
A ROBUSTER SCOTT RANK

ANTONIO MONTALBÁN

Abstract. We give a new definition of Scott rank motivated by our main theorem: For
every countable structure A and ordinal α < ω1, we have that: every automorphism orbit is
Σin
α -definable without parameters if and only if A has a Πin

α+1 Scott sentence, if and only if A
is uniformly boldface ∆0

α-categorical. As a corollary, we show that a structure is computably
categorical on a cone if and only if it is the model of a countably categorical Σin

3 sentence.

1. Introduction

This paper has two main objectives. One is to introduce what the author believes is the
right definition of Scott rank. The other is to provide a simple structural characterization for
the notion of computable categoricity on a cone.

1.1. Scott ranks. The Scott rank measures the complexity of a structure in terms of the
complexity of the automorphism orbits of its tuples. It is a very useful tool in infinitary model
theory, descriptive set theory, and computable structure theory. Its original formulation comes
from Scott’s proof [Sco65] that every countable structure is the unique countable model of
some Lω1,ω sentence. Since then, a few non-equivalent formulations of Scott rank have been
proposed. We review them in Section 3.1.

It is known that the Scott rank of a structure is connected to the complexity of its Soctt
sentence, which is connected to its level of categoricity, etc. One can prove that some of these
measures of complexities provide upper and lower bounds for the others. Our main theorem
exposes these connections in the sharpest possible way.

Theorem 1.1. Let A be a countable structure and α be a countable ordinal. The following
are equivalent:

(U1) Every automorphism orbit is Σin
α -definable without parameters.

(U2) A has a Πin
α+1 Scott sentence.

(U3) A is uniformly boldface ∆0
α-categorical.

Let us quickly explain the terms in the theorem. The “in” in Σin
α is for “infinitary;” We

refer the reader to [AK00, Section 6.4] for background on the hierarchy of Lω1,ω formulas. The
automorphism orbit of a tuple ā in a structure A is the set of all other tuples automorphic to
ā. Since every definable set is a union of automorphism orbits, we have that (U1) is equivalent
to saying that every Lω1,ω-definable relation in A is Σin

α -definable (definability being without
parameters). For (U2), recall that a Scott sentence for a countable structure A is an infinitary
sentence whose only countable model is A. Scott [Sco65] proved that such a sentences always
exist. In other words, part (U2) says that A is the model of a countably categorical Πin

α+1

sentence. Part (U3) refers to a different notion of categoricity, the one used in computability
theory. A structure is uniformly boldface ∆0

α-categorical if it is uniformly ∆0
α-categorical

relative to some oracle; we will explain this in detail in Section 2.2.
Theorem 1.1 and its continuation below show the robustness of the statements (U1), (U2),

and (U3). Motivated by the theorem, we propose yet another notion of Scott rank:

0 Saved: March 23, 2014 – Submitted.
Compiled: March 23, 2014

The author was partially supported the Packard Fellowship.

1

2 ANTONIO MONTALBÁN

Definition 1.2. The categoricity Scott rank of a structure A is the least ordinal α such that
the automorphism orbit of each tuple in A is Σin

α -definable without parameters.

In other words, the Scott rank of A is the least α satisfying the statements of Theorem 1.1.
We hope that having a robuster notion of Scott rank can help better understand it.

We continue our main theorem by adding four more properties. Depending on the back-
ground of the reader, some of these properties will sound more relevant than others. We will
explain each of them briefly right after the theorem, and in more detail later in the paper.

Theorem (1.1 continued). The following are also equivalent to (U1), (U2) and (U3):

(U4) The set of presentations of A is Π0
α+1 in the Borel hierarchy.

(U5) Every Πin
α -type realized in A is Σin

α -supported within A.
(U6) There is a Πin

α+1-sentence ϕ true of A such that if B |= ϕ, then B ≡α+1 A.
(U7) No tuple in A is α-free.

In (U4), we are referring to the set of presentations of A as a set of reals, and looking at
its complexity from the viewpoint of descriptive set theory. The equivalence between (U4)
and (U2) follows from Lopez-Escobar’s theorem [LE65], that says that a class of presentations
of structures, closed under isomorphism, is Π0

β in the Borel hierarchy if and only if it is

Πin
β -axiomatizable.

For part (U5), a type p(x̄) is Σin
α -supported within A if there is a Σin

α -formula ϕ(x̄) that
implies, within A, all the formulas in p(x̄), and of course that is realized in A. Part (U5)
follows trivially from (U1), as the Σin

α -formula defining the orbit clearly implies the Πin
α -type

of the elements in the orbit. The reason we introduce this weakening of (U1) is that it will be
very useful in our proof as a pivotal point to prove the rest of the statements.

In (U6), ≡α+1 refers to Σin
α+1-elementary equivalence, also known as (α+ 1)-back-and-forth

equivalence. Part (U6) follows trivially from (U2), as the Scott sentence of A serves as ϕ
for (U6). The interesting feature about (U6) is that it implies that A has maximal under
≤α+1, which is a useful fact if one is trying to find the structures that satisfy the theorem.
(See Subsection 2.3 for a definition of the (α + 1)-back-and-forth relations ≤α+1.) When K
has countably many Πin

α -types (i.e. it is Σin
α -small–see [Mon]), (U6) is equivalent to A being

maximal under ≤α+1 (as it follows from [Mon10, Lemma 2.2]). Thus, in classes where we
have a good understanding of the ≤n-back-and-forth types, like Boolean algebras [HM12] for
instance, we can find the structures which satisfy Theorem 1.1 by searching for the ≤α+1-
maximal ones.

Part (U7) is a very combinatorial property sometimes useful in proofs and constructions.
The notion of α-freeness was introduced by Ash and Knight and was used to give a char-
acterization of ∆0

α-categoricity for α-friendly structures. We will get back to this in Section
2.3.

The proof of most of the equivalences in Theorem 1.1 are not particularly difficult, and
require putting together variations of various known results. The most interesting implication
is (U2)⇒ (U5), which uses a sharper version of the usual omitting types theorem for infinitary
logic. Once set up correctly, the proof of this omitting types theorem is very similar to the
standard one. To avoid introducing the notions of consistency property, fragment, and other
notions of infinitary logic, we prove a variation better suited for our purposes.

2. Computable categoricity

This section should be viewed as the second part of the introduction: we talk about our
second objective of giving a simple structural characterization for computable categoricity on

A ROBUSTER SCOTT RANK 3

a cone. The reader only interested in the infinitary model theory part may skip this section
and move on to Section 3.

2.1. Computable categoricity on a cone. The notion of computable categoricity, orig-
inally introduced by Mal’cev [Mal62], has been intensively studied in computability theory
in the past decades. Many of the properties one considers in computable structure theory
are not invariant under isomorphisms; that is, structures may have isomorphic computable
presentations with different computational properties. For instance, there are computable
presentations of the countable, infinite-dimensional Q-vector space, Q∞, where all the finite-
dimensional subspaces are computable, and computable presentations of Q∞ where no finite-
dimensional subspace is computable (see [DHK+07]). Computably categorical structures are
exactly the ones where this does not happen:

Definition 2.1. A computable structure A is computably categorical if there is a computable
isomorphism between any two computable copies of A.

There has been a lot of work characterizing the computably categorical structures within cer-
tain classes of structures. Precise characterizations have been found for linear orders (Dzgoev
and Goncharov [GD80]), Boolean algebras (Goncharov, and independently La Roche [LR78]),
ordered abelian groups (Goncharov, Lempp, and Solomon [GLS03]), torsion-free abelian groups
(Nurtazin [Nur74]), p-groups (Goncharov [Gon80] and Smith [Smi81]), trees of finite height
(Lempp, McCoy, R. Miller, and Solomon [LMMS05]), etc.

On the other hand, there are many classes where we do not expect such characterization are
even possible. Downey, Kach, Lempp, Lewis-Pye, Montalbán and Turetsky [DKL+] recently
showed that there is no structural characterization for the notion of computable categoricity
by showing that the index set of the computably categorical structures is Π1

1-complete. In
contrast, the relativized version of computable categoricity is relatively well-behaved, as proved
by Goncharov [Gon75] long ago.

Definition 2.2. Given X ∈ 2ω, an X-computable structure A is X-computably categorical
if there is an X-computable isomorphism between any two X-computable copies of A. A
structure A is relatively computably categorical if it is X-computably categorical for all X ∈ 2ω.

Goncharov [Gon75] showed that a structure A is relative computably categorical if and only
if it has a c.e. Scott family of ∃-formulas. In this paper, we look at a different variation of the
definition of computable categoricity that has an even nicer structural classification.

Definition 2.3. A structure A is computably categorical on a cone if there is a Y ∈ 2ω such
that A is X-computably categorical for all X ≥T Y .

We remark that, when we are looking at natural examples, most properties relativize.
Thus, for natural structures, the three notions, computable categoricity, relative computable
categoricity and computable categoricity on a cone, coincide. As a corollary of Theorem 1.1,
we get our second main result.

Theorem 2.4. Let A be a countable structure. The following are equivalent:

(1) A is computably categorical on a cone.
(2) A has a Σin

3 Scott sentence.

Let us note that A has a Σin
3 Scott sentence if and only if there exists a tuple ā ∈ A<ω such

that (A, ā) has a Πin
2 -Scott sentence, which is equivalent to (A, ā) having categoricity Scott

rank 1. This generalizes through the transfinite in the expected way:

Theorem 2.5. Let A be a countable structure and α a countable ordinal. The following are
equivalent:

4 ANTONIO MONTALBÁN

(C1) A is ∆0
α-categorical on a cone.

(C2) A has a Σin
α+2 Scott sentence.

(C3) There is a tuple ā ∈ A<ω such that (A, ā) has categoricity Scott rank at most α.

This theorem motivates the definition of the parametrized categoricity Scott rank of a struc-
ture A, pSR(A), as the least ordinal α for which, for some tuple ā ∈ A<ω, (A, ā) has cat-
egoricity Scott rank α. It follows from (U2) and (C2) that, depending on the structure A,
either cSR(A) = pSR(A) or cSR(A) = pSR(A) + 1, where cSR(A) is the categoricity Scott
rank of A. Depending on the application, one rank might be more useful than the other.

2.2. Uniform computable categoricity. A structure is said to be uniformly computably
categorical if there is a computable operator Θ such that, for every presentation B of A, we
have that Θ(B) is an isomorphism between A and B. Ventsov [Ven92] proved that a structure
is relatively computably categorical if and only if it is uniformly computably categorical after
adding some parameters. A simple proof of this result is given in [DHK03, Theorem 2.5]. Here
is the “on a cone” version of this notion:

Definition 2.6. A structureA is uniformly continuously categorical if there exists a continuous
operator Θ such that, for every presentation B of A, we have that Θ(B) is an isomorphism
between A and B.

From Ventsov’s result, we get that A is computably categorical on a cone if and only if it
is uniformly continuously categorical after adding some parameters. From Theorem 1.1, we
get that A is uniformly continuously categorical if and only if it has categoricity Scott rank
1. All this extends naturally through the transfinite.

Definition 2.7. A structure A is uniformly boldface ∆0
α categorical if there exists a ∆0

α

operator Θ such that, for every presentation B of A, we have that Θ(B) is an isomorphism
between A and B.

We recall that a function Θ: 2ω → 2ω is a ∆0
α operator if the set {(X,n, i) ∈ 2ω × ω × 2 :

Θ(X)(n) = i} is ∆0
α; or equivalently, if there is a continuous function Θ̃ such that Θ(X) =

Θ̃(X(α)) for infinite α and Θ(X) = Θ̃(X(α−1)) for finite α.
It is known that A is relatively ∆0

α categorical if and only if it is uniformly lightface ∆0
α

categorical after adding parameters, if and only if A has a Σc
α-Scott family with parameters.

This is due to Ash [Ash87]. A close inspection of Ash’s proof as given in [AK00, Theorem
10.14] using Ash–Knight–Manasse–Slaman’s forcing [AKMS89], one also gets that A is uni-
formly lightface ∆0

α categorical if and only if it has Σc
a-Scott family without parameters. By

considering this equivalence on a cone, we get (U3) ⇔ (U1).

2.3. α-freeness. We need to recall the asymmetric back-and-forth relations as in [AK00,
Chapter 15]. Given a countable structure A, tuples ā, b̄ ∈ A<ω of the same length, and an
ordinal α, the α-back-and-forth relation, ≤α, can be defined in a couple of different ways:

ā ≤α b̄ ⇐⇒ Πin
α -tpA(ā) ⊆ Πin

α -tpA(b̄)

⇐⇒ (∀β < α)(∀d̄ ∈ A<ω)(∃c̄ ∈ A<ω) āc̄ ≥β b̄d̄,

where Πin
α -tpA(ā) = {ψ(x̄) ∈ Πin

α : A |= ψ(ā)} is the Πin
α -type of ā in A.

The notion of α-freeness was introduced by Ash and Knight in [AK00, page 269] as a useful
combinatorial tool to describe ∆0

α-categoricity.

Definition 2.8. A tuple ā ∈ A is α-free if

(∀β < α)(∀d̄ ∈ A<ω)(∃ā′, d̄′ ∈ A<ω) ād̄ ≤β ā′d̄′ and ā 6≤α ā′.

A ROBUSTER SCOTT RANK 5

The lightface version, with parameters, of the equivalence (U1) ⇔ (U7) appears in [AK00,
Proposition 17.6 and Theorem 17.7] under the assumption that A satisfies an effectiveness
condition called α-friendliness. To show that (U1) ⇔ (U7), all we need to do is observe that
every structure is α-friendly relative to a large enough oracle, and that (U1) is equivalent to
saying thatA has a Σc

α-Scott family on a cone. We also need to observe that the parameter-free
version of [AK00, Proposition 17.6 and Theorem 17.7] holds via almost the same proofs.

3. Infinitary logic

In this section we prove the parts of our main theorem that only have to do with infinitary
logic, and do not involve computability theory or back-and-forth relations.

We refer the reader to [Kei71] and [AK00, Chapter 6] for background on infinitary logic.
Recall that we use the notation Σin

α for the infinitary Σα formulas, and Σc
α for the computably

infinitary Σa formulas.

3.1. Previously used notions of Scott rank. For historical purposes, let us quickly review
the previous definitions of Scott rank. This subsection is not necessary for the rest of the paper,
and the reader who is only interested in the proof of Theorem 1.1 may skip to 3.2.

First, we need to define the symmetric back-and-forth relations ∼α. Given tuples ā, b̄ in a
structure A, and of the same length, we define:

• ā ∼0 b̄ if they satisfy the same atomic formulas.
• ā ∼α+1 b̄ if for every d ∈ A, there exists c ∈ A such that āc ∼α b̄d and, for every c ∈ A,

there exists d ∈ A such that āc ∼α b̄d.
• For limit α, ā ∼α b̄ if for some β < α, ā ∼β b̄.

Scott showed that if ā ∼α b̄ for all α < ω1, then ā and b̄ are automorphic, assuming the
underlying structure A is countable. For each tuple ā, there is a least ordinal ρ(ā) such that,
for any other tuple b̄, if ā ∼ρ(ā) b̄, then ā and b̄ are automorphic. The most common version
of Scott rank, derived from Scott [Sco65] is defined as follows:

SR(A) = sup{ρ(ā) + 1 : ā ∈ A<ω}.
Another version sometimes used is sr(A) = sup{ρ(ā) : ā ∈ A<ω}, which is the least α such
that ∼α coincides with the automorphism equivalence relation.

Another rank that is not far off from this one is the game rank; they are at most ω apart
(see Gao [Gao07]).

A version of Scott rank better suited when one wants to use notions from finitary first-
order logic in infinitary logic is the one used by Sacks and his students (see for instance
[Sac07, Section 2]). To define it, we first need a hierarchy of fragments of infinitary logic
defined as follows: Let L0(A) the the finitary first-order logic in the vocabulary of A. Let
Lα+1(A) be defined by adding to Lα(A) the formulas

∧
ϕ∈p ϕ(x̄) for each Lα(A)-type p(x̄)

realized in A, and closing under ∨, ∧, ¬, ∃ and ∀, and take unions at limit ordinals. The Scott
rank of A is then defined as the least α such that A is an atomic Lα(A)-model. This rank
and the previous Scott rank, SR, coincide at the multiples of ω2. On computable structures,
they also agree at ωCK1 and ωCK1 + 1.

In Ash and Knight’s book [AK00, § 6.7], there are two another ranks, r and R, which they
say they prefer over sr and SR because they are closer to the complexity of formulas. We
should remark that sr and SR are closer to the quantifier rank of formulas when it is defined
by counting individual quantifiers rather than alternating blocks of quantifiers. But if we want
to work in parallel with the hyperarithmetic hierarchy and the Borel hierarchy, we need to
count alternations of quantifiers rather than single quantifiers. This is essentially the same
motivation we have for introducing our version of Scott rank. They define R(A) as the least

6 ANTONIO MONTALBÁN

α such that all orbits are Πin
<α definable. Thus R is very close to our categoricity Scott rank;

depending on the structure, they are either equal or off by 1. They coincide at limit ordinals,
and, on computable structures, they coincide at ωCK1 and ωCK1 + 1.

3.2. Type omitting. In this subsection, we prove the main tool for proving (U2) ⇒ (U6).
The type omitting theorem for infinitary logic is well known and its proof is similar to that of
the finitary original version due to Henkin and Orley. The precise instance of the type omitting
lemma we need does not follow from the versions in the literature. We need a sharp count of
the alternations of quantifiers, while the versions in the literature are about fragments that
are closed under quantification and hence too coarse for us. The author learned of a similar
kind of variations from Julia Knight and Sy Friedman. Another difference in our version is
that we omit a type that is not supported within a given structure, rather than in general, so
we do not need to introduce extra notions from infinitary logic like that of countable fragment
or constancy property. Despite these differences, once the statement is set up correctly, the
idea of the proof is not new.

Definition 3.1. A set of infinitary formulas Φ(x̄) is Σin
α -supported in A if there exists a Σin

α

formula ϕ(x̄) such that

A |= ∃x̄
(
ϕ(x̄)

)
& ∀x̄

(
ϕ(x̄)⇒

∧
ψ∈Φ

ψ(x̄)
)
.

Lemma 3.2 (Type omitting lemma). Let A be a structure and ϕ be a Πin
α+1 sentence true

of A. Let Φ(x̄) be a partial Πin
α -type which is not Σin

α -supported in A. Then, there exists a
structure B which models ϕ and omits Φ.

Proof. Write ϕ as
∧
j ∀ȳjϕj(ȳj), where each ϕj is Σin

α . Let τ be the vocabulary of the structure

A, and let C = {c0, c1, ...} be a set of fresh constants. Using a Henkin-type construction, we
will build a set S of Σin

α sentences over the vocabulary τ ∪ C such that:

(A): If
∨
ψi ∈ S, then ψi ∈ S for some i.

(B): If ∃ȳψ(ȳ) ∈ S, then ψ(c̄) ∈ S for some tuple of constants c̄ from C.
(C): If

∧
ψi ∈ S, then ψi ∈ S for all i.

(D): If ∀ȳψ(ȳ) ∈ S, then ψ(c̄) ∈ S for all c̄ from C.
(E): For every atomic sentence ψ over τ ∪ C, either ψ ∈ S or ¬ψ ∈ S, but not both.
(F): For every j and every tuple c̄ from C of length |ȳj |, ϕj(c̄) ∈ S.
(G): For every tuple c̄ from C of length |x̄|, there is a formula ψ ∈ Φ such that ¬ψ(c̄) ∈ S.

Once we have S satisfying (A)-(E), we can build a structure B as usual: We let B have
domain C and we use the atomic sentences in S to define the structure in B. By induction
on formulas, using properties (A)-(E), we get that B |= ψ for every ψ ∈ S. From (F), we get
that B |= ϕ and from (G), we get that B omits Φ.

The construction of S is by stages as in the usual Henkin construction. At stage s, we define
a finite set of sentences Ss, and we will define S =

⋃
s∈ω Ss at the end. Each Ss mentions

at most finitely many of the constants from C. To ensure consistency, i.e. the latter part of
(E), we make sure that, at each s, there is an assignment vs that assigns values in A to the
constants that appear in Ss in a way that Ss holds in A. That is, if Ss mentions the constants
c0, ..., cn, and vs maps ci to ai ∈ A, then for each formula ψ(c0, ..., cn) ∈ Ss, A |= ψ(a0, ..., an).

At each stage, we take care of a new instance of one of the requirements. Instances of
the requirements (A)-(F) can all be satisfied in a straightforward way without modifying the
values in the assignment vs. For instance, suppose that at stage s + 1, we want to satisfy
requirement (B) for the sentence ∃ȳψ(c0, ..., cn, ȳ) ∈ Ss, and suppose vs maps ci to ai ∈ A.
Since A |= ∃ȳψ(a0, ..., an, ȳ), we have that for some b̄ ∈ A<ω, A |= ψ(a0, ..., an, b̄). Let c̄

A ROBUSTER SCOTT RANK 7

be a tuple of new constants, let vs+1 be the extension of vs which maps c̄ to b̄, and let
Ss+1 = Ss ∪ {ψ(c̄)}. We leave the requirements (A), (C), (D), (E) and (F) to the reader.

Requirement (G) is a standard type-omitting argument: Take a tuple c̄ from C of the
same length as x̄, and suppose we have already built Ss. Let ϕ(c̄, d̄) =

∧
Ss, where d̄ is

the tuple of constants from C that occur in Ss but are not present in c̄. So ∃ȳ(x̄, ȳ) is
a Σin

α formula realized in A. Since Φ is not Σin
α -supported, there is a formula ψ(x̄) ∈ Φ

such that A |= ¬∀x̄(∃ȳϕ(x̄, ȳ) → ψ(x̄)). That is, there are tuples ā, b̄ ∈ A<ω such that
A |= ϕ(ā, b̄) ∧ ¬ψ(ā). Let Ss+1 = Ss ∪ {¬ψ(c̄)} and let vs+1 map c̄d̄ to āb̄. �

3.3. The implications. We prove

(U1) ⇒ (U2) ⇒ (U6) ⇒ (U5) ⇒ (U1).

This finishes the proof of Theorem 1.1, as we have already seen that (U1)⇔ (U3) in Subsection
2.2, that (U2) ⇔ (U4) right after Theorem 1.1, and that (U1) ⇔ (U7) in Subsection 2.3.

Proof of (U1) ⇒ (U2). This follows from counting the quantifiers in the standard construction
of the Scott sentence out of a Scott family. Recall that if Φ = {ϕā : ā ∈ A} is a Scott family
for A, where ϕā is the formula defining the orbit of ā, then the following is a Scott sentence
for A (see, for instance, [AK00, Page 97]):∧

ā∈A<ω
∀x̄

(
ϕā(x̄) →

(∧
b∈A
∃yϕāb(x̄, y)

)
&

(
∀y
∨
b∈A

ϕāb(x̄, y)

))
Note that if each ϕ is Σin

α , then the whole sentence is Πin
α+1. �

That (U2) ⇒ (U6) is straightforward.

Proof of (U6) ⇒ (U5). Let ϕ be a Πin
n+1 sentence true ofA as given by (U6). Suppose, towards

a contradiction that there is a Πin
α type p(x̄) realized in A by some tuple ā which is not Σin

α+1

supported within A. By Lemma 3.2, there is a structure B which models ϕ and omits p(x̄).
By the choice of ϕ, we have that B ≡α+1 A, which will lead us to a contradiction. Since B is
countable, there is a countable subset q(x̄) ⊆ p(x̄) which is also omitted in B: just take, for
each tuple in B, a formula in p(x̄) which it does not satisfy. But then,

A |= ∃x̄
∧
ψ∈q

ψ(x̄) and B |= ¬∃x̄
∧
ψ∈q

ψ(x̄),

contradicting that A and B are Σin
α+1-elementary equivalent. �

Proof of (U5) ⇒ (U1). For each tuple ā in A, let ϕā(x̄) be a Σin
α formula that supports Πin

α -
tpA(ā) and is realizable in A. First, note that ϕā is true of ā, as otherwise ¬ϕā would belong
to Πin

α -tpA(ā) and be implied by ϕā. Second, we need to observe that if A |= ϕā(b̄), then
A |= ϕb̄(ā) too: Suppose not, and that A |= ¬ϕb̄(ā). We would then have that ¬ϕb̄(x̄) ∈ Πin

α -
tpA(ā), and hence that ϕā(x̄) implies ¬ϕb̄(x̄), which we know is not true, as A |= ϕā(b̄)∧ϕb̄(b̄).

Let Φ = {ϕā : ā ∈ A<ω}. We claim that Φ is a Scott family for A, i.e. that is a set of
definitions for the automorphism orbits of A. Consider the set of pairs

P = {〈ā, b̄〉 ∈ (A<ω)2 : A |= ϕā(b̄)}.
We claim that P has the back-and-forth property, which would imply that ā and b̄ are auto-
morphic as wanted whenever 〈ā, b̄〉 ∈ P . Suppose 〈ā, b̄〉 ∈ P . Let d ∈ A; we want to show that
there exists c ∈ A such that 〈āc, b̄d〉 ∈ P . Thus, we need to show that A |= ∃y ϕb̄,d(ā, y). Sup-

pose not. Then ∀y¬ϕb̄,d(ā, y) is part of the Πin
α -type of ā and hence implied by ϕā. But then,

since A |= ϕā(b̄), we would have A |= ∀y¬ϕb̄,d(b̄, y), contradicting that A |= ϕb̄d(b̄, d). �

8 ANTONIO MONTALBÁN

References

[AK00] C.J. Ash and J. Knight. Computable Structures and the Hyperarithmetical Hierarchy. Elsevier Sci-
ence, 2000.

[AKMS89] Chris Ash, Julia Knight, Mark Manasse, and Theodore Slaman. Generic copies of countable struc-
tures. Ann. Pure Appl. Logic, 42(3):195–205, 1989.

[Ash87] C. J. Ash. Categoricity in hyperarithmetical degrees. Ann. Pure Appl. Logic, 34(1):1–14, 1987.
[DHK03] R. Downey, D. Hirschfeldt, and B. Khoussainov. Uniformity in the theory of computable structures.

Algebra Logika, 42(5):566–593, 637, 2003.
[DHK+07] Downey, Hirschfeldt, Kach, Lempp, A. Montalbán, and Mileti. Subspaces of computable vector

spaces. Journal of Algebra, 314(2):888–894, August 2007.
[DKL+] R. Downey, A. Kach, S. Lempp, A.E.M. Lewis-Pye, A. Montalbán, and D. Turetsky. The complexity

of computable categoricity. Submitted for publication.
[Gao07] Su Gao. Complexity ranks of countable models. Notre Dame J. Formal Logic, 48(1):33–48 (elec-

tronic), 2007.
[GD80] S. S. Gončarov and V. D. Dzgoev. Autostability of models. Algebra i Logika, 19(1):45–58, 132, 1980.
[GLS03] Sergey S. Goncharov, Steffen Lempp, and Reed Solomon. The computable dimension of ordered

abelian groups. Adv. Math., 175(1):102–143, 2003.
[Gon75] S. S. Gončarov. Selfstability, and computable families of constructivizations. Algebra i Logika,

14(6):647–680, 727, 1975.
[Gon80] Sergey S. Goncharov. Autostability of models and abelian groups. Algebra i Logika, 19(1):23–44,

132, 1980.
[HM12] Kenneth Harris and Antonio Montalbán. On the n-back-and-forth types of Boolean algebras. Trans.

Amer. Math. Soc., 364(2):827–866, 2012.
[Kei71] H. Jerome Keisler. Model theory for infinitary logic. Logic with countable conjunctions and finite

quantifiers. North-Holland Publishing Co., Amsterdam, 1971. Studies in Logic and the Foundations
of Mathematics, Vol. 62.

[LE65] E. G. K. Lopez-Escobar. An interpolation theorem for denumerably long formulas. Fund. Math.,
57:253–272, 1965.

[LMMS05] Steffen Lempp, Charles McCoy, Russell Miller, and Reed Solomon. Computable categoricity of trees
of finite height. J. Symbolic Logic, 70(1):151–215, 2005.

[LR78] Peter E. La Roche. Contributions to Recursive Algebra. ProQuest LLC, Ann Arbor, MI, 1978. Thesis
(Ph.D.)–Cornell University.

[Mal62] Anatolii I. Mal’cev. On recursive Abelian groups. Dokl. Akad. Nauk SSSR, 146:1009–1012, 1962.
[Mon] Antonio Montalbán. Computability theoretic classifications for classes of structures. Submitted for

publication.
[Mon10] Antonio Montalbán. Counting the back-and-forth types. Journal of Logic and Computability, page

doi: 10.1093/logcom/exq048, 2010.
[Nur74] A. T. Nurtazin. Computable classes and algebraic criteria for autostability. PhD thesis, Institute of

Mathematics and Mechanics, Alma-Ata, 1974.
[Sac07] Gerald E. Sacks. Bounds on weak scattering. Notre Dame J. Formal Logic, 48(1):5–31, 2007.
[Sco65] Dana Scott. Logic with denumerably long formulas and finite strings of quantifiers. In Theory of

Models (Proc. 1963 Internat. Sympos. Berkeley), pages 329–341. North-Holland, Amsterdam, 1965.
[Smi81] Rick L. Smith. Two theorems on autostability in p-groups. In Logic Year 1979–80 (Proc. Seminars

and Conf. Math. Logic, Univ. Connecticut, Storrs, Conn., 1979/80), volume 859 of Lecture Notes
in Math., pages 302–311. Springer, Berlin, 1981.

[Ven92] Yu. G. Ventsov. The effective choice problem for relations and reducibilities in classes of constructive
and positive models. Algebra i Logika, 31(2):101–118, 220, 1992.

Department of Mathematics, University of California, Berkeley, USA
E-mail address: antonio@math.berkeley.edu

URL: www.math.berkeley.edu/∼antonio

http://www.math.berkeley.edu/~antonio/index.html

	1. Introduction
	1.1. Scott ranks

	2. Computable categoricity
	2.1. Computable categoricity on a cone
	2.2. Uniform computable categoricity
	2.3. -freeness

	3. Infinitary logic
	3.1. Previously used notions of Scott rank
	3.2. Type omitting
	3.3. The implications

	References

