## Math 105 Exercises due 3 February, 2003.

Exercise 1. Let $\|\cdot\|$ be a norm on $\mathbb{R}^{n}$. Show that a sequence $x_{1}, x_{2}, \cdots \in \mathbb{R}^{n}$ converges to a sequence $x$ relative to the metric defined by the norm $\|\cdot\|$ if, and only if, for every $k=1, \ldots, n$, the sequence of $k$ th components of $x_{1}, x_{2}, \ldots$ converges to the $k$ th component of $x$. How would you characterize Cauchy sequences componentwise? (no proof required for the last statement, just a clear statement of the result)

Exercise 2. Show that the determinant function $\operatorname{det}: M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ is continuous, and deduce that the set $G L(n)$ of all invertible matrices is an open subset of $M_{n}(\mathbb{R})$. Is $G L(n)$ dense in $M_{n}(\mathbb{R})$ ?

Let $V$ be a finite dimensional normed vector space, let $\mathcal{L}(V)$ be the set of all linear operators $L: V \rightarrow V$ and let $G L(V)$ be the set of all operators $L: V \rightarrow V$ that are invertible in the sense that there is a linear operator $M \in L(V)$ such that $L M$ and $M L$ are the identity operator.

Exercise 3. Show that $G L(V)$ is a group relative to operator multiplication (i.e., composition).

Exercise 4. Show that $G(V)$ is dense in $\mathcal{L}(V)$ relative to the operator norm. Is it dense?

Exercise 5. let $V$ be a normed vector space and let $B: V \times V \rightarrow \mathbb{R}$ be a bilinear form (that is, $B(x, y)$ is linear in $x$ for fixed $y$ and linear in $y$ for fixed $x$ ). Show that $B$ is continuous if and only if it is bounded in the sense that there is a constant $M \geq 0$ such that

$$
|B(x, y)| \leq M\|x\|\|y\|, \quad x, y \in V
$$

Exercise 6. The set $\mathcal{P}$ of all polynomials in one real variable of the form $f(x)=$ $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ with real coefficients $a_{0}, \ldots, a_{n}, n=1,2, \ldots$, is a real vector space with respect to the the usual addition and scalar multiplication. Make $\mathcal{P}$ into a normed vector space by introducing the norm

$$
\|f\|=\int_{0}^{1}|f(x)| d x
$$

Let $B: \mathcal{P} \times \mathcal{P} \rightarrow \mathbb{R}$ be the bilinear form

$$
B(f, g)=\int_{0}^{1} f(x) g(x) d x
$$

Show that $B$ is separately continuous (that is, $B(f, g)$ is continuous in $f$ for fixed $g$ and continuous in $g$ for fixed $f$ ).

Exercise 7*. Show that the bilinear form $B$ of exercise 2 is not continuous.

