Math 105 Exercises due 28 April, 2003.

Exercise 1. Let m denote Lebesgue measure on \mathbb{R}. We showed in the lectures that for every Borel subset E of \mathbb{R} that is bounded (in the sense that it is contained in some compact interval $[a, b]$) has the property that there is an F_{σ} set A and a G_{δ} set B such that $A \subseteq E \subseteq B$, and $m(B \backslash A)=0$. Use this result to show that the hypothesis "is bounded" is unnecessary, as follows. Let $E \subseteq \mathbb{R}$ be a Borel set.
a) Show that there is a sequence $F_{1} \subseteq F_{2} \subseteq \cdots \subseteq E$ of closed sets F_{n} such that the F_{σ} set $A=\cup_{n} F_{n}$ satisfies $m(E \backslash A)=0$. Hint: E is a countable union of bounded Borel sets.
b) Show that there is a sequence of open sets U_{n} such that $U_{1} \supseteq U_{2} \supseteq \cdots \supseteq E$ such that the set $B=\cap_{n} U_{n}$ satisfies $m(B \backslash E)=0$. Hint: Consider the complement of E.
c) How would you choose A and B for the set E of all rational numbers in \mathbb{R} ?

Exercise 2.

a) Show that the function $f(x)=\frac{1}{1+|x|}$ belongs to $L^{2}(\mathbb{R})$ but that $f \notin L^{1}(\mathbb{R})$.
b) Give an example of a function g in $L^{1}(\mathbb{R})$ that does not belong to $L^{2}(\mathbb{R})$.

Exercise 3. Consider the restriction of Lebesgue measure (on \mathbb{R}) to the Borel subsets of a compact interval $[a, b],-\infty<a<b<+\infty$.
a) Prove that $L^{2}[a, b] \subseteq L^{1}[a, b]$ by showing that every function $f \in L^{2}[a, b]$ satisfies the inequality

$$
\int_{a}^{b}|f(x)| d x \leq \sqrt{(b-a) \int_{a}^{b}|f(x)|^{2} d x} \text {. }
$$

b) Does $L^{1}[a, b]=L^{2}[a, b]$? Prove your answer.

Exercise 4. Let H be a complex Hilbert space. A linear functional on H is a linear transformation $f: H \rightarrow \mathbb{C}$.
a) Let f be a continuous linear functional that is not identically zero and let $M=\{x \in H: f(x)=0\}$. Show that M is a closed subspace of H such that M^{\perp} is one-dimensional.
b) Deduce the Riesz Lemma. For every continuous linear functional f on H there is a unique vector $z \in H$ such that $f(x)=\langle x, z\rangle, x \in H$.

Exercise 5. Consider the Banach space $\left(C[0,1],\|\cdot\|_{\infty}\right)$, where for $f \in C[0,1]$, $\|f\|_{\infty}$ denotes the sup norm

$$
\|f\|_{\infty}=\sup _{0 \leq x \leq 1}|f(x)| .
$$

Every function in $C[0,1]$ also belongs to $L^{2}[0,1]$ (why?), so we may consider the identity map $T f=f$ as a linear operator from $C[0,1]$ to $L^{2}[0,1]$.
a) Show that $\|T\| \leq 1$. Recall that the norm of a linear operator T from a normed linear space E to another F is defined as $\|T\|=\sup \left\{\|T x\|_{F}: x \in E,\|x\|_{E} \leq 1\right\}$.
b) Is $\|T\|=1$?
c) Exhibit a sequence $f_{1}, f_{2}, \cdots \in C[0,1]$ such that $\left\|f_{n}\right\|_{\infty}=1, n \geq 1$, but $\left\|T f_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Are $\|\cdot\|_{2}$ and $\|\cdot\|_{\infty}$ equivalent norms on $C[0,1]$?

