Math 105 Exercises due 21 April, 2003.

A complex inner product space is a complex vector space V, together with a given inner product $\langle\cdot, \cdot \cdot\rangle: V \times V \rightarrow \mathbb{C}$ (so $\langle a x+b y, z\rangle=a\langle x, z\rangle+b\langle y, z\rangle,\langle y, x\rangle=\overline{\langle x, y\rangle}$, and $\langle x, x\rangle>0$ for nonzero $x \neq 0$). We proved the Schwarz inequality in the lectures $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$ where $\|x\|$ is defined as $\sqrt{\langle x, x\rangle}$, and we showed that $\|\cdot\|$ is a norm on V. You can use these results in the exercises to follow. A sequence e_{1}, e_{2}, \ldots of vectors in an inner product space is called orthonormal if $\left\langle e_{m}, e_{n}\right\rangle=\delta_{m n}$ for every $m, n=1,2, \ldots$. A Hilbert space is a complex inner product space that is complete; throughout the following exercises, H will denote a Hilbert space.

Exercise 1. Show that for any two vectors $x \neq y$ in an inner product space V we have the parallelogram law

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

Notice that this is an assertion about two-dimensional planes in V, and draw a sketch illustrating the identity that explains why it is called the parallelogram law.
Exercise 2. A subset K of a (real or complex) vector space V is called convex if for every $x, y \in K$, the set

$$
[x, y]=\{t x+(1-t) y: 0 \leq t \leq 1\}
$$

is also contained in K. Draw a sketch illustrating the fact that $[x, y]$ can be interpreted as the line segment joining two points.

Assuming that K is a nonempty convex set in an inner product space V, let $m=\inf _{x \in K}\|x\|$. Let x_{1}, x_{2}, \ldots be a sequence of vectors in K such that $\left\|x_{n}\right\| \rightarrow m$ as $n \rightarrow \infty$. Show that x_{n} is a Cauchy sequence. Hint: use Exercise 1.

Exercise 3. Let $K \neq \emptyset$ be a closed convex set in a Hilbert space H. Show that K contains a unique element of smallest norm in the following sense: a) there is an element $x_{0} \in K$ such that $\left\|x_{0}\right\| \leq\|y\|$ for every $y \in K$, and b) if x_{1} is a element of K with that property, then $x_{1}=x_{0}$.

Exercise 4. Let M be a closed subspace of a Hilbert space H, and let $x \in H$.
a) Show that the coset $x+M$ is a closed convex set in H.
b) Deduce that x has a unique decomposition $x=m+n$, where $m \in M$ and n is orthogonal to M in the sense that $\langle n, z\rangle=0$ for all $z \in M$.
c) Show that for the decomposition $x=m+n$ of part b) one has

$$
\|m\|^{2}+\|n\|^{2}=\|x\|^{2} .
$$

Exercise 5. Let e_{1}, e_{2}, \ldots be an orthonormal sequence in H, let $\left(a_{n}\right)$ be a sequence of complex numbers such that $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty$, and consider the sequence of partial sums

$$
S_{n}=\sum_{k=1}^{n} a_{k} e_{k}, \quad n=1,2, \ldots
$$

a) Show that the sequence S_{n} converges to a vector $x \in H$ as $n \rightarrow \infty$.
b) Show that $a_{n}=\left\langle x, e_{n}\right\rangle$ for every $n=1,2, \ldots$.

