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Abstract. Many classes of structures have natural functions and rela-
tions on them: concatentation of linear orders, direct product of groups,
disjoint union of equivalence structures, and so on. Here, we study the
(un)decidability of the theory of several natural classes of structures
with appropriate functions and relations. For some of these classes of
structures, the resulting theory is decidable; for some of these classes
of structures, the resulting theory is bi-interpretable with second-order
arithmetic.

1. Introduction

Given a mathematical structure, as part of trying to understand it, a
natural question to ask is whether its theory is decidable. On the one hand,
the existence of an algorithm to decide the truth of any sentence about a
structure can, of course, tell us a lot about the structure. On the other
hand, knowing that such algorithms do not exist also gives us information.
It tells us, for instance, that there are questions about the structure which
are going to be hard to solve, and also that the structure itself is inherently
very complex.

The authors started this project trying to answer a question from Keto-
nen [Ket]: Is the theory of the class of countable Boolean algebras, denoted
by BAℵ0 , with the direct sum operation, denoted by ⊕, decidable? When he
posed the question, Ketonen had recently answered the following question:

Tarski’s Cube Problem: Does there exist a countable Boolean
algebra B such that B ∼= B ⊕ B ⊕ B but B 6∼= B ⊕ B?

Then, this was a well-known question which was open for a few decades
before Ketonen [Ket78] resolved it by giving a decision procedure for all
existential formulas about (BAℵ0 ;⊕): Ketonen proved that every countable
commutative semi-group is embeddable in (BAℵ0 ;⊕), yielding a positive
answer to the Tarski’s cube problem. We show here that the full theory of
(BAℵ0 ;⊕) is far from decidable; it is as complex as it can be.
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Theorem. The first-order theory of the class of countable Boolean algebras
under the direct sum operation, i.e., the first-order theory of the structure
(BAℵ0 ;⊕), is 1-equivalent to true second-order arithmetic.

We then look at the class of countable linear orderings, denoted by LOℵ0 ,
with the concatentation operation, denoted by +. This time we do much
more than just interpreting second order arithmetic.

Theorem. The structure (LOℵ0 ; +) of countable linear orderings under con-
catenation is bi-interpretable with second-order arithmetic.

That two structures are bi-interpretable means that each is interpretable
in the other, and also that the compositions of the interpretations are defin-
able. Bi-interpretability with second-order arithmetic implies, in addition
to the theory being 1-equivalent to true second-order arithmetic, that the
structure is rigid and that every subset definable in second-order arithmetic
is first-order definable in the structure.

We also look at the class of computable linear orderings and obtain the
following result.

Theorem. The theory of the structure (LOrec; +) of computable linear or-
derings under concatenation is 1-equivalent to the ω-jump of Kleene’s O.

Next, we look at the class of groups. Here, we look at the class of countable
groups, denoted by GRℵ0 , under the direct product operation, denoted by ×,
and the subgroup relation, denoted by ≤.

Theorem. The first-order theory of countable groups under the direct prod-
uct operation and the subgroup relation, i.e., the first-order theory of the
structure (GRℵ0 ;×,≤), is 1-equivalent to true second-order arithmetic.

To break the pattern, and to contrast with these results, we give examples
of theories which are decidable.

Theorem. The theories of the following structures are decidable.

• The class of countable F -vector spaces under direct sum, for any
fixed countable field F .
• The class of countable equivalence structures under disjoint union.
• The class of finitely generated abelian groups under direct sum.

The main tools to prove the decidability results of this theorem are due to
Tarski [Tar49] and Feferman and Vaught [FV59]. Using completely different
techniques, we show that the existential theory of the class of countable lin-
ear orderings, under the relation “being a convex suborder of,” is decidable.

The restriction to countable structures is non-essential for some of these
results. For example, if κ is an infinite cardinal, then the first-order theory of
the class of linear orders of size at most κ, denoted LOκ, under concatenation
is 1-equivalent to true second-order arithmetic.1 We also observe that the

1Note that bi-interpretability is not possible for cardinality reasons if κ > ℵ0.
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theory is dependent on the infinite cardinal κ. For example, the first-order
theory of (LOℵ0 ; +) and the first-order theory of (LOκ; +) are distinct if
κ > ℵ0. Finally, in the case of linear orderings we note that if κ = in, then
(LOκ; +) interprets (n + 2)nd-order arithmetic. Thus, for linear orderings,
the theories get more and more complex as κ grows. On the other hand,
for equivalence structures, the theory cycles as κ grows, though it always
remains decidable.

Surprisingly, this type of investigation of the theories of classes of alge-
braic structures seems to be in its infancy. Indeed, the only example in
the literature the authors are knowledgeable about is the Ketonen [Ket78]
result already mentioned. However, a vast amount of the literature by com-
putability theorists has focused on understanding the structure of the Tur-
ing degrees D and other related structures. For instance, Simpson [Sim77]
showed that the full theory of D in the language {≤} is recursively iso-
morphic to true second-order arithmetic, and whether this structure is bi-
interpretable with second-order arithmetic is among the main open questions
in the field [Sla08].

Throughout, we denote the standard first-order model of arithmetic by
N1 = (N; +,×,≤), where + ⊂ N3, × ⊂ N3, and ≤⊂ N2 are interpreted as
the usual addition, multiplication, and less than relations. We denote the
standard second-order model of arithmetic by N2 = (N,P(N); +,×,≤,∈),
where + ⊂ N3, × ⊂ N3, ≤⊂ N2, and ∈⊂ N × P(N) are interpreted as the
usual addition, multiplication, less than, and membership relations.

2. Linear Orders Under Addition

It has long been known that the class of linear orders is deceptively rich.
Amongst countable order types, the scattered / nonscattered dichotomy, to-
gether with Hausdorff’s analysis of scattered linear orders, yield a relatively
straightforward means of understanding the countable order types. This
dichotomy and analysis applies to uncountable order types as well, though
it fails to characterize the uncountable order types as succinctly. Conse-
quently, it might seem the class of countable order types fails to be as rich
as the class of uncountable order types.

Here, we show that the class of countable order types under concatena-
tion is already rather rich in that its theory is as complicated as possible.
We also show the first-order theory of the countable linear orders under
concatenation differs from the first-order theory of the uncountable linear
orders under concatenation. Finally, we show that the class of computable
order types under concatenation is also rather rich in that its theory is also
as complicated as possible.

Definition 2.1. Fix an infinite cardinal κ. Define LOκ to be the set of all
isomorphism types of linear orders of size at most κ and LO+

κ = (LOκ; +)
to be the monoid of linear orders of size at most κ under concatenation.
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Throughout, we operate under the convention that the set LOκ includes
the empty linear order (with empty universe). Being the identity element
of the monoid LO+

κ , we denote the empty linear order by 0.

Definition 2.2. For u, v ∈ LOκ, we write u E v if (∃w1)(∃w2) [v = w1 + u+ w2],
u EI v if (∃w2) [v = u+ w2], and u EE v if (∃w1) [v = w1 + u].

We write u C v if u E v and v 6E u.

We emphasize the relation E is not a partial order as there exist distinct
a, b ∈ LOκ with a E b and b E a, for example a := η and b := 1 + η + 1. On
the other hand, it is immediate the relation E is reflexive and transitive, so
a preorder.

2.1. Interpreting Second-Order Arithmetic. As preparation to inter-
preting second-order arithmetic in LO+

κ , we develop a small repertoire of
definable subsets of LOκ.

Lemma 2.3. Fix an infinite cardinal κ. Each of the following subsets
of LOκ is first-order definable in LO+

κ :

(1) {n} for n ∈ N
(2) {ω}, {ω∗}, {ζ}
(3) FIN (the set of finite order types)
(4) ORDκ (the set of ordinals of cardinality at most κ)
(5) RAIκ (the set of right additively indecomposable linear orders of car-

dinality at most κ)
(6) {ζn}, {ζn · ω}, {ζn · ω∗} for n ∈ N

Proof. We exhibit a first-order formula witnessing the definability of each
subset.

(1) The formula

ψ0(x) := (∀y)[y = x+ y]

is easily seen to define the set {0}.
The formula

ψ1(x) := y 6= 0 ∧ (∀y E x) [y = 0 ∨ y = x]

defines the set {1}. The reason is the second conjunct implies x has
size at most one as both 0 and 1 are C-below all order types of size
two or greater.

The formula

ψn(x) := x = 1 + · · ·+ 1

is easily seen to define the set {n}.
(2) The formulas

ψω(x) := x = 1 + x ∧ (∀z) [z = 1 + z =⇒ x E z] ,

ψω∗(x) := x = x+ 1 ∧ (∀z) [z = z + 1 =⇒ x E z] ,

ψζ(x) := x = ω∗ + ω
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define the sets {ω}, {ω∗}, and {ζ}, respectively. For ψω(x), the first
conjunct implies ω E x by induction: As 1 + x has a least element,
the order type x has a least element. Because x has a least element,
the order type 1 + x has a second smallest element. Hence x has
a second smallest element. Continuing, this implies ω E x. The
second conjunct implies x E ω by choice of ω for z.

(3) The formula

ψFIN (x) := x C ω

is easily seen to define the set of finite natural numbers.
(4) The formula

ψORD(x) := (∀y)(∀z) [x = y + z ∧ z 6= 0 =⇒ (∃w) [z = 1 + w]]

is easily seen to define the set of well-orders.
(5) The formula

ψRAI(x) := (∀y)(∀z) [x = y + z ∧ z 6= 0 =⇒ x = z] .

defines the set of right additively indecomposable linear orders as
the right additively indecomposable linear orders are defined by this
property.

(6) The formulas

ψζn·ω(x) := x = ζn + x ∧ (∀z) [z = ζn + z =⇒ x E z] ,

ψζn·ω∗(x) := x = x+ ζn ∧ (∀z) [z = z + ζn =⇒ x E z] ,

ψζn·ζ(x) := x = ζn · ω∗ + ζn · ω
define the sets {ζn ·ω}, {ζn ·ω∗}, and {ζn ·ζ}, respectively, by analysis
similar to Part (2). Indeed, the base case of the induction is Part (2).

Hence, the enumerated subsets are first-order definable in LO+
κ . �

These definable subsets will be exploited in our encoding of the standard
model of arithmetic into LO+

κ . Indeed, we will encode the natural number
n ∈ N by the order type n. Thus, the set of natural numbers FIN is
definable by Lemma 2.3(3). Further, the order on the natural numbers is
definable as m ≤ n if and only if m E n, and addition is definable as
m+ n = p if and only if m + n = p.

Definition 2.4. If (n1, . . . , nk) ∈ Nk is an ordered k-tuple, let tk(n1, . . . , nk)
be the order type

tk(n1, . . . , nk) := ζ2 + n1 + ζ + n2 + ζ + · · ·+ nk−1 + ζ + nk + ζ + ζ2.

If z ∈ LOκ and k ∈ N, let Sk(z) be the subset

Sk(z) := {(n1, . . . , nk) ∈ Nk : tk(n1, . . . , nk) E z}
and say that z codes the set Sk(z).

An element m ∈ LOκ is a multiplicative code for N1 if, with

• y1 · y2 = y3 if and only if (y1, y2, y3) ∈ S3(m),



6 KACH AND MONTALBÁN

the structure LO+
κ satisfies the sentence that says S3(m) defines a function

· : N2 → N with a · 0 = 0 and a · (b+ 1) = a · b+ b for all a, b ∈ N.

Careful inspection of Definition 2.4 shows that the property of being a
multiplicative code for N1 is first-order definable in LO+

κ .

Definition 2.5. Fix a set X = {xi}i∈I ⊆ N. The code for X is the order
type tI(X) given by

tI(X) :=
∑
i∈I

t1(xi)

We note that, as tI(X) is countable for any X ⊆ N, every subset X ⊆ N
has a code in LOκ. Moreover, we have that X = S1(tI(X)) for all X ⊆ N.

Theorem 2.6. Fix κ ≥ ℵ0. Then Th(N2) ≤1 Th(LO+
κ ).

Proof. Let ϕ be a sentence in the language of N2. Let ψ(m) be the formula
with one free variable in the language of LO+

κ obtained from ϕ by replacing
instances of

• x ≤ y with x E y,
• x+ y = z with x+ y = z,
• x · y = z with ζ2 + x+ ζ + y + ζ + z + ζ + ζ2 E m,
• x ∈ X with ζ2 + x+ ζ + ζ2 E vX ,
• ∃x with ∃x ∈ FIN , and
• ∃X with ∃vX .

Let χ be the sentence stating there is a multiplicative code m for N1 and
ψ(m).

Then N2 |= ϕ if and only if LO+
κ |= χ as a multiplicative code for N1

codes a structure isomorphic to N1. �

Remark 2.7. The method of interpreting second-order arithmetic in LOκ can
be generalized to interpret higher-order arithmetic in LO+

κ for sufficiently
large κ.

For example, an ordered set of ordered sets of natural numbers

S =
{
Sj
}
j∈J =

{{
nji

}
i∈I

}
j∈J
⊆ P(P(N))

can be coded by the order type

ζ3 +
∑
j∈J

(∑
i∈I

(
nji + ζ

)
+ ζ2

)
+ ζ3.

This order potentially has cardinality 2ℵ0 as the set J could be of size con-
tinuum. Thus, we need κ ≥ i1 := 2ℵ0 to interpret third-order arithmetic.

In a similar fashion, it is possible to interpret (n+ 2)nd-order arithmetic
in LO+

κ for κ ≥ in.
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2.2. Bi-Interpretability of Second-Order Arithmetic. In Section 2.1,
we saw how to interpret the standard model of second-order arithmetic
in LO+

κ . We also know how to interpret LO+
ℵ0 in second-order arithmetic

by using linear orders whose domain is a subset of N. We now show
these two interpretations are sufficiently compatible, enough to yield the
bi-interpretability of second-order arithmetic.

We review the encoding of a countable linear order in arithmetic. For a
set of pairs A ⊆ N2, we let

dom(A) := {x ∈ N : (x, x) ∈ A}.
ProvidedA specifies an antisymmetric, transitive, and total order on dom(A),
we view A as encoding the linear order LA := (dom(A);A).

The set A will be the set S2(A) coded by a linear ordering A. Conse-
quently, the properties of antisymmetry, transitivity, and totality are first-
order definable in LO+

κ . For example, totality of LS2(A) can be given by
(∀x, y ∈ FIN) [t2(x, x) E A ∧ t2(y, y) E A =⇒ t2(x, y) E A ∨ t2(y, x) E A].

Definition 2.8. Let B ⊆ LOℵ0 × LOℵ0 be the relation such that B(L,A)
holds if and only if L = LS2(A).

Theorem 2.9. The relation B is first-order definable in LO+
ℵ0. Thus LO+

ℵ0
is bi-interpretable with second-order arithmetic via the interpretation within
Definition 2.4.

As preparation to proving Theorem 2.9, we exhibit a condition which is
equivalent to L ∼= LA when both have a least element.

Lemma 2.10. Fix L ∈ LOℵ0 and a set A ⊆ N coding a linear ordering LA
with least element 0. Then L ∼= LA if and only if there is a set

C ⊆ {B : B E L} × dom(A)× (dom(A) ∪+∞)

such that:

(1) (L, 0,+∞) ∈ C.
(2) If (B, a1, a2) ∈ C with a1 6= a2, then B has a least element.
(3) If (B, a1, a3) ∈ C and B = B1 + B2 with B2 either empty or having

a least element, then there exists a2 ∈ dom(A) with a1 ≤A a2 ≤A a3

such that (B1, a1, a2) ∈ C and (B2, a2, a3) ∈ C.
(4) If (B, a1, a3) ∈ C and a2 ∈ dom(A) with a1 ≤A a2 ≤A a3, then there

exist B1 and B2 such that B = B1 + B2 and (B1, a1, a2) ∈ C and
(B2, a2, a3) ∈ C.

(5) If (B, a, a) ∈ C then B = 0.
(6) If (0, a1, a2) ∈ C, then a1 = a2.

Proof. The idea is that (B, a1, a2) is in C if and only if the order type of A
restricted to the interval [a1, a2) is the linear ordering B.

If L ∼= LA, then it suffices to take C to be the set of all

(B, a1, a2) ∈ {B : B E L} × dom(A)× (dom(A) ∪+∞)
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such that B is isomorphic to the interval [a1, a2) of LA. This is readily
verified to satisfy the enumerated conditions.

Conversely, we construct an isomorphism between L and LA using a back-
and-forth construction. Assume such a set C exists. Let V be the set of
pairs of tuples ((x1, . . . , xn), (a1, . . . , an)) ∈ L<ω × L<ωA such that:

(1) for all 1 ≤ i, j ≤ n, xi ≤L xj ⇐⇒ ai ≤A aj , and
(2) for all 1 ≤ i, j ≤ n with xi ≤L xj , we have (L[xi,xj), ai, aj) ∈ C,

(L<xj , 0, aj) ∈ C, and (L≥xi , ai,+∞) ∈ C.

Suppose that ((x1, . . . , xn), (a1, . . . , an)) ∈ V . Using the definition of C, we
get that

∀x ∈ L ∃a ∈ dom(A) [((x1, . . . , xn, x), (a1, . . . , an, a)) ∈ V ], and

∀a ∈ dom(A) ∃x ∈ L [((x1, . . . , xn, x), (a1, . . . , an, a)) ∈ V ].

Noting that (ε, ε) ∈ V , where ε is the empty tuple, starts the recursion.
Thus, a back-and-forth construction yields an isomorphism L ∼= LA. �

We modify the coding of triples of natural numbers as in Definition 2.4
to code triples that involve linear orderings.

Definition 2.11. Fix an ordinal α and a linear order C ∈ LOκ. Let
Tripleα(C) be the set of all triples (B, a1, a2) in LOκ × N× N such that

α · 2 + B + α∗ + α+ a1 + α∗ + α+ a2 + α∗ + α+ α∗ · 2 E C.

Lemma 2.12. Given an order type L ∈ LOκ, let α be an additively inde-
composable ordinal of cardinality κ such that α 6E L and α∗ 6E L. Then for
every countable set C ⊆ {B : B E L} × N2, there is a C ∈ LOκ such that
C = Tripleα(C).

Proof. The linear ordering

C :=
∑

(B,a1,a2)∈C

(α · 2 + B + α∗ + α+ a1 + α∗ + α+ a2 + α∗ + α+ α∗ · 2)

suffices. We note that C has cardinality κ, being a sum of linear orderings
of size κ.

The only segments of C of the form α · 2 or α∗ · 2 are the ones shown.
Also, if

α · 2 + B + α∗ + α+ a1 + α∗ + α+ a2 + α∗ + α+ α∗ · 2 =

α · 2 + B′ + α∗ + α+ a′1 + α∗ + α+ a′2 + α∗ + α+ α∗ · 2,

with B,B′ E L, then necessarily B = B′, a1 = a′1 and a2 = a′2, because the
only segments isomorphic to α or α∗ are the ones shown. �

Proof of Theorem 2.9. We are now ready to define the relation B. Fix-
ing linear orderings L,A ∈ LOℵ0 , we (in a first-order manner) determine
whether L and LS2(A) both have a least element. If not, we consider 1 + L
and 1 + LS2(A), noting that L ∼= LS2(A) if and only if 1 + L ∼= 1 + LS2(A).
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If so, or after we have added a least element, the relation B(L,A) holds
if and only if

The set of pairs S2(A) ⊆ N2 coded by A codes a linear
ordering LS2(A), and there exists C ∈ LOℵ0 which codes
a set of triples C := Tripleα(C) as in Definition 2.11
using an additively indecomposable ordinal α such that
α 6E L and α∗ 6E L, and the set C satisfies the condition
of Lemma 2.10.

�

The following are standard consequence of bi-interpretability.

Corollary 2.13. Let K ⊆ LOℵ0 be a definable subset in second-order arith-
metic. Then K is definable in LO+

ℵ0.

Proof. Using the definition of K in second-order arithmetic together with
the coding of the previous section, we can define the set of all A ∈ LOℵ0
which code a set A ⊆ N2 representing a linear ordering in K. Then, the
set K consist of all linear orderings L such that B(L,A) holds for some
such A. �

The importance of Corollary 2.13 is that it implies the definability of
several natural classes that might not seem definable otherwise. For exam-
ple, it implies the definability of the subsets {(x, y, z) : x · y = z} ⊂ LO3

ℵ0 ,
{x : x is scattered} ⊂ LOℵ0 and {(x, y) : x has Hausdorff rank y} ⊂ LOℵ0×
ORDℵ0 .

Corollary 2.14. The structure LO+
ℵ0 is rigid.

Proof. The standard model of arithmetic is rigid. If A codes a set A ⊆ N2,
then any linear ordering in the orbit of A codes the same set A.

Now, if L1 and L2 are automorphic and B(L1,A1) holds, then B(L2,A2)
holds where A2 is the image of A1 under this automorphism. But then A1

and A2 code the same set of pairs A ⊆ N2, and hence the same linear
ordering. So L1

∼= L2. �

2.3. The Decidability of Certain Fragments. Though Theorem 2.9 es-
tablishes the complexity of the first-order theory of LO+

κ , it does not indi-
cate how quickly the theory becomes complicated. Here, we establish the
decidability and undecidability of certain fragments of the first-order theory
of LO+

κ .

Definition 2.15. Let LOEκ = (LOκ;E) be the poset of linear orders of size
at most κ under the binary relation E.

Theorem 2.16. Fix an infinite cardinal κ. The ∃-theory of the struc-
ture LOEκ is decidable. Indeed, every finite preorder is a substructure of LOEκ .
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Proof. It suffices to show that every n element preorder is a substructure
of LOEκ . We do so by constructing a (finite) subset Tk ⊂ LOκ that is
universal for partial orders with n-many elements. We then expand Tn to
a (finite) subset Sn ⊂ LOκ that is universal for preorders with n-many
elements.

We construct Tn as the union of sets Tn(i) for 0 ≤ i ≤ n, defined recur-
sively in i. Let Tn(0) be the set

Tn(0) :=

{∑
m∈ω

(η + k) : n ≤ k < 2n

}
.

Having defined the (finite) sets Tn(j) for j < i, let Tn(i) be the set

Tn(i) :=

∑
m∈ω

∑
τ∈U

τ : U ⊆
⋃
j<i

Tn(j)


where the subset U of

⋃
j<i Tn(j) is an ordered subset. From Tn :=

⋃
0≤i≤n Tn(i),

we define Sn by

Sn := {j + τ : τ ∈ Tn, 0 ≤ j ≤ n} .

In order to show that Tn is universal for partial orders with n-many el-
ements, we analyze the structure of Tn. The elements of Tn(0) form an
antichain of size n. For i > 0, an element

∑
m∈ω

∑
τ∈U τ ∈ Tn(i) is E-above

an element in Tn(j) for j < i if and only if a summand τ ∈ U is E-above
the element of Tn(j). These observations make it clear that Tn is universal
for partial orders with n-many elements.

In order to show that Sn is universal for preorders with n-many elements,
we show that j1 + τ and j2 + τ satisfy j1 + τ E j2 + τ for any τ ∈ Tn and
j1, j2 ∈ {0, . . . , n}. This is immediate for τ ∈ Tn(0) as

j1 +
∑
m∈ω

(η + k) EE (η + (k− j1) + j1) +
∑
m∈ω

(η + k)

=
∑
m∈ω

(η + k)

EE j2 +
∑
m∈ω

(η + k) .

Of course, we are using that j1 ≤ k as a result of j1 ≤ n ≤ k. As a
consequence of the recursive construction of Tn(i) for i > 0, all τ ∈ Tn have
an initial segment that is in Tn(0). From this, it follows j1 + τ E j2 + τ for
all τ ∈ Tn. Thus, for every element x in Tn, the set Sn contains n-many
distinct elements y with x E y and y E x. It follows that the set Sn is
universal for preorders with n-many elements. �

Of course, it would be desirable to know whether or not the existential
theory of LO+

κ was decidable. The existential theory of LO+
κ is, intuitively
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if not computationally, more complicated than the existential theory of BA+
κ

as a consequence of results such as the following.

Theorem 2.17 (Lindenbaum [Ros82]). If x, y ∈ LOκ satisfy x EI y and
y EE x, then x = y.

Thus, not every commutative semigroup embeds as x = x + x + x and
x 6= x+x is impossible. Despite this, the authors conjecture the decidability
of the existential fragment.

Conjecture 2.18. Fix an infinite cardinal κ. The first-order existential theory
of the structure LO+

κ is decidable.

It seems, though, that any possible proof of this would necessarily be
rather involved.

2.4. Changing the Cardinal κ. When showing LO+
κ interprets second-

order arithmetic, the cardinal κ played no significant role in the analysis
(provided it was infinite). Here, we study the dependence of the first-order
theory of LO+

κ on the (infinite) cardinal κ.

Theorem 2.19. Fix κ > ℵ0. Then the first-order theories of LO+
ℵ0 and LO+

κ

are distinct.

Proof. The distinction in the theories we exploit is the number of dense
linear orders without endpoints. In LOℵ0 , there is exactly one dense linear
order without endpoints, namely the order type η of the rationals. In LOκ,
there are multiple dense linear orders without endpoints, namely the order
type η of the rationals and the order type of a suborder of the reals of size ℵ1

containing the rationals. Since

ψDLOWE(x) := (∀y)(∀z) [x 6= y + 2 + z] ∧ (∀y) [x 6= 1 + y] ∧ (∀y) [x 6= y + 1]

defines the dense linear orders without endpoints, this distinction witnesses
that the first-order theories of LO+

ℵ0 and LO+
κ are distinct. �

As there are at most 2ℵ0 distinct first-order theories in a finite language,
the first-order theories of LO+

κ1 and LO+
κ2 cannot be distinct for all infinite

cardinals κ1 and κ2. We leave the general question open.

Question 2.20. For which uncountable cardinals κ1 and κ2 are the first-
order theories of LO+

κ1 and LO+
κ2 distinct?

Alternately, it would be interesting and perhaps easier to determine whether
the first-order theory of LO+

κ is eventually constant: Is there a cardinal λ
such that the first-order theories of LO+

κ1 and LO+
κ2 are the same if κ1, κ2 >

λ?
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2.5. Computable Linear Orders. Just as it might seem that the class
of uncountable linear orderings is richer than the class of countable linear
orderings, it might seem that the class of countable linear orderings is richer
than the class of computable linear orderings. We show that this is not
the case as the theory of the class of computable linear orderings under
concatenation is as complicated as possible.

Definition 2.21. Define LOrec to be the set of all isomorphism types of
computable linear orderings and LO+

rec = (LOrec; +) to be the monoid of
computable linear orderings under concatenation.

Theorem 2.22. The first-order theory of LO+
rec is 1-equivalent to the ω-

jump of Kleene’s O.

Proof. We start by showing that the first-order theory of LO+
rec is 1-reducible

from O(ω). Let X be the set of indices e ∈ N of total computable functions
coding linear orderings, noting that X is computable in ∅(2). Also, there is
a total computable function f : N × N → N such that, if e1, e2 ∈ X, then
f(e1, e2) is in X and has the order type of the sum of the linear orders coded
by e1 and e2.

The issue is that a linear ordering will have many different indices. Let I
be the set of pairs (e1, e2) ∈ X × X such that e1 and e2 are indices for
isomorphic linear orderings. Observe that I is computable in O, as the iso-
morphism problem for computable linear orderings is Σ1

1. Using Kleene’s O,
we can therefore compute a presentation of the monoid LO+

rec. Hence, within
ω-jumps, we get the first-order theory of LO+

rec.

The interesting direction is the reverse direction. We will code a model of
first-order arithmetic with a predicate O in LO+

rec, where O is the set of all
indices e for computable well-orderings: that is, the number e is an index
for a total computable function that is the characteristic function of a set
of pairs A representing a linear ordering which is well-ordered. We already
defined a model of first-order arithmetic within LO+

rec in Section 3.1, noting
that the parameter used there to code multiplication is (can be taken to be)
a computable linear ordering.

Thus, we need to define Kleene’s O. We have that A ⊆ N2 represents a
computable well-ordering if and only if there is a set of pairs C ⊆ LOrec×N
such that

(1) If (B, a) ∈ C, then B is an (right) additively indecomposable infinite
ordinal and a ∈ dom(A).

(2) For every a ∈ dom(A), there exists a B ∈ LOrec such that (B, a) ∈ C.
(3) If (B1, a1) ∈ C and (B2, a2) ∈ C, then a1 ≤A a2 if and only if
B1 E B2.

This equivalence exploits that, for example, if α is a computable ordinal,
then so is ωα.
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Moreover, we note that for every computable A ⊆ N2 representing a
computable well-order, there exists a set C satisfying the conditions above
and a C ∈ LOrec such that

(B, a) ∈ C ⇐⇒ B + a+ ω∗ E C
for all (right) additively indecomposable infinite ordinals B and a ∈ N.
Indeed, for each a ∈ dom(A), let La := ωA≤a . Then

C :=
∑

a∈dom(A)

La + a+ ω∗

suffices, noting that C ∈ LOrec as La is uniformly computable in a.
Hence, we have the definability of Kleene’s O within LO+

rec. �

3. Boolean Algebras Under Direct Sum

Though the class of Boolean algebras and linear orders share many simi-
larities, an important distinction quickly arises. Whereas linear orders can
contain “local information” (information encoded within a subinterval that
is not reflected elsewhere), Boolean algebras contain only “global informa-
tion.” This distinction makes the requisite encoding more sophisticated.
It also is, essentially, the reason we are not able to demonstrate the bi-
interpretability of second-order arithmetic in BA⊕ℵ0 .

Definition 3.1. Fix an infinite cardinal κ. Define BAκ to be the set of
all isomorphism types of Boolean algebras of size at most κ and BA⊕κ =
(BAκ;⊕) to be the commutative monoid of Boolean algebras of size at most κ
under direct sum.

Throughout, we operate under the convention that the set BAκ includes
the trivial algebra (where 0 = 1). Being the identity element of the monoid,
we denote the trivial algebra by 0.

Definition 3.2. For u, v ∈ BAκ, we write u E v if (∃w) [v = u⊕ w], that
is, if u is a relative algebra of v. We write u C v if both u E v and v 6E u.

We emphasize the relation E is not a partial order as there exist distinct
a, b ∈ BAκ with a E b and b E a. On the other hand, it is immediate the
relation E is reflexive and transitive, so a preorder.

3.1. Interpreting Second-Order Arithmetic. As preparation to inter-
preting second-order arithmetic in BA⊕ℵ0 , we develop a small repertoire of
definable subsets of BAℵ0 . Though the ideas are similar to Section 2.1, the
encoding is slightly more subtle. A bit more care is required for BA⊕ℵ0 than

for LO+
κ as any local structure within a Boolean algebra appears globally.

Thus, it seems impossible to have all elements of the universe U coding N
be comparable under the E relation as we did with linear orders.

Lemma 3.3. Each of the following subsets of BAℵ0 is first-order definable
in BA⊕ℵ0:
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(1) TPO (the set of elements whose relative algebras are a totally ordered
under E)

(2) SA (the set of all superatomic algebras)
CON (the set of all algebras of the form IntAlg(ωα · (1 + η)))

(3) PI (the set of pseudo-indecomposable algebras)
(4) NA (the set {IntAlg(ωn) : n ∈ N})
(5) NCON (the set {IntAlg(ωn · (1 + η)) : n ∈ N})

Proof. We exhibit a first-order formula witnessing the definability of each
subset.

(1) The formula

ψTPO(x) := (∀u E x)(∀v E x) [u E v ∨ v E u] .

is easily seen to define the set TPO.
(2) The formulas

ψSA(x) := ψTPO(x) ∧ (x 6= x⊕ x)

and

ψCON(x) := ψTPO(x) ∧ (x = x⊕ x)

define the sets SA and CON, respectively as every element of SA is
not idempotent and every element of CON is idempotent.

This relies on the equality TPO = SA ∪ CON. The inclusion
SA ∪ CON ⊆ TPO is a consequence of the fact that the count-
able superatomic algebras are linearly ordered by E. The inclusion
TPO ⊆ SA ∪ CON is a bit more delicate. Suppose B ∈ TPO, and
suppose B is not superatomic. Since non-superatomic algebras are
not relative algebras of superatomic algebras, we have that every
superatomic y E B is a relative algebra of every non-superatomic
z E B. Let I ⊆ B be the set all b ∈ B whose downward algebra,
B � b, is superatomic. Notice that the quotient B/I is atomless, and
that every a 6∈ I bounds the same types of superatomic Boolean alge-
bras that B bounds. A back-and-forth argument can be then used to
show that B � a and B � b are isomorphic if and only if both a and b
are not in I, or both are in I and have the same Cantor-Bendixson
rank and degree. The same argument then shows that B has to be
isomorphic to IntAlg(ωα · (1 + η)), where α is the least such that
IntAlg(ωα) 6E B.

Alternatively, in the language of Ketonen [Ket78], the equality
TPO = SA∪CON follows from the fact that x ∈ TPO if and only if
every relative algebra of x is superatomic or uniform.

(3) The formula

ψPI(x) := (∀y)(∀z) [x = y ⊕ z =⇒ x = y ∨ x = z]

defines the set of pseudo-indecomposable elements as the pseudo-
indecomposable algebras are defined by this property.



THEORIES OF CLASSES OF STRUCTURES 15

(4) We write ψSA,PI(x) for ψSA(x) ∧ ψPI(x), and we write ψSA(x, y) for
ψSA(x) ∧ ψSA(y). Among the Boolean algebras which are super-
atomic and pseudo-indecomposable, there is a successor-like opera-
tion:

ψsucc(y, z) := ψSA,PI(y, z) ∧ y C z ∧ (∀w)[y C w C z =⇒ ¬ψPI(w)].

The formula

ψNA(x) := ψSA,PI(x) ∧ (∀z E x) [ψSA,PI(z) ∧ z 6= 0 =⇒ (∃y) [ψsucc(y, z)]]

defines the set {IntAlg(ωn) : n ∈ N}. The reason is that no su-
peratomic algebra of rank ω or greater satisfies the second conjunct.
This is because, taking IntAlg(ωω) for z, we have no “predecessor” y.

(5) The formula

ψNCON(x) := ψCON(x) ∧ (∃z) [ψNA(z) ∧ z 6E x]

defines the set {IntAlg(ωn · (1 + η)) : n ∈ N} as the second conjunct
ensures the rank of x is strictly smaller than ω.

Hence, the enumerated subsets are first-order definable in BA⊕ℵ0 . �

These definable subsets will be exploited in our encoding of the standard
model of arithmetic into BA⊕ℵ0 . Indeed, we will encode the natural number

n ∈ N by the algebra IntAlg(ωn · (1 + η)). Thus, the set of natural numbers
is definable by Lemma 3.3(5). Further, the order on the natural numbers is
definable as m ≤ n if and only if the set of superatomic relative algebras of
IntAlg(ωm · (1 + η)) is a subset of the set of superatomic relative algebras of
IntAlg(ωn · (1 + η)).

Definition 3.4. If (n1, . . . , nk) ∈ [N]k is an unordered k-tuple, let tk(n1, . . . , nk)
be the algebra

tk(n1, . . . , nk) :=
∑
i∈1+η

(
IntAlg(ωn1 · (1 + η))⊕ · · · ⊕ IntAlg(ωnk · (1 + η))

)
.

If z ∈ BAκ and k ∈ N, let Sk(z) be the subset

Sk(z) :=
{

(n1, . . . , nk) ∈ [N]k : tk(n1, . . . , nk) E z
}

and say that z codes the set Sk(z).
A pair of elements (a,m) ∈ BAℵ0 × BAℵ0 is a code for N1 in BA⊕ℵ0 if,

with

• y1 + y2 = y3 if and only if y1, y2 ≤ y3 and (y1, y2, y3) ∈ S3(a), and
• y1 · y2 = y3 if and only if either y3 = 0 ∧ (y1 = 0 ∨ y2 = 0) or

0 < y1, y2 ≤ y3 and (y1, y2, y3) ∈ S3(m),

the structure BA⊕ℵ0 satisfies the sentence that says S3(a) and S3(m) define

functions +: N2 → N and · : N2 → N with a+0 = a, a+(b+1) = (a+b)+1,
a · 0 = 0, and a · (b+ 1) = a · b+ b for all a, b ∈ N.
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The important point is that the function x1, . . . , xk 7→ tk(n1, . . . , nk) is
definable, namely by the formula:

ψtk(x1, . . . , xk, x) := ψPI(x) ∧ x = x+ x ∧
i=k∧
i=1

[ψNCON(xi) ∧ xi E x]

∧ (∀y C x)

[
y E

i=k⊕
i=1

xi

]
.

Clearly for all (n1, . . . , nk) ∈ [Nk],
ψtk(IntAlg(ωn1 · (1 + η)), . . . , IntAlg(ωnk · (1 + η)), tk(n1, . . . , nk))

holds. For the other direction suppose that ψtk(B1, . . . ,Bk,B) holds. By the
third conjunct, there are integers ni such that Bi ∼= IntAlg(ωni ·(1+η)). Let
C := tk(n1, . . . , nk). Using a back-and-forth argument, one can show that,
given b ∈ B and c ∈ C, B � b and C � c are isomorphic if and only if either
B � b ∼= B and C � c ∼= C, or they are both isomorphic to the same relative

algebra of
⊕i=k

i=1 Bi. It follows that B ∼= C.
Further inspection of Definition 3.4 shows that the property of being a

code for N1 is first-order definable in BA⊕ℵ0 .

Definition 3.5. Fix a set X = {xi}i∈I ⊆ N. The code for X is the alge-
bra tI(X) given by

tI(X) :=
∑
i∈I

IntAlg(ωxi · (1 + η))

As tI(X) is countable for any X ⊆ N, every subset X ⊆ N has a code
in BAℵ0 .

Theorem 3.6. That Th(N2) ≤1 Th(BA⊕ℵ0).

Proof. Let ϕ be a sentence in the language ofN2. Let ψ(a,m) be the formula
with two free variables in the language of BA⊕ℵ0 obtained from ϕ by replaces
instances of

• x ≤ y with (∀z ∈ SA) [z E x =⇒ z E y]
• x+ y = z with t3(x, y, z) E a,
• x · y = z with t3(x, y, z) E m,
• x ∈ X with x E vX ,
• ∃x with ∃x ∈ NCON, and
• ∃X with ∃vX .

Let χ be the sentence stating there is a first-order code (a,m) for N1 and
ψ(a,m).

Then N2 |= ϕ if and only if BA⊕ℵ0 |= χ as a code for N1 codes a structure
isomorphic to N1. �

It is worth noting that the encoding within this subsection relied on the
ambient structure being BA⊕ℵ0 rather than BA⊕κ for some uncountable κ.
Though necessary for our analysis, this assumption seems unnecessary.
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Conjecture 3.7. Fix an uncountable cardinal κ. The structure BA⊕κ inter-
prets second-order arithmetic.

We also wonder whether the structure BA⊕ℵ0 is bi-interpretable with second-
order arithmetic.

Question 3.8. Is BA⊕ℵ0 bi-interpretable with second-order arithmetic via
the interpretation in Definition 3.4?

We finish by noting that, like with linear orders, the theories of the
monoids BA⊕ℵ0 and BA⊕κ are distinct if κ > ℵ0. Perhaps the simplest dis-
tinction is the number of atomless Boolean algebras.

4. Groups Under Direct Product with the Subgroup Relation

By analogy with our study of linear orders and Boolean algebras, our
study of groups should involve only the direct product operation. Unfortu-
nately, the language of direct products seemingly offers no “local structure”
in which to do encoding. Consequently, we also work with the subgroup
relation.

Definition 4.1. Fix an infinite cardinal κ. Define GRκ to be the set of all
isomorphism types of groups of size at most κ and GR×,≤κ = (GRκ;×,≤)
to be the partially ordered commutative monoid of groups of size at most κ
under direct product with the subgroup relation.

Throughout, we operate under the convention that the set GRκ includes
the trivial group. Being the identity element of the monoid, we denote the
trivial group by 0.

4.1. Interpreting Second-Order Arithmetic. As preparation to inter-
preting second-order arithmetic in GR×,≤κ , we develop a small repertoire
of definable subsets of GRκ. The encoding is not too different, though it
is again more subtle as a consequence of the inability to define singleton
elements.

Lemma 4.2. Each of the following subsets of GRκ is first-order definable
in GR×,≤κ (allowing subscripts as parameters):

(1) MIN (the set of nontrivial elements containing no proper subgroup)
MINy1,...,yk (the set MIN without y1, . . . , yk)

(2) TPO (the set of elements whose ideals are a total preorder under ≤)
(3) POWy for y ∈ MIN (the set of elements {yn : n ∈ N})

Proof. We exhibit a first-order formula witnessing the definability of each
subset.

(1) The formula

ψMIN(x) := x 6= 0 ∧ (∀y) [y ≤ x ∧ y 6= x =⇒ y = 0]
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is easily seen to define the set MIN. We note that MIN consists
of precisely the cyclic groups Zp of prime order and the additive
group Z of the integers.

It follows that the formula

ψMINy1,...,yk
(x) := ψMIN(x) ∧

i=k∧
i=1

x 6= yi

defines the set MINy1,...,yk .
(2) The formula

ψTPO(x) := (∀u ≤ x)(∀v ≤ x) [u ≤ v ∨ v ≤ u]

is easily seen to define the set TPO.
(3) The formula

ψPOWy(x) := (∀z ≤ x)[z 6= 0 =⇒ (∃w)[z = y × w]]

∧ (∀u ≤ x)[y × u 6= u]

defines the set POWy. We reason as follows.
If x ∈ POWy, then x = yn for some n ∈ N. The subgroups of x

are precisely the groups yk for 0 ≤ k ≤ n. All the conjuncts are
clearly satisfied.

Conversely, fixing a nonzero x satisfying ψPOWy(x), we show x ∈
POWy. The first conjunct implies that there is a group w1 such that
x = y × w1. If w1 is the trivial group, then x = y and x ∈ POWy.
Otherwise, by choice of w1 for z, there is a group w2 such that
w1 = y × w2. Continuing in this fashion, if at some point wn is
trivial, we have x = yn ∈ POWy. Otherwise, one can show that⊗weak

i∈ω y is a subgroup of x. But this contradict the second conjunct,

taking u =
⊗weak

i∈ω y.

Hence, the enumerated subsets are first-order definable in GR×,≤κ . �

These definable subsets will be exploited in our encoding of the standard
model of arithmetic into GR×,≤κ . Hereout, we fix an element w ∈ MIN, so w
is abelian being either Zp for some prime p or Z. We will encode the natural
number n ∈ N by wn. Thus, with w as a parameter, the set N of natural
numbers is definable as POWw by Lemma 4.2(3). Further, the order on the
natural numbers is definable as m ≤ n if and only if wm ≤ wn, and addition
is definable as wm+n = wm×wn. To define multiplication we will need to be
able to code arbitrary sets of triples. The coding of triples will use different
copies of N built from minimal elements other than w.

Fix k ∈ N and distinct w1, . . . , wk ∈ MIN, with w1 = w.

Definition 4.3. If (n1, . . . , nk) ∈ Nk is an ordered k-tuple and y ∈ MINw1,...,wk
,

let tk,y(n1, . . . , nk) be the group

tk,y(n1, . . . , nk) := wn1
1 × · · · × w

nk
k × y.
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Now we want to use these groups to code sets X ⊆ Nk.

Definition 4.4. Fix an injective enumeration {yi}i∈N of MINw1,...,wk
. Fix

a set X = {n̄i}i∈I ⊆ Nk, where n̄i = (ni1, . . . , n
i
k). The code for X is the

group tI(X) given by

tI(X) :=
∗∏
i∈I

tk,yi(n
i
1, . . . , n

i
k),

i.e., the group tI(X) is the free product of the groups tk,yi(n
i
1, . . . , n

i
k) for

i ∈ I.

To decode tI(X) we will use the following theorem.

Theorem 4.5 (Kurosch’s theorem). A subgroup H of a free product
∗∏
j

Aj

is itself a free product

H = F ∗
∗∏
k

x−1
k Ukxk,

where F is a free group and each x−1
k Uixk is the conjugate of a subgroup Uk

of one of the factors Aj by an element of the free group
∏∗
j Aj.

As a corollary we obtain that an abelian subgroup H of a free product∏∗
j Aj is either Z or a conjugate of a subgroup U of one of the factors Aj .

This is because a nontrivial free product is never abelian, and the only
abelian free group is Z.

It follows that (n1, . . . , nk) ∈ X if and only if there is a y ∈ MINw1,...,wk

such that tk,y(n1, . . . , nk) ≤ tI(X). Also, if tk,y(n
′
1, . . . , n

′
k) ≤ tI(X), then

tk,y(n
′
1, . . . , n

′
k) is a subgroup of tk,y(n1, . . . , nk) because tk,y(n1, . . . , nk) is

the only factor in the free product that contains y.

Definition 4.6. If z ∈ GRκ and k ∈ N, let Sk(z) be the subset

Sk(z) :=
{

(n1, . . . , nk) ∈ Nk : (∃y ∈ MINw1,...,wk
)[tk,y(n1, . . . , nk) ≤ z

∧ (∀n′1, . . . , n′k ∈ Nk)[tk,y(n′1, . . . , n′k) ≤ z =⇒
i=k∧
i=1

n′i ≤ ni]]
}

and say that z codes the set Sk(z).

The discussion above shows that X = Sk(tI(X)).
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In practice, we want to use Sk(z) as a set of tuples in POWw1 × · · · ×
POWwk

. The definitions are essentially the same:

ψSk
(z1, . . . , zk, z) :=

i=k∧
i=1

ψPOWwi
(zi) ∧ (∃y ∈ MINw1,...,wk

)(∀z′1, ..., z′k)[
z1 × · · · × zk × y ≤ z ∧

[
i=k∧
i=1

ψPOWwi
(z′i) ∧ z′1 × · · · × z′k × y ≤ z =⇒

i=k∧
i=1

z′i ≤ zi

]]
.

It is not hard to see that

(n1, . . . , nk) ∈ Sk(z) ⇐⇒ ψSk
(wn1

1 , . . . , wnk
k , z).

The issue is that we are using different copies of the natural numbers
POWw1 , . . . ,POWwk

. We therefore define bijections between them.

Lemma 4.7. For w1, w2 ∈ MIN, the set BIJw1,w2 := {(wn1 , wn2 ) : n ∈ N} ⊆
GR2

κ is definable in GR×,≤κ (with w1 and w2 as parameters).

Proof. We let ψBIJw1,w2
(z1, z2) be the formula that says that there exists

an element z ∈ GRκ such that ψS2(·, ·, z) defines a one-to-one, onto, order-
preserving function between POWw1 and POWw2 and that ψS2(z1, z2, z)
holds. �

We can now modify the decoding functions Sk to code sets of tuples
in POWk

w (recall that w = w1):

ψS′k(z1, . . . , zk, z) :=

i=k∧
i=1

ψPOWw(zi)

∧ (∃y2, ...., yk)

[
i=k∧
i=2

ψBIJw,wi
(zi, yi) ∧ ψSk

(z1, y2, . . . , yk, z)

]
.

Definition 4.8. An element m ∈ GRκ is a code for N1 if the operation
· : POW2

w → POWw defined by

• z1 · z2 = z3 if and only if ψS′3(z1, z2, z3,m),

satisfies the sentence that defines multiplication recursively from addition
in the structure (POWw;×, ·,≤). (Recall that addition of numbers is inter-
preted as product of groups.)

Careful inspection of Definition 4.3 shows that the property of being a
code for N1 is first-order definable in GR×,≤κ with parameters w, w2, and w3.

Theorem 4.9. Fix κ ≥ ℵ0. Then Th(N2) ≤1 Th(GR×,≤κ ).

Proof. Let ϕ be a sentence in the language of N2. The atomic subformulas
of ϕ have the forms x = y, x ≤ y, x + y = z, x × y = z, and x ∈ X. Let
ψ(m,w,w2, w3) be the formula with free variables shown in the language of
GR×,≤κ obtained from ϕ by replacing instances of

• x ≤ y with x ≤ y
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• x+ y = z with x× y = z,
• x× y = z with ψS′3(x, y, z,m) (with parameters w, w2, and w3),

• x ∈ X with ψS1(x, vX), (with parameter w)
• ∃x with ∃x ∈ POWw, and
• ∃X with ∃vX .

Let χ be the sentence stating that there are w,w2, w3 ∈ MIN and a code m
for N1 and ψ(m,w,w2, w3).

Then N2 |= ϕ if and only if GR×,≤κ |= χ as a code for N1 codes a structure
isomorphic to N1. �

5. Decidable Theories of Structures

Given the decidability of Presburger Arithmetic and the simplicity of in-
finite cardinal addition, it is not surprising that the theory of cardinal num-
bers under addition is decidable. This decidability has implications for the
decidability of vector spaces over Q under direct sums and the decidability
of equivalence structures under disjoint union.

Definition 5.1. Fix an ordinal α. Define CARDα to be the set of all cardi-
nals strictly less than ℵα and CARD+

α = (CARDα; +) to be the commutative
monoid of cardinals strictly less than ℵα under cardinal addition.

Definition 5.2. For u, v ∈ CARDα, we write u ≤ v if (∃w) [v = u+ w]. We
write u < v if u ≤ v and u 6= v.

Lemma 5.3 (Presburger [Pre91]). The first-order theory of CARD+
0 , i.e.,

the theory of Presburger Arithmetic (N; +), is decidable.

Lemma 5.4 (Feferman and Vaught [FV59]). Fix an ordinal α. The first-
order theory of (α; max) is decidable, where max{α1, α2} is the maximum
of α1 and α2.

Theorem 5.5 (Feferman and Vaught [FV59]). The first-order theory of CARD+
α

is decidable for all ordinals α.

Proof. The idea is to exploit that CARD0 is a definable subset of CARDα,
being exactly the set of non-idempotent elements. Indeed, we transform any
first-order formula ϕ into a logically equivalent formula ϕT for which the
variables are known to be either finite or infinite cardinals. The decidability
of CARD+

α is then a consequence of Lemma 5.3 and Lemma 5.4.
By induction on the complexity of a first-order formula ϕ, we define a

formula ϕT logically equivalent to ϕ. In order to simplify the induction, we
assume the logical symbols are negation, conjunction, and the existential
quantifier. If ϕ is atomic, we define ϕT := ϕ. If ϕ = ϕ1 ∧ ϕ2, we define
ϕT := ϕT1 ∧ ϕT2 . If ϕ = ¬ϕ1, we define ϕT := ¬ϕT1 . If ϕ = (∃x) [ψ(x)], we
define ϕT := (∃x)

[
x = x+ x ∧ ψ(x)T

]
∨ (∃x)

[
x 6= x+ x ∧ ψ(x)T

]
.

The benefit of ϕT over ϕ is that, in any atomic subformula, every vari-
able is scoped to be either a finite or infinite cardinal. As “finite + finite
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= finite”, “finite + infinite = infinite”, and “infinite + infinite = infinite”,
any atomic subformula can be effectively converted to a logically equiva-
lent atomic subformula consisting of only variables scoped to be finite, a
subformula consisting of only variables scoped to be infinite, or true or
false.

The decidability of CARD+
α is then a consequence of Lemma 5.3 and

Lemma 5.4. �

Theorem 5.6 (Feferman and Vaught [FV59], Tarski). Fix ordinals α1

and α2 with 0 ≤ α1 < α2 < ωω · 2. The first-order theories of CARD+
α1

and CARD+
α2

are distinct.
Moreover, if α1 = ωω · ζ1 + β1 and α2 = ωω · ζ2 + β2 are any ordinals

with β1, β2 < ωω · 2 chosen maximally with this property, then the theories
of CARD+

α1
and CARD+

α2
are identical if and only if β1 = β2.

The idea for the proof is to exploit that, if ℵδ is any infinite cardinal,
then the cardinal ℵδ+ωk·nk+···+ω·n1+n0

is a definable singleton of CARD+
α

(presuming it exists in CARDα) using ℵδ as a parameter.

5.1. Vector Spaces Under Direct Sum. As the isomorphism type of a
vector space over a fixed field F is uniquely determined by its dimension,
Theorem 5.5 has implications for the class of vector spaces.

Definition 5.7. Fix a countable field F and an infinite cardinal κ. Define
VSκ to be the set of all vector spaces over F of size less than or equal to κ
and VS⊕κ = (VSκ;⊕) to be the commutative monoid of vector spaces over F
of size less than or equal to κ under direct sum.

It is straightforward to see that VS⊕κ ∼= CARD+
α+1, where α is such that

κ = ℵα. Consequently, our understanding of the theories CARD+
α yields an

understanding of the theories VS⊕κ .

Corollary 5.8. Fix an infinite cardinal κ. The first-order theory of VS⊕κ is
decidable.

Moreover, Theorem 5.6 dictates when the theories of VS⊕κ1 and VS⊕κ2 co-
incide.

5.2. Equivalence Structures Under Addition. As the isomorphism type
of an equivalence structure is uniquely determined by the number of classes
of each size, Theorem 5.5 also has implications for the class of equivalence
structures.

Definition 5.9. Fix an infinite cardinal κ. Define EQκ to be the set of all
equivalence structures of size less than or equal to κ and EQ+

κ = (EQκ; +)
to be the commutative monoid of equivalence structures of size less than or
equal to κ under addition (disjoint union).

It is straightforward to see that EQ+
κ
∼=
∏
β<ω+αCARD

+
α+1, where α is

such that κ = ℵα. The understanding of the theories CARD+
α yields an
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understanding of the theories EQ+
κ as a consequence of work by Feferman

and Vaught.

Lemma 5.10 (Feferman and Vaught [FV59]). Let S = (A;R) be a rela-
tional structure with a decidable theory. Let κ be a cardinal. Then Sκ, the
generalized product of κ many disjoint copies of S, is decidable.

Corollary 5.11. Fix an infinite cardinal κ. The first-order theory of EQ+
κ

is decidable.

Though additional work is required, the characterization of Theorem 5.6
dictates when the theories of EQ+

κ1 and EQ+
κ2 coincide.

5.3. Finitely Generated Abelian Groups Under Direct Sum. As
with equivalence structures, the structure of finitely generated abelian groups
under direct sum is rather straightforward.

Theorem 5.12 (Fundamental Theorem of Finitely Generated Abelian Groups).
Fix a finitely generated abelian group G. Then there are integers s, q1, . . . , qm, s1, .., sm
such that

G ∼= Zs ⊕ Zs1q1 ⊕ · · · ⊕ Zsmqm .
Moreover, the integers qi for 1 ≤ i ≤ m can be chosen so that all are powers
of (not necessarily distinct) prime numbers.

Definition 5.13. Define FGAG to be the set of all finitely generated abelian
groups and FGAG⊕ = (FGAG;⊕) to be the commutative monoid of finitely
generated abelian groups under direct sum.

It is straightforward to see that FGAG⊕ ∼=
⊕weak

β<ω CARD+
0 as the iso-

morphism type of a finitely generated abelian group G can be specified by
a function f : ∞ ∪ (ω × ω) → ω equal to zero almost everywhere, where
f(∞) specifies the number of copies of Z and f(m,n) specifies the number
of copies of Zpnm .

Lemma 5.14 (Feferman and Vaught [FV59]). Let S = (A;R) be a relational
structure with a decidable theory. Let κ be a cardinal. Then SκFIN , the weak
direct product of κ many disjoint copies of S for which only finitely many
components are nonzero, is decidable.

Corollary 5.15. The first-order theory of FGAG⊕ is decidable.

6. Open Questions

Though the additive operation is perhaps the most natural operation on
many classes of structures, it is by far not the only possible natural choice. A
study of the theory of classes of structures with a different language signature
would likely yield interesting comparisons.

Question 6.1. Fix an infinite cardinal κ. Define LO4κ = (LOκ;4) to be the
class of linear orders of size at most κ under embeddability. How complicated
is the theory of LO4κ ?
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Question 6.2. Fix an infinite cardinal κ. Define F≤κ = (Fκ ; ≤) to be the
class of fields of size at most κ under the subfield relation. How complicated
is the theory of F≤κ ?
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