epsilon$.

Exercise 2. Let $X=\{z \in \mathbb{C}:|z| \leq 1\}$ be the closed unit disk in the complex plane and let A be the set of all complex analytic polynomials in $C(X)$ of the form

$$
p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}, \quad a_{k} \in \mathbb{C}, \quad n=0,1,2, \ldots
$$

a) Show that A satisfies axioms (i), (ii), and (iii) in Exercise 1 above.
b) Show that every function in the sup-norm closure of A is analytic in the open disk $\{z \in \mathbb{C}:|z|<1\}$, and deduce that A is not sup-norm dense in $C(X)$.

Exercise 3. Show that every real-valued function $f \in C[0,1]$ can be uniformly approximated by a sequence of polynomials in x^{2}; that is, by a sequence of polynomials of the form $p(x)=a_{0}+a_{1} x^{2}+a_{2} x^{4}+\cdots+a_{n} x^{2 n}$ with real coefficients.

Exercise 4. Prove that the polynomials in x^{2} (of the form in Exercise 3) cannot approximate every continuous function uniformly on the interval $[-1,+1]$, and explain why the conclusion is different here from the previous exercise.

Exercise 5. Show that every real-valued continuous function on a rectangle $X=$ $[a, b] \times[c, d]$ can be uniformly approximated over X by two-variable polynomials of the form $p(x, y)=\sum_{k, l=0}^{n} a_{k l} x^{k} y^{l}$, with real coefficients $a_{k l}$.

Exercise 6. Let f be a continuous complex-valued function defined on \mathbb{R} such that $f(x+2 \pi)=f(x)$ for every $x \in \mathbb{R}$ and let $\epsilon>0$. Show that there is a positive integer N and there are complex numbers $c_{n},-N \leq n \leq N$ such that

$$
\sup _{x \in \mathbb{R}}\left|f(x)-\sum_{n=-N}^{N} c_{n} e^{i n x}\right| \leq \epsilon .
$$

