Math 105 Exercises due 3 February, 2003.

Exercise 1. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Show that a sequence $x_1, x_2, \dots \in \mathbb{R}^n$ converges to a sequence x relative to the metric defined by the norm $\|\cdot\|$ if, and only if, for every $k = 1, \dots, n$, the sequence of kth components of x_1, x_2, \dots converges to the kth component of x. How would you characterize Cauchy sequences componentwise? (no proof required for the last statement, just a clear statement of the result)

Exercise 2. Show that the determinant function det : $M_n(\mathbb{R}) \to \mathbb{R}$ is continuous, and deduce that the set GL(n) of all invertible matrices is an open subset of $M_n(\mathbb{R})$. Is GL(n) dense in $M_n(\mathbb{R})$?

Let V be a finite dimensional normed vector space, let $\mathcal{L}(V)$ be the set of all linear operators $L: V \to V$ and let GL(V) be the set of all operators $L: V \to V$ that are *invertible* in the sense that there is a linear operator $M \in L(V)$ such that LM and ML are the identity operator.

Exercise 3. Show that GL(V) is a group relative to operator multiplication (i.e., composition).

Exercise 4. Show that G(V) is dense in $\mathcal{L}(V)$ relative to the operator norm. Is it dense?

Exercise 5. let V be a normed vector space and let $B: V \times V \to \mathbb{R}$ be a bilinear form (that is, B(x, y) is linear in x for fixed y and linear in y for fixed x). Show that B is continuous if and only if it is bounded in the sense that there is a constant $M \ge 0$ such that

$$|B(x,y)| \le M \, \|x\| \, \|y\|, \qquad x, y \in V.$$

Exercise 6. The set \mathcal{P} of all polynomials in one real variable of the form $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ with real coefficients $a_0, \ldots, a_n, n = 1, 2, \ldots$, is a real vector space with respect to the the usual addition and scalar multiplication. Make \mathcal{P} into a normed vector space by introducing the norm

$$||f|| = \int_0^1 |f(x)| \, dx.$$

Let $B : \mathcal{P} \times \mathcal{P} \to \mathbb{R}$ be the bilinear form

$$B(f,g) = \int_0^1 f(x)g(x) \, dx.$$

Show that B is separately continuous (that is, B(f,g) is continuous in f for fixed g and continuous in g for fixed f).

Exercise 7*. Show that the bilinear form B of exercise 2 is not continuous.