Solutions to midterm exam problems.

1. The assertion is false. Let $[0,1]$ be the unit interval. For every $t \in[0,1]$ let $A_{t}=\{t\} . A_{t}$ is a Borel set because it is a countable intersection of open intervals $I_{n}=(t-1 / n, t+1 / n), n=1,2, \ldots$. It has outer measure zero $A_{t} \subseteq I_{n}$ for every n and the length of I_{n} is $2 / n, n=1,2, \ldots$ Finally, the union of all $A_{t}, 0 \leq t \leq 1$, is the unit interval, a Borel set of measure 1.
2. Let A_{∞} be the intersection of the decreasing sequence of sets A_{1}, A_{2}, \ldots For each $n \geq 1$ we can write A_{n} as a disjoint union of sets

$$
A_{n}=A_{\infty} \cup \bigcup_{k=1}^{\infty}\left(A_{k} \backslash A_{k+1}\right)
$$

[It is useful to draw a picture here] By σ-additivity we have

$$
m\left(A_{n}\right)=m\left(A_{\infty}\right)+\sum_{k=n}^{\infty} m\left(A_{k} \backslash A_{k+1}\right)
$$

Setting $n=1$ we find that

$$
m\left(A_{1}\right)=m\left(A_{\infty}\right)+\sum_{k=1}^{\infty} m\left(A_{k} \backslash A_{k+1}\right)
$$

Since $m\left(A_{\infty}\right) \leq m\left(A_{n}\right) \leq m\left(A_{1}\right)<\infty$, this formula implies that the infinite series $\sum_{k} m\left(A_{k} \backslash A_{k+1}\right)$ converges, and therefore its tail $\sum_{k=n}^{\infty} m\left(A_{k} \backslash A_{k+1}\right)$ tends to zero as $n \rightarrow \infty$. Therefore

$$
0 \leq m\left(A_{n}\right)-m\left(A_{\infty}\right)=\sum_{k=n}^{\infty} m\left(A_{k} \backslash A_{k+1}\right)
$$

must tend to zero as $n \rightarrow \infty$.
3. The simplest example is $A_{n}=(n, \infty) . A_{n}$ is a Borel set becase it is an open interval, it has infinite measure, $A_{n} \supseteq A_{n+1}$, and $\cap_{k=1}^{\infty} A_{k}=\emptyset$. Hence $m\left(A_{n}\right)=+\infty$ does not decrease to $m\left(\cap_{n} A_{n}\right)=0$.
4. We first show that all directional derivates exist and calculate them. For fixed A, B and $t \in \mathbb{R}$ we expand terms and cancel to obtain

$$
f(A+t B)-f(A)=(A+t B)^{2}-A^{2}=t A B+t B A+t^{2} B^{2}
$$

It follows that

$$
\lim _{t \rightarrow 0} \frac{1}{t}(f(A+t B)-f(A))=\lim _{t \rightarrow 0}\left(A B+B A+t B^{2}\right)=A B+B A
$$

This shows that every directional derivative exists and gives us a candidate for $D_{A} f(B)$, namely $A B+B A$.

We now check that this is the derivative by writing

$$
f(A+X)=f(A)+(A X+X A)+R(X)
$$

where $R(X)=X^{2}$ (because of the above calcuation); and we have to show that $\|R(X)\| /\|X\|$ tends to zero as $\|X\| \rightarrow 0$. Since $\left\|X^{2}\right\| \leq\|X\|^{2}$, we have the estimate

$$
\frac{\| R(X \|}{\|X\|}=\frac{\left\|X^{2}\right\|}{\| X\}} \leq\|X\|
$$

which tends to zero as $\|X\| \rightarrow 0$. This argument shows that f is differentiable at every A, and that for fixed A, D_{A} is the linear operator defined on matrices by

$$
D_{A} f(X)=A X+X A, \quad X \in M_{n}(\mathbb{R})
$$

Finally, we show that $f \in C^{1}$ by proving that the operator-valued function $A \mapsto D_{A} f$ is continuous. If A_{n} is a sequence of matrices that converges to A in norm, then

$$
\left\|D_{A_{n}}-D_{A}\right\|=\sup _{\|X\| \leq 1}\left\|D_{A_{n}}(X)-D_{A}(X)\right\|=\sup _{\|X\| \leq 1}\left\|A_{n} X+X A_{n}-(A X+X A)\right\| .
$$

Since $\left\|\left(A_{n}-A\right) X+X\left(A_{n}-A\right)\right\| \leq 2\left\|A_{n}-A\right\| \cdot\|X\|$, it follows that

$$
\left\|D_{A_{n}}-D_{A}\right\| \leq 2 \cdot\left\|A_{n}-A\right\|,
$$

and the right side obviously tends to zero as $n \rightarrow \infty$.

