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ON THE EQUIMORPHISM TYPES OF LINEAR ORDERINGS.

ANTONIO MONTALBÁN

1. Introduction

A linear ordering (also known as total ordering) embeds into another linear ordering if it is isomorphic
to a subset of it. Two linear orderings are said to be equimorphic if they can be embedded in each
other. This is an equivalence relation, and we call the equivalence classes equimorphism types. We
analyze the structure of equimorphism types of linear orderings, which is partially ordered by the
embeddability relation. Our analysis is mainly from the viewpoints of Computability Theory and
Reverse Mathematics. But we also obtain results, as the definition of equimorphism invariants for
linear orderings, which provide a better understanding of the shape of this structure in general.

This study of linear orderings started by analyzing the proof-theoretic strength of a theorem due to
Jullien [Jul69]. As is often the case in Reverse Mathematics, to solve this problem it was necessary to
develop a deeper understanding of the objects involved. This led to a variety of results on the structure
of linear orderings and the embeddability relation on them. These results can be divided into three
groups.

First are the results purely about the structure of the embeddability relation on linear orderings.
We start by introducing the concept of signed tree. Signed trees are used to represent equimorphism
types of countable linear orderings. The good thing about this representation is that, in some sense,
it explicitly describes the structure of the equimorphism type. So, it makes it easier, say from a
computability theoretic viewpoint, to work with equimorphism types. This explicit description of the
structure of the linear orderings was very important in the analysis of the proof-theoretic strength of
Jullien’s theorem. Signed trees also provide a different intuition about the structure of countable linear
orderings.

Then we define a way of assigning a finite object Inv(L) to each scattered linear ordering L. (A
linear ordering is scattered if η, the order type of the rational numbers, does not embed in it.) This
assignment is an equimorphism invariant, in the sense that two linear orderings are equimorphic if
and only if they are assigned the same object. This time, we work with the whole class of scattered
linear orderings, and not only the countable ones. Of course, these objects are not hereditarily finite
sets, as this would be impossible since there are only countably many hereditarily finite sets and there
are already ℵ1 many countable scattered equimorphism types. But they are finite objects with ordinal
labels. More specifically, they are finite sequences of finite trees with labels in ON ×{+,−}, where ON
is the class of ordinals. These invariants are useful in studying the partial ordering of the equimorphism
types. We expand on all this in Section 3.

While trying to prove Theorem 1.1 below, we had to find the minimal linear orderings of a certain
Hausdorff rank. Since this result is interesting by itself, we present it in Section 4.

Second comes the analysis from the viewpoint of Computable Mathematics. This is presented in
Section 5. (For background on computable sets we refer the reader to the introductory chapters of
[Soa87].) From the study of the equimorphism invariants we show that if α is a computable ordinal,
then the set of invariants for linear orderings of Hausdorff rank less than α is computable, and so is
the embeddability relation. We then use this result to construct a computable inverse for the function
Inv(·). That is, we define a computable function lin(·) that given an invariant for a linear ordering L of
Hausdorff rank less than α, returns a linear ordering equimorphic to L. So, we get that every scattered
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linear ordering, whose Hausdorff rank is a computable ordinal, is equimorphic to a computable linear
ordering. As a corollary we get the following theorem, which is an extension of an old classical result
of Spector [Spe55] that says that every hyperarithmetic well-ordering is isomorphic to a computable
one.

Theorem 1.1. Every hyperarithmetic linear ordering is equimorphic to a computable one.

The original proof of this result [Mon05b] used signed trees and signed forests. The proof we sketch
here uses the finite invariants instead, but it is essentially the same proof.

Third are the results in Reverse mathematics. We prove that many statements about the em-
beddability relation of linear orderings are equivalent to each other. The most well-known of these
statements being Fräıssé’s conjecture, also known as Laver’s theorem. A conclusion one could draw
from our results is that the weakest system of second order arithmetic where one can develop a rea-
sonable theory of equimorphism types of linear orderings is RCA0 together with Fräıssé’s conjecture.
It could still be the case that this system is equivalent to ATR0, but this is not known. One could
conclude from our results that Fräıssé’s conjecture is a robust system, in the sense that many other
statement are equivalent to it. So far, only the “big five” systems, RCA0, WKL0, ACA0, ATR0 and
Π1

1-CA0, are known to be robust.
One statement we show equivalent to Fräıssé’s conjecture is Jullien’s classification of the extendible

linear orderings. Then, there is one statement about the well-quasi-orderness of the signed trees and one
about the decomposition of scattered linear orderings as finite sums of indecomposables. In unpublished
work, the author has showed that other variations of these statements are also equivalent to Fräıssé’s
conjecture, as for example the better-quasi-orderness of the linear orderings and the fact that every
indecomposable equimorphism type can be represented by a signed tree.

In the last section we study another statement about equimorphism types of linear orderings. We
should mention that the results we obtain for this statement do not verify the claim we made about the
robustness of Fräıssé’s conjecture. We show that this statement, that we call INDEC, belongs to a class
of statements that has been studied in the seventies. This is the class of statements of hyperarithmetic
analysis, and these are the statements S such that, for every Y ⊆ ω, the least ω-model of RCA0+S
containing a set Y is the class of sets hypearithmetic in Y . Many systems of hyperarithmetic analysis
were known before, but INDEC is the first natural example of a statement in mathematics with this
strength.

Notation. We write L1 4 L2 if L1 embeds in L2, and L1 ∼ L2 when L1 and L2 are equimorphic.
Some examples of linear orderings are: 1, the linear ordering with one element; m, the linear ordering
with m many elements; ω, the order type of the natural numbers; ζ, the order type of the integers; η,
the order type of the rationals; and ωCK

1 , the first non-computable ordinal.
We have some operations on the class of linear orderings. The reverse linear ordering of L = 〈L,6

L
〉

is L∗ = 〈L,>
L
〉. We also let L+ = L and L− = L∗. The product, A · B, of two linear orderings A

and B is obtained by substituting a copy of A for each element of B. The sum,
∑

i∈AAi, of a set of
linear orderings {Ai}i∈A indexed by another linear ordering A, is constructed by substituting a copy
of Ai for each element i ∈ A. So, for example, A · B =

∑
i∈BA. When A = m, we sometimes write

A0 + ...+Am−1 instead of
∑

i∈m Pi.
Basic ordinal arithmetic will be assumed. Any basic text in set theory would include background

on ordinal operations. See, for instance, [Kun80].

2. The structure of equimorphism types

Throughout this paper, except for Subsection 3.2, we will be mostly interested in countable linear
orderings. We will use structural results that are proved for arbitrary cardinality, but only for the class
of scattered linear orderings. In the countable case, there is only one equimorphism type which is not
scattered, namely η. (Because every countable linear ordering embeds into η.)

In this section we describe previously known results about the structure of equimorphism types of
scattered linear orderings. People have been interested in the class of scattered linear ordering for a long
time. One of the earliest results is the following, first proved by Hausdorff [Hau08], and rediscovered
by Erdös and Hajnal [EH63].
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Theorem 2.1 (Hausdorff). Let S be the smallest class of linear orderings such that
• 1 ∈ S;
• if A,B ∈ S, then A+ B ∈ S; and
• if κ is a regular cardinal and {Aγ : γ ∈ κ} ⊆ S, then both

∑
γ∈κAi and

∑
γ∈κ∗ Ai belong to S.

Then S is the class of scattered linear orderings.

Another important contribution of Hausdorff to the study of scattered linear orderings is the defini-
tion of the Hausdorff rank (see [Ros82, Chapter 5]). He first defined an operation on linear orderings
which is similar to the Cantor-Bendixon derivative on topological spaces: Given a linear ordering L, let
L′ be the linear ordering obtained by collapsing the elements which have only finitely many elements
between them. Informally, the Hausdorff rank of L is the least ordinal α such that the αth iterate of
this operation on L is finite. Here is the definition we will use.

Definition 2.2. Given a linear ordering L and an ordinal α, we define an equivalence relation ≈α on
L by transfinite induction as follows. Let ≈0 be the identity relation. For x, y ∈ L, let x ≈α y if and
only if for some β < α, there are only finitely many ≈β-equivalence classes between x and y. Let L(α)

be the linear ordering which consists of the ≈α-equivalence classes ordered in the obvious way. We let
the Hausdorff rank of L, rkH(L), be the least ordinal α such that L(α) is finite. If no such an α exists,
we let rkH(L) =∞.

Hausdorff proved that a linear ordering is scattered if and only if rkH(L) 6=∞.
The definition above is slightly different from some other definitions of Hausdorff rank found in

the literature, but is essentially the same. We prefer it to other definitions because it satisfies the
following three properties. Let A and B be linear orderings, then: if A 4 B, rkH(A) 6 rkH(B);
rkH(A+ B) = max(rkH(A), rkH(B)); and rkH(A · B) = rkH(A) + rkH(B).

After Hausdorff’s results, the following important structural result about the class of scattered linear
orderings was conjectured by Fräıssé in [Fra48]. It was proved by Richard Laver twenty three years
later.

Definition 2.3. A binary relation is a quasi-ordering if it is reflexive and transitive. A well-quasi-
ordering is a quasi-ordering which has no infinite descending sequences and no infinite antichains.

Theorem 2.4. [Lav71] The class of scattered linear orderings is well-quasi-ordered by the relation of
embeddablity.

Moreover, Laver proved that the class of scattered linear orderings is a better-quasi-ordering. Better-
quasi-orderings are a particular case of well-quasi-orderings with better closure properties, introduced
by Nash-Williams in [NW68]. Then, for example, using Nash-Williams’ theorem on transfinite se-
quences [NW68], we get that the class of ideals of scattered linear orderings (i.e., downwards closed
sets of linear orderings), ordered by the inclusion relation, is well-quasi-ordered too.

In Laver’s proof, indecomposable linear orderings play a very important role.

Definition 2.5. A linear ordering L is indecomposable if whenever L 4 A+B, either L 4 A or L 4 B.

Remark 2.6. An ordinal is indecomposable if and only if it is of the form ωδ. By the Cantor normal
form, every ordinal can be written as a finite sum of indecomposable ones.

Along with the theorem above, Laver proved some structural results about the class of σ-scattered
linear orderings (see Definition 8.1). When we restrict these results to the class of scattered linear
orderings we obtain the following theorem.

Theorem 2.7. [Lav71]
(1) Every scattered linear ordering can be written as a finite sum of indecomposable linear orderings.
(2) Every indecomposable linear ordering is either a κ-sum or a κ∗-sum of indecomposable linear

orderings of smaller Hausdorff rank, where κ is some regular cardinal.
(3) If L is a scattered linear ordering of cardinality κ > ω, then the set of equimorphism types

which are embeddable in L has size κ.

Everything mentioned so far about scattered linear orderings is not really about isomorphism types
of linear orderings, but actually about equimorphism types. The properties of being scattered, being
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indecomposable, and having a certain Hausdorff rank are preserved under equimorphisms. Also, the
operation of taking finite sums, products and κ-sums are well-defined on equimorphism types.

3. Equimorphism invariants

In this section we define two equimorphism invariants for linear orderings. That is, we describe a
way of assigning a certain object, the invariant, to each linear ordering in a way that the equimorphism
structure is respected. These invariants are in some sense simpler than the linear orderings, and
therefore they provide a better understanding of the structure of equimorphism types of linear orderings.

First we define signed trees. Signed trees were introduced in [Mon06] to represent indecomposable
linear orderings up to equimorphism. They have a similar flavor with the trees T (Ψ) used by Laver
[Lav71, pag.104]. Actually, the equimorphism invariants are not the signed trees themselves, but the
equimorphism types of signed trees. From a computability theoretical viewpoint, these are easier to
represent than linear ordering. Also, the structure of the linear ordering is explicitly described in the
signed tree representation, and the embeddability relation among signed trees is easier to visualize.
Since signed trees were developed for computability theoretic applications, they have only been defined
in the countable case. An extension of this notion to arbitrary cardinality is not immediate, and we
do not know how to do it in a natural way, although it may be possible.

Second we define finite equimorphism invariants for the whole class of scattered linear orderings.

3.1. Signed trees.

Definition 3.1. [Mon06] A signed tree is pair 〈T, sT 〉, where T is a well-founded subtree of ω<ω (i.e.:
a downwards closed subset of ω<ω with no infinite paths) and sT is a map, called a sign function, from
T to {+,−}. We will usually write T instead of 〈T, sT 〉. A homomorphism from a signed tree T to
another signed tree Ť is a map f : T → Ť such that

• for all σ ⊂ τ ∈ T we have that f(σ) ⊂ f(τ) and
• for all σ ∈ T , sŤ (f(σ)) = sT (σ).

(Here ⊂ is the strict inclusion of strings.) Given signed trees T and Ť we let T 4 Ť if there exists a
homomorphism f : T → Ť . We say that T and Ť are equimorphic, and write T ∼ Ť , if T 4 Ť and
Ť 4 T .

Remark 3.2. For f : T → Ť to be a homomorphism, we do not require that incomparable strings are
mapped to incomparable strings, and also f does not need to be one-to-one.

Notation 3.3. For every n ∈ ω with 〈n〉 ∈ T , we let Tn = {τ : n_τ ∈ T}.

We associate to each signed tree T , a linear ordering lin(T ).

Definition 3.4. The definition of lin(T ) is by transfinite induction. If T = {∅}, we let lin(T ) = ω or
lin(T ) = ω∗ depending on whether sT (∅) = + or sT (∅) = −. Now suppose T ) {∅}. If sT (∅) = +, we
want lin(T ) to be an ω sum of copies of lin(T0), lin(T1),..., where each lin(Ti) appears infinitely often
in the sum. So, we let

lin(T ) = lin(T0) + (lin(T0) + lin(T1)) + (lin(T0) + lin(T1) + lin(T2)) + ...

If sT (∅) = −, we let

lin(T ) = ...+ (lin(T2) + lin(T1) + lin(T0)) + (lin(T1) + lin(T0)) + lin(T0).

We say that a linear ordering, L, is h-indecomposable if it is of the form lin(T ) for some signed tree T .

Example 3.5. Here we show how the function lin(·) behaves on small signed trees. We represent the
signed trees with a picture, where the root is on top and on every node we put a + or − depending on
the value of sT on it.

lin(+) = ω; lin

 −

−

−

 = ...+ (...+ ω∗ + ω∗) + (...+ ω∗ + ω∗);

lin
(

+

−

)
= ω∗ + ω∗ + ω∗ + ...; lin

(
+

}} AA
− +

)
∼ ω + ω∗ + ω + ω∗...
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It follows from the following lemma that the structure of equimorphism types of countable indecom-
posable linear orderings is fully represented by the signed trees. Recall that any linear ordering can be
written as a finite sum of indecomposable ones, so to understand the structure of linear orderings it
suffices to understand the structure of signed trees.

Lemma 3.6. [Mon06]
(1) Every indecomposable linear ordering is equimorphic either to 1 or to an h-indecomposable

linear ordering.
(2) Given signed trees T and Ť , T 4 Ť if and only if lin(T ) 4 lin(Ť ), and hence T ∼ Ť if and only

if lin(T ) ∼ lin(Ť ).

The ranks of T and of lin(T ) are very closely related too. We define rk(T ) = sup{rk(Ti)+1 : 〈i〉 ∈ T}.

Lemma 3.7. [Monb] Let T be a signed tree. If T has finite rank, then rk(T ) + 1 = rkH(lin(T )). If T
has infinite rank, then rk(T ) = rkH(lin(T )).

Another advantage of representing linear orderings by signed trees is that proofs and constructions
which are inductive on the Hausdroff rank of the linear ordering became simpler. See, for instance, the
proof in ATR∗ that every indecomposable linear ordering is extendible [Mon06, Theorem 6.1].

3.2. Finite invariants. Now we go back to the uncountable case. We use Laver’s work and assign to
each scattered linear ordering L a finite sequence Inv(L) of finite trees labeled by ordinals and signs
in {+,−}. This assignment is an equimorphism invariant, that is, given scattered linear orderings A
and B, we have that

A ∼ B ⇔ Inv(A) = Inv(B).
Let S denote the class of equimorphism types of scattered linear orderings and H the class of

equimorphism types of scattered indecomposable linear orderings. From now on, indecomposable
means scattered and indecomposable linear ordering, unless otherwise stated. Let

Hα = {L ∈ H : rkH(L) < α}.
Jullien [Jul69, Theorem IV.6.2] proved the following. Let L be a scattered linear ordering and let

〈A0, ...,An−1〉 be a sequence of indecomposables such that L = A0 + ... + An−1 and n is minimum
possible. Then the tuple 〈A0, ...,An−1〉 is unique up to equimorphism (see also [Mon06, Subsection
3.2]). The tuple 〈A0, ...,An−1〉 is called a minimal decomposition of L. So, to define Inv(L), it is
enough to define invariants for the class of indecomposable linear orderings. We will assign a finite tree
T(Ai) to each indecomposable linear ordering and then take

Inv(L) = 〈T(A0), ..., T(An−1)〉.
A linear ordering is indecomposable to the left (right) if, whenever A and B are linear orderings such

that L = A+B, we have that L is equimorphic to A (to B). Another result of Jullien [Jul69, Theorem
IV.3.3] is that every indecomposable linear ordering is either indecomposable to the right or to the left.
(See also [Fra00, 6.3.4(3)] and [Ros82, Lemma 10.3], and see Section 7 below for a reverse mathematics
analysis of this statement.)

Definition 3.8. Let εL be + if L is indecomposable to the right, and let εL be − if it is indecomposable
to the left. Given L ∈ H, let IL = {A ∈ H : 1 +A+ 1 ≺ L}.

Note that IL ⊆ HrkH(L) and that IL is closed downwards. Subsets of H which are closed downwards
are called ideals of H.

Lemma 3.9. [Monb] If A,B ∈ H are such that εA = εB and IA = IB, then A = B.

The proof of this lemma is not too complicated in the countable case, using signed trees. It requires
a little more work in the general case. We use it to define T(L), the invariant of L.

Definition 3.10. We assign a finite tree, T(L), with labels in ON × {+,−}, to each L ∈ H. Let
{L1, ...,Lk} be the set of minimal elements of HrkH(L) r IL. Define

T(L) = 〈rkH(L), εL〉

T(L1)
iiiiiii

...
ooooo ... ...

OOOOO
T(Lk)

UUUUUUU
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That is, T (L) is a tree with a root labeled 〈rkH(L), εL〉 and with k branches T(L1),..., T(Lk).

The set of minimal elements of HrkH(L) r IL is finite because there are no infinite antichains in
H, since H is well-quasi-ordered. Moreover, it determines IL because, since H is well-founded, for
A ∈ HrkH(L), A ∈ IL if and only if for no i 6 k, Li 4 A. This representation of ideals of Hα by finite
antichains in Hα is one of the key properties that is being exploited.

The rest of [Monb] is dedicated to proving that these invariants are somewhat constructive. We do
it by showing that the definition of the embeddablity relation on the invariants is relatively simple,
and that we can easily characterize the finite trees that correspond to invariants. We also compute the
invariants of every linear ordering which is a product of linear orderings of the form ωα or (ωα)∗.

3.2.1. Ordering of invariants. Let Tr be the class {T(L) : L ∈ H} and let In = {Inv(L) : L ∈ S}.
Now, we define a relation 4 on Tr that such that T is an isomorphism

T : 〈Tr ,4〉 → 〈H,4〉.
We then define a relation 4 on In such that Inv : 〈S,4〉 → 〈In,4〉 is an isomorphism. We define 4
in a way such that, given S, T ∈ In, we can tell whether S 4 T via a finite manipulation of symbols,
assuming we can compare the ordinals that appear in the labels of S and T and their cofinalities. To
give the reader a flavor of how this definitons work, we include the definition of 4 in Tr . See [Monb]
for more information.

Let A,B ∈ H, and let T(A) = S = [〈α, εS〉;S0, ..., Sl−1] and T(B) = T = [〈β, εT 〉;T0, ..., Tk−1]. We
are using [〈α, εS〉;S0, ..., Sl−1] to denote the tree with a root labeled 〈α, εS〉 and l branches S0, ..., Sl−1

coming out of the root.
The key observation is that A 4 B if and only if
• either τ(A) 4 τ(B) and IA ⊆ IB,
• or τ(A) 64 τ(B) and A ∈ IB.

where τ(A) = cf(α)εS and τ(B) = cf(β)εT . (This is proved in [Monb].) Then, we need the following
observation. Let {A0, ...,Al−1} be the set of minimal elements of Hα r IA, and let {B0, ...,Bk−1} be
the set of minimal elements of Hβ r IB. Then, IA ⊆ IB if and only if α 6 β and for each i < k, either
Bi 6∈ Hα or there exists j < l such that Aj 4 Bi. Also, A ∈ IB if and only if α < β and for each i < k,
Bi 64 A. So, we get the following definition.

Definition 3.11. Given S = [〈α, εS〉;S0, ..., Sl−1] and T = [〈β, εT 〉;T0, ..., Tk−1] ∈ Tr we let S 4 T if,
• either α 6 β, cf(α) 6 cf(β), εS = εT and ∀i < k (rk(Ti) > α ∨ ∃j < l(Sj 4 Ti)),
• or α < β, (cf(α) > cf(β) ∨ εS 6= εT ) and ∀i < k (Ti 64 S).

(Given a T ∈ Tr , we use rk(T ) to denote the ordinal that is labeling the root of T . So, if T is as
above, rk(T ) = β.)

3.2.2. The class of invariants. Now we are interested in characterizing the finite sequences of finite
trees with labels in ON × {+,−} which belong to In. This characterization is based on Proposition
3.12 where we characterize the finite trees with labels in ON × {+,−} which belong to Tr . All the
conditions in these characterizations but one can be checked using a finite algorithm, namely 3.12.(4),
which requires the computation of the cofinality of an ideal. This condition always holds when we
are dealing with countable linear orderings. So, we do have a characterization of the elements of
Inω1 = {Inv(L) : L ∈ S & rkH(L) < ω1} via a finite algorithm. This will be very useful in the next
section.

Given an ordinal α and T0, ..., Tk−1 ∈ Tr , let Iα
T0,...,Tk−1

= {S ∈ Tr : rk(S) < α & ∀i < k(Ti 64 S)}.
In other words, Iα

T0,...,Tk−1
is the ideal of Trα = {T ∈ Tr : rk(T ) < α} which has T0, ..., Tk as the set of

minimal elements of its complement. Given and ideal I ⊂ Tr , let rk(I) = sup{rk(T ) + 1 : T ∈ I} and
we let cf(I) be the least cardinal such that there is a cofinal subset of I of that cardinality.

Proposition 3.12. [Monb] A tree T = [〈α, ε〉;T0, ..., Tk−1] with labels in ON × {+,−} belongs to Tr
if and only if

(1) for each i, Ti ∈ Tr and rk(Ti) < α;
(2) T0, .., Tk−1 are mutually 4-incomparable;
(3) rk(Iα

T0,...,Tk−1
) = α;
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(4) cf(Iα
T0,...,Tk−1

) ∨ ω = cf(α) ∨ ω;
(5) for no i, τ(Ti) ≺ τ(T ).

Notation 3.13. If T = [〈α, ε〉;T0, ..., Tk−1] ∈ Tr , we let IT = Iα
T0,...,Tk−1

.

Proposition 3.14. [Monb] Let J = 〈T0, ..., Tk〉 ∈ Tr<ω. Then, J ∈ In if and only if for no i < k we
have that

(1) either εi = − and Ti+1 ∈ ITi
,

(2) or εi+1 = + and Ti ∈ ITi+1 .

4. Minimal linear orderings

In this section we show an extension of the following result of Hausdroff. The proofs are in [Monb].
In the countable case this follows from some lemmas in [Mon05b].

Theorem 4.1 (Hausdorff, see [Ros82]). Let κ be a regular cardinal and L a scattered linear ordering.
Then, κ 6 |L| if and only if either κ 4 L or κ∗ 4 L.

Since a scattered linear ordering has rank > κ if and only if it has size > κ, it follows that {κ, κ∗} ⊂ S,
is the set of minimal equimorphism types of rank κ. For each ordinal α, since S is well-quasi-ordered,
there exists a finite set Fα of minimal equimorphism types of rank α. We explicitly define the elements
of Fα for each α.

Definition 4.2. [Monb] Given an indecomposable ordinal α > 1, and two signs ε0, ε1 ∈ {+,−}, we
define an equimorphism type lin(α, ε0, ε1) as follows. Let {αγ : γ < cf(α)} be an increasing sequence
cofinal in α. Define

lin(α, ε0, ε1) =
∑

γ∈cf(α)ε1

(ωαγ )ε0 .

Observe that, up to equimorphism, this definition is independent of the cofinal sequence chosen. For
example, lin(ωω,+,−) = ...+ ωωn

+ ...+ ωω2
+ ωω and lin(α,+,+) = ωα.

For α indecomposable, let

F̄α = {lin(α,+,+), lin(α,+,−), lin(α,−,+), lin(α,−,−)}.

We also let F̄1 = {ω, ω∗}.
Now, consider δ, an ordinal with Cantor normal form δ = ωα0 + ...+ ωαk−1 where α0 > α1 > ... >

αk−1. Then, let

F̄δ = {L0 · L1 · ... · Lk−1 : ∀i < k(Li ∈ F̄ωαi )}.

Proposition 4.3. [Monb] Let L ∈ S and δ be an ordinal. Then,

δ 6 rk(L) ⇔ (∃A ∈ F̄δ) A 4 L.

This only shows that the set of minimal scatterd equimorphism types of rank δ is included in F̄δ.
Note, for example, that when κ is a regular cardinal κ = lin(κ,+,+) ≺ lin(κ,−,+). We define Fδ by
picking out the minimal elements of F̄δ.

Definition 4.4. Let δ be an ordinal with Cantor normal form δ = ωα0 + ... + ωαk where α0 > α1 >
... > αk. Let Fδ be the set consisting of the equimorphism types of the form L0 · L1 · ... · Lk−1, where
for each i, Li = lin(ωαi , εi,0, εi,1) and

(1) if ωαi is a regular cardinal, then εi,0 = εi,1,
(2) if ωαi+1 > cf(ωαi), then εi,1 = εi+1,0.

Theorem 4.5. [Monb] For each ordinal δ, Fδ is the set of minimal equimorphism types of rank δ.
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5. Up to equimorphism, hyperarithmetic is computable

Computable Mathematics deals with the computable aspects of mathematical theorems and objects.
The question “given a mathematical structure, which is the simplest way to represent it?” is of great
importance in this area. Part of our work in Computable Mathematics is related to this question.

The way we present linear ordering, and in particular well-orderings, is by a pair 〈L,6
L
〉, where

L ⊆ ω and 6
L
⊆ ω × ω. So, it makes sense to talk about computable or hyperarithmetic presentations

of a linear ordering. We only deal with countable linear orderings.

Clifford Spector proved the following well known classical theorem in Computable Mathematics.

Theorem 5.1. [Spe55] Every hyperarithmetic well-ordering is isomorphic to a computable one.

In less technical terms this says that, if an ordinal has a representation of a certain complexity
(hyperarithmetic, which is quite high), it has a very simple (computable) representation.

We prove a generalization of Spector’s result to all countable linear orderings. Before explaining our
result we give the basic definitions on hyperarithmetic theory. Standard references for Hyperarithmetic
Theory are [AK00] and [Sac90].

5.1. Hyperarithmetic Sets. We give different equivalent definitions of ωCK
1 and the class of hy-

perarithmetic sets to emphasize that these concept are natural, but it is enough for the reader to
understand one of these definitions.

We say that an ordinal is computable if it has a computable presentation. It is not hard to observe
that computable ordinals form an initial segment of the class of ordinals. We use ωCK

1 to denote the
least non-computable ordinal, where CK stands for Church-Kleene. It follows from Spector’s theorem
above that ωCK

1 is also the least non-hyperarithmetic ordinal. It is also known that ωCK
1 is the least

admisible ordinal, that is, the least ordinal µ such that L(µ) is a model of Kripke-Platek set theory,
where L(µ) is set of Gödel constructible sets up to level µ, and Kripke-Platek set theory consists of the
axioms of ZFC, but with comprehension and replacement restricted to only ∆0 formulas (see [Sac90,
Chapter VII]).

Theorem 5.2. [Kle55, Ash86] Given X ⊆ ω, the following are equivalent
(1) X is computable in 0(α) for some computable ordinal α, where 0(α) is the αth iteration of the

Turing jump of 0.
(2) X ∈ ∆1

1, that is, there exists Σ1
1 formulas ψ and ϕ of second order arithmetic, such that

(∀n) n ∈ X ⇔ ψ(n)⇔ ¬ϕ(n).
(3) There is a computable infinitary formula ϕ such that X = {n : ϕ(n)}.
(4) X ∈ L(ωCK

1 ).

(A computable infinitary formula is a formula where infinite disjunctions and infinite conjunctions are
allowed, so long as they are taken over computably enumerable sets of computable infinitary formulas.
See [AK00, Chapter 7].)

Definition 5.3. When X ⊆ ω satisfies any of the conditions in the theorem above we say that X is
hyperarithmetic.

5.2. An extension of Spector’s result. The direct generalization of Theorem 5.1 to the class of
linear orderings does not hold. It is not the case that every linear ordering with a hyperarithmetic
presentation is isomorphic to a computable one. Feiner constructed in [Fei67] and [Fei70] (see also
[Dow98, Theorem 2.5]) a Π0

1 subset of Q that, as a linear ordering, is not isomorphic to a computable
one. Other examples were given later. It follows from the work of Lerman [Ler81] that for every
Turing degree a such that a′′ >T 0′′ there is a linear ordering of degree a without a computable
copy. This result was later extended, first to any non-computable computably enumerable degree a by
Jockusch and Soare [JS91], then to any non-computable ∆0

2 degree a by Downey [Dow98] and Seetapun
(unpublished), and finally to any non-computable degree a by Knight [AK00]. Many other results have
been proved about presentations of linear orderings; we refer the reader to [Dow98] for a survey on the
computable mathematics of linear orderings.

But there are other ways in which we can generalize Theorem 5.1. Observe that if a linear ordering L
is equimorphic to an ordinal α, then L and α are actually isomorphic. (It is clear that two equimorphic
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well orderings are isomorphic. Note that L has to be a well ordering because it is isomorphic to a subset
of α.) So, actually, we can state Theorem 5.1 as “every hyperarithmetic well ordering is equimorphic
to a computable linear ordering.” The main theorem of [Mon05b] is the following generalization of
Theorem 5.1.

Theorem 1.1. Every hyperarithmetic linear ordering is equimorphic to a computable one.

We will sketch a proof of this result below, but first we mention some related results. Greenberg
and Montalbán showed in [GM] that the theorem above is also true for other classes of structures, like
superatomic Boolean algebras, countable compact metric spaces and Abelian p-groups. The proofs for
superatomic Boolean algebras and countable compact metric spaces are just observations of previously
known results: Every superatomic Boolean algebra is the linear algebra of some ordinal and every
countable compact metric space comes from a natural metrization of some ordinal. The class of
equimorphism types of Abelian p-groups is not as simple. So a bit more work is required in this case,
although, not as much as for the case of linear orderings.

We note that the equimorphism between the hyperarithmetic and the computable linear ordering
in Theorem 1.1 does not need to be hyperarithmetic. However, this only happens in the case when
the linear ordering is not scattered, and hence equimorphic to Q. If L is computable in 0(α) and has
Hausdorff rank β, with α, β < ωCK

1 , then we can get the equimorphism to be computable in something
like 0(α+β+ω) (unpublished).

5.3. Idea of the proof. We now sketch the proof of Theorem 1.1. The whole proof can be find in
[Mon05b]. Here we use terminology that was not used in [Mon05b], since it was later developed in
[Monb].

The first step to prove Theorem 1.1 is to prove the following lemma.

Lemma 5.4. If L is a hyperarithmetic scattered linear ordering, then rkH(L) < ωCK
1 .

The proof of this lemma is a very standard overspill argument. The second step is the following
theorem.

Theorem 5.5. A scattered linear ordering has Hausdorff rank less than ωCK
1 if and only if it is

equimorphic to a computable linear ordering.

The direction from right to left follows easily from the lemma above. The other implication is the
hard one, and together with the lemma above, implies Theorem 1.1: Let L be a hyperarithmetic linear
ordering. If L is not scattered, it is equimorphic to Q which has a computable presentation. Otherwise,
by Lemma 5.4, L has Hausdorff rank less than ωCK

1 and then by Theorem 5.5 it is equimorphic to
a computable linear ordering. Moreover, using the relativized version of Lemma 5.4 we get that if L
is computable in X ⊆ ω and ωX

1 = ωCK
1 , or in particular if X is hyperarithmetically-low, then L is

equimorphic to a computable linear ordering. 1

The key point of the proof of Theorem 5.5 is to show the following result.

Proposition 5.6. Let α be a computable ordinal. Represent the ordinals which appear as labels in the
elements of Trα as elements of α. Then, Trα is a computable set. (Recall that Trα = {T ∈ Tr : rk(T ) <
α} = {T(L) : L ∈ Hα}.)

Sketch of the Proof: We use computable transfinite induction on α to show that Trα is uniformly
computable. Suppose that we know that Trα is computable; we want to show that Trα+1 is too. Given
a tree T = [〈α, ε〉;T0, ..., Tk−1] with labels in ON × {+,−}, we have to check that the conditions in
Proposition 3.12 are satisfied. Condition (4) is trivially satisfied since we are in the countable case.
The only condition that is not easy to check computably is (3), and here is where most of the work in
this proof goes. What we do is to define, uniformly computably in α, the finite set of minimal ideals of
Trα of rank α, and then to check whether an ideal has rank α all we have to do is to compare it with
one of these minimal ideals.

More precisely, uniformly in α, we define a finite set X1
α, ..., X

kα
α of finite antichains of Trα such that

Iα
X1

α
, ..., Iα

Xkα
α

are the minimal ideals of Trα of rank α. (Recall that Iα
X = {S ∈ Trα : ∀T ∈ X (T 64 S)}.)

1Liang Yu [Yu] has recently proved that this result is also true for any Σ1
1 linear ordering L.
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Then, given an ideal I ⊆ Trα, we have that

rk(I) = α ⇔ ∃i 6 kα (Iα
Xi

α
⊆ I).

Notice that checking whether Iα
Xi

α
⊆ Iα

T0,...,Tk−1
can be done computably:

Iα
Xi

α
⊆ Iα

T0,...,Tk−1
⇔ ∀j < k ∃S ∈ Xi

α (S 4 Tj).

The definition of {X1
α, ..., X

kα
α } is done in both [Mon05b] and [Monb], so we do not include it here.

The idea is similar to the one for the definition of minimal equimorphims types of a given Hausdroff
rank in Section 4. �

Now, to prove Theorem 5.5 we define a computable map lin(·) that assigns a linear ordering to each
element of Trα such that inv(lin(T )) = T . The definition of lin(·) is by computable transfinite recursion
on the rank of T . Given T = [〈β, ε〉;T0, ..., Tk−1] ∈ Trα, let {S0, S1, ....} be an computable enumeration
of Iβ

T0,...,Tk−1
. This computable enumeration exists because (Tr ,4) is computable. Then, if ε = +, let

lin(T ) = lin(S0) + (lin(S0) + lin(S1)) + (lin(S0) + lin(S1) + lin(S2)) + ...

and if ε = −, let

lin(T ) = ...+ (lin(S2) + lin(S1) + lin(S0)) + (lin(S1) + lin(S0)) + lin(S0).

This shows that every indecomposable equimorphism type of Hausdorff rank less than α has a
computable presentation, and this is for every α < ωCK

1 . Since every scattered linear ordering can be
written as a finite sum of indecomposable, this proves Theorem 5.5.

As a corollary we also get that if α is a computable ordinal, then 〈Sα,4〉 is computably presentable
[Mon05b, Corollary 4.3].

6. Reverse mathematics of Fräıssé’s conjecture

The main result of [Mon06], is the following one.

Theorem 6.1. The following are equivalent over RCA0:
(1) Fräıssé’s conjecture;
(2) The signed trees are well-quasi-ordered under 4;
(3) Every scattered linear ordering is equimorphic to a finite sum of h-indecomposables.

The following statement is also equivalent to the previous ones but over RCA∗

(4) Jullien’s classification of extendible linear orderings.

This result shows that Fräıssé’s conjecture is sufficient and necessary to prove basic results about
equimorphism types of linear orderings. This makes it an interesting system of second order arithmetic.

We start by describing the program of Reverse Mathematics. Then, we describe the statements
mentioned in the theorem above.

6.1. Reverse Mathematics. The questions of what axioms are necessary to do mathematics is of
great importance in Foundations of Mathematics and is the main question behind Friedman and Simp-
son’s program of Reverse Mathematics. Old known examples along this line of investigation are Euclid’s
question of whether the fifth postulate was necessary to do geometry and the question of the necessity
of the Axiom of Choice to do mathematics. To analyze this question formally it is necessary to fix a
logic system. Reverse Mathematics deals with subsystems of Z2, the system of second-order arithmetic.
Second-order Arithmetic, even though it is much weaker than set theory, is rich enough to be able to
express an important fragment of classical mathematics. This fragment includes number theory, cal-
culus, countable algebra, real and complex analysis, differential equations and combinatorics among
others. Almost all of mathematics that can be modeled with, or coded by, countable objects can be
done in Z2. The basic reference for this subject is [Sim99].

The idea of Reverse Mathematics is as follows. We start by fixing a basic system of axioms. The
most commonly used system is RCA0 which is closely related to Computable Mathematics. In RCA0,
the only sets we can assume exist are the ones that we can describe via an effective algorithm. Now,
given a theorem of “ordinary” mathematics, the question is what axioms do we need to add to the
basic system to prove this theorem. It is often the case in Reverse Mathematics that we can prove
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that a certain set of axioms is needed to prove a theorem by proving the axioms from the theorem
using the basic system. Many different system of axioms have been defined and studied, but a very
interesting fact is that most of the theorems that have been analyzed are equivalent over RCA0 to one
of five systems. These five systems are RCA0, WKL0, ACA0, ATR0 and Π1

1-CA0, listed in increasing
order of strength.

The language of second order arithmetic is the usual language of first order arithmetic (which
contains non-logical symbols 0, 1, +, × and 6) augmented with set variables and a membership
relation ∈. (We use the letters x, y, z, n,m, ... for number variables and capital letters X,Y, Z,A, ... for
set variables.) The axioms of Z2 are divided in three groups. First we have the Basic axioms which
say that the natural numbers form an ordered semiring. Then we have the Induction axioms. Given a
formula ϕ(x) of second-order arithmetic we have the axiom:

(IND(ϕ)) ϕ(0) & ∀x(ϕ(x)⇒ ϕ(x+ 1))⇒ ∀xϕ(x).

Last, we have the Comprehension axioms. These axioms are set existence axioms in the sense that
they say that sets with certain properties exist. Again, we have one for each formula ϕ(x):

(CA(ϕ)) ∃X∀x (x ∈ X ⇔ ϕ(x)).

If ϕ has free variables other than x, then we take IND(ϕ) and CA(ϕ) to be the universal closure of the
formulas shown above. Subsystems of Z2 are obtained by restricting the induction and comprehension
axioms to certain classes of formulas. The basic system RCA0 consist of the basic axioms, and the
schemes of Σ0

1-induction and ∆0
1-comprehension. Σ0

1-induction is the scheme of axioms that contains a
sentence IND(ϕ) for each Σ0

1 formula ϕ(x). (A formula ψ is Σ0
0 if it contains no set quantifiers and all

the first order quantifiers are bounded, that is, of the form either (∀y < t) or (∃y < t). A formula ϕ is
Σ0

1 if it is of the form ∃zψ(z), where ψ is a Σ0
0 formula.) The Recursive Comprehension Axiom scheme

or ∆0
1-comprehension consist of the axioms of the form

∀x(ϕ(x)⇔ ¬ψ(x))⇒ ∃X∀x (x ∈ X ⇔ ϕ(x)).

where ϕ and ψ are Σ0
1 formulas. Another important system is ACA0. Its axioms are the ones of

RCA0 plus the Arithmetic Comprehension Axiom scheme, which consist of the sentences CA(ϕ) for
arithmetic formulas ϕ(x). (A formula is arithmetic if it contains no second order quantifiers.) The
scheme of arithmetic comprehension is equivalent to the sentence that says that for every set X, there
exists a set X ′ which is the Turing jump of X. For other classes, Γ, of formulas, like Π1

1 for example,
the system Γ-CA0 is defined analogously. A system that will be important in this paper is ATR0. It
consist of RCA0 and the axiom scheme of Arithmetic Transfinite Recursion. The scheme of Arithmetic
Transfinite Recursion is a little technical so we omit the details. What it says is that arithmetic
comprehension can be iterated along any ordinal, which is equivalent to saying that the Turing jump
can be iterated along any ordinal. ATR0 is the natural subsystem of second order arithmetic in which
one can develop a decent theory of ordinals ([Sim99]). For example, ATR0 is equivalent to the fact that
any two ordinals are comparable.

All the systems we have described have restricted induction. The subindex 0 in the notation of a
system means that the induction scheme the system contains is Σ0

1-induction. If we drop the subindex
0, and for example get RCA or ATR, we are adding the Full induction scheme to the system. The Full
induction scheme consists of the sentences IND(ϕ), for all formulas ϕ(x). A subindex ∗, as in ATR∗,
indicates that the system has the scheme of Σ1

1-induction. (Σ1
1-induction is defined analogously to

Σ0
1-induction. A formula ϕ is Σ1

1 if it is of the form ∃Xψ(X), where ψ is an arithmetic formula.) When
this program started, RCA, which is slightly stronger than RCA0, was often used as the basic system.

It happens often that the analysis of theorems from the viewpoint of reverse math gives a deeper
understanding of the theorems and sometimes leads to new proofs. This is the case here.

6.2. Fräısé’s conjecture. A quasi-ordering (P,6
P
) is a well-quasi-ordering if, for every sequence

{xn}n∈N of elements of P , there exists i < j such that xi 6
P
xj . An equivalent definition of well-

quasi-ordering, that might be easier to visualize, is that 6
P

contains no infinite strictly descending
chains and no infinite antichains. The proof of the equivalence between the two definitions follows from
Ramsey’s theorem.
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Statement 6.2. Fräısé’s conjecture, which we denote by FRA, is the statement of second order arith-
metic that says that the countable linear orderings form a well-quasi-ordering under the relation of
embeddablity.

Roland Fräıssé conjectured in [Fra48] that there are no sequences of countable linear orderings which
are strictly descending under embeddablity. Although this statement is slightly different from FRA,
FRA became known as Fräıssé’s conjecture. Moreover, FRA is still known as Fräıssé’s conjecture even
though it is not a conjecture anymore. Richard Laver proved FRA in [Lav71] using Nash-Williams
complicated notion of better-quasi-ordering [NW68].

The theory of well-quasi-orderings has been of interest to people studying Reverse Mathematics
because it seems to require very strong systems compared with results from other areas of mathematics.
Many of the proofs use Π1

2-CA0. However, none of these theorems have been proved to be equivalent
to Π1

2-CA0 and for most of them the exact proof-theoretic strength is unknown. A very interesting
example is Kruskal’s theorem [Kru60] which says that the class of finite trees is well-quasi-ordered
under embeddablity. (The embeddability of trees used in Kruskal’s theorem is not the relation 4 we
defined for signed trees; this embedding has to be one-to-one and has to preserve gratest lower bounds.)
Harvey Friedman proved that Kruskal’s theorem can not be proved in ATR0. (See [Sim85] for a proof
of Friedman’s result and Rathjen and Weiermann [RW93] for an analysis of the exact proof-theoretic
strength of Kruskal’s theorem.) The reader can find a survey on the theory of well-quasi-orderings
from the viewpoint of reverse mathematics in [Mar05].

The exact proof-theoretic strength of FRA is also unknown. It is known that Laver’s proof of FRA
can be carried out in Π1

2-CA0, and that since FRA is a true Π1
2 statement, it cannot imply Π1

1-CA0.
Shore [Sho93] proved that the assumption that the class of well orderings is well-quasi-ordered under
embeddablity implies ATR0, getting as a corollary that FRA implies ATR0. But we still do not know
whether FRA could be proved using just ATR0 (or even Π1

1-CA0), as has been conjectured by Peter
Clote [Clo90], Stephen Simpson [Sim99, Remark X.3.31] and Alberto Marcone [Mar05]. The known
results are:

Π1
2-CA0

��

##FF
FF

FF
FF

FF

Π1
1-CA0

��
FRA

uujjjjjjj
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ATR0

6.3. Jullien’s Theorem on the extendibility of linear orderings. A linearization of a partial
ordering P = 〈P,6

P
〉 is a linear ordering 〈P,6

L
〉 such that ∀x, y ∈ P (x 6

P
y ⇒ x 6

L
y). A

linear ordering L is extendible2 if every countable partial ordering P which does not embed L has a
linearization which does not embed L. For example, the extendibility of ω∗ is a well known result and
it can be translated as every well-founded partial ordering has a well-ordered linearization. But for
instance, 2, the linear ordering with two elements, is not extendible. Other linear orderings which are
not extendible are the ones of the form 〈→,←〉. We say that L is of the form 〈→,←〉 if L can be
written as a sum of two linear orderings, A and B, where A is indecomposable to the right and B is
indecomposable to the left; for example L = ω+ω∗. The extendibility of η was proved by Bonnet and
Pouzet in [BP69] (see also [BP82, p. 140]).

With respect to the extendibility of linear orderings, people have been interested not only in its
reverse mathematical strength, but also in the effective content of certain theorems. For example,
Szpilrajn proved in [Szp30] that every partial ordering has a linearization. This can be done in an
effective way; that is, for every partial ordering we can effectively construct a linearization of it (see
[Dow98, Observation 6.1]). The effectiveness of the extendibility of ω∗ has also been studied: Rosenstein

2 This property is sometimes called weakly extendability and extendibility refers to the same property but considering
all partial orderings P, and not only the countable ones. A characterization of these linear orderings has been given by

Bonnet [BP82]. Since we are only interested in countable objects, we omit the word “weakly”. Other names given to
this property in the literature are enforceable and Szpilrajn.
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and Kierstead proved that every computable well-founded partial ordering has a computable well-
ordered linearization; and Rosenstein and Statman proved that there is a computable partial ordering
without computable descending sequences which has no computable linearization without computable
descending sequences. (For proofs of these results and other related ones see [Ros84], and see [Ros82]
for more background.) The proof theoretic strength of the fact that ω∗ is extendible was studied by
Downey, Hirschfeldt, Lempp and Solomon in [DHLS03]. They showed that the extendibility of ω∗

can be proved in ACA0, that it implies WKL0, and that it is not implied by WKL0. It is not known
whether it is equivalent to ACA0, or it is strictly in between WKL0 and ACA0. In that same paper they
studied the extendibility of ζ and η. They prove that the extendibility of ζ is equivalent to ATR0 over
RCA0. For η, they adapted Bonnet and Pouzet’s proof of its extendibility to work in Π1

2-CA0 and then
they give a modification of their proof, due to Howard Becker, that uses only Π1

1-CA0. Joseph Miller
(unpublished) proved that the extendibility of η implies WKL0 and that over Σ1

1-AC0, it implies ATR0.
We prove in [Mon06] that the extendibility of η is provable in ATR∗, which is strictly weaker than
Π1

1-CA0, using a completely new proof. Our proof is based on a general analysis of the extendibility of
h-indecomposable linear orderings and on the fact that if a partial ordering does not emebed η, there
is some h-indecomposable linear ordering that it does not embed either.

A characterization of exactly which linear orderings are extendible has been given by Jullien in
his Ph.D. thesis [Jul69]. Rod Downey and R. B. Remmel asked about the effective content of the
Bonnet-Jullien result (that here we call Jullien’s theorem) in [DR00, Question 4.1] and also in [Dow98,
Question 6.1]. In [DR00] they observe that Jullien’s proof requires Π1

2-CA0, and they mention that it
would be remarkable if Jullien’s theorem was equivalent to Π1

2-CA0. It follows from our results that
this is not the case because it is implied by RCA∗+FRA which does not imply Π1

2-CA0.
Jullien [Jul69] proved that, up to equimorphism, every scattered linear ordering has a unique minimal

decomposition, and then characterized the extendible linear orderings by putting conditions on their
minimal decompositions:

Statement 6.3. JUL(min-dec) is the statement that says that if 〈F1, ...,Fn〉 is a minimal decomposition
of L, then L is extendible if and only if there is no i such that either Fi = Fi+1 = 1 or Fi is
indecomposable to the right and Fi+1 is indecomposable to the left.

The problem with this statement is that, without knowing that minimal decompositions always ex-
ists, JUL(min-dec) is not enough to classify all the extendible linear orderings as Jullien did. So, from
the viewpoint of Reverse Mathematics, this is not a satisfactory formulation of Jullien’s classification
of the extendible linear orderings. We could say that Jullien’s theorem, as stated in [Jul69], is the con-
junction of JUL(min-dec) and the sentence that says that every scattered linear ordering has a minimal
decomposition. However the fact that every scattered linear ordering has a minimal decomposition is
already too strong; it is equivalent to FRA. We proved in [Mon06] that JUL(min-dec) is equivalent to
ATR∗ over RCA∗. This proof is divided in two parts. In one we proved that every h-indecomposable
linear ordering is extendible. Moreover, we prove that for all h-indecomposable linear orderings L,
any partial ordering P which does not embed L has a linearization hyperarithmetic in P ⊕ L which
does not embed L. Next we used this result to prove that every linear ordering which is a finite sum
of h-indecomposable ones satisfying the right properties is extendible. We also get that the lineariza-
tions can be taken to be hyperarithmetic in P ⊕ L. The fact that we are getting hyperarithmetic
linearizations not only is interesting in itself from the viewpoint of computable mathematics, but also
it is useful to reduce the complexity of some formulas we need to prove by induction. We use the fact
that existential quantification over the hyperarithmetic sets is, in certain cases, equivalent to universal
second order quantification. This allow us to transform some complicated formulas into Π1

1 equivalents
and then prove them by Σ1

1-induction.
Because of the problem we mentioned earlier, we study an alternative formulation, JUL, of Jullien’s

theorem. We find this formulation more natural than the original one, and it has the advantage that
it does not mention minimal decompositions.

Definition 6.4. A segment B of a linear ordering L = A + B + C is essential if whenever we have
L 4 A+ B′ + C for some linear ordering B′, it has to be the case that B 4 B′.

Statement 6.5. JUL is the statement: A scattered linear ordering L is extendible if and only if it
does not have an essential segment B which is either 2 or of the form 〈→,←〉.



14 ANTONIO MONTALBÁN

The left-to-right direction of JUL can be proved in RCA0; it is the other direction that is proof
theoretically strong. It is also not to hard to show that JUL follows from JUL(min-dec) and the
existence of minimal decompositions for every scattered linear ordering. Using this, we show that JUL
follows from FRA and Σ1

1-induction. We also prove that JUL implies FRA over RCA0, getting that JUL
and FRA are equivalent over RCA∗(recall that RCA∗ is RCA0 together with Σ1

1-induction). RCA∗ is still
a very weak system and, as RCA0 and RCA, is closely related to Computable mathematics. From our
work, one can still get that the amount of set existence axioms needed to prove JUL and FRA is the
same.

6.4. H-indecompsables and finite decompositions. The other two statements of Theorem 6.1
that we prove are equivalent to FRA are very useful when working with linear orderings. The fact that
every scattered linear ordering is equimorphic to a finite sum of h-indecomposables is very useful to
prove results about linear orderings, as for instance, to prove Jullien’s theorem. So, showing that the
finite decomposability of scattered linear orderings follows from Fräıssé’s conjecture was key to proving
Jullien’s theorem from FRA.

On the other hand, the statement that says that the signed trees are well-quasi-ordered is simpler
to deal with than FRA. We used it to show that Jullien’s theorem implies FRA. This statement might
be useful when studying the strength of Fräıssé’s conjecture.

7. Statements of hyperarithmetic analysis

RCA0 resembles Computable Mathematics in the sense that, when working in RCA0, all the sets
we can assume exist are the ones that are computable from the ones we already know exist. It
can be proved that the ω-models of RCA0 are exactly the ones whose second order part is closed
under Turing reduction and disjoint union, where the disjoint union of two sets X,Y ⊆ ω is the set
X ⊕ Y = {2n : n ∈ X} ∪ {2n + 1 : n ∈ Y }. The models of second order arithmetic whose first
order part is the standard one (ω, 0, 1,+,×), are called ω-models. We will identify these models with
their second order parts. The system of Arithmetic Comprehension, ACA0, has a similar behavior,
but with respect to arithmetic reducibility. The ω-models of ACA0 are exactly the ones whose second
order part is closed under arithmetic reduction and disjoint union. As are the classes of computable
sets and of arithmetic sets, the class of hyperarithmetic sets is a very natural one and enjoys many
closure properties. This is the class that will concern us in this section. A set X is hyperarithmeticaly
reducible to (or hyperarithmetic in) a set Y if it is ∆1

1(Y ). We could also relativize the other conditions
in Proposition 5.2 to get alternative definitions. We say that an ω-model is hyperarithmetically closed
if it is closed under disjoint union and for every X,Y ⊆ ω, if X is hyperarithmetically reducible to Y
and Y is in the model, then X is in the model too.

Definition 7.1. A system of axioms of second order arithmetic T is a Theory of hyperarithmetic
analysis if

• it holds in HYP(Y) for every Y ⊆ ω, where HYP(Y) is the ω-model consisting of the sets
hyperarithmetic in Y ; and
• all its ω-models are hyperarithmetically closed.

Note that this is equivalent to say that every for every set Y ⊆ ω, HYP(Y) is the least ω-model of T
which contains Y , and that every ω-model of T is closed under disjoint unions.

In [Ste78, Section 5], Steel defines “theories of hyperarithmetic analysis” as the ones which have
HYP=HYP(∅) as their minimum ω-model. People were interested in these theories because they char-
acterize the class HYP . Our definition is a relativized version of the previous one, and it characterizes
not only HYP , but also the relation of hyperarithmetic reduction: When T is a theory of hyperarith-
metic analysis, a set X is hyperarithmetically reducible to a set Y if and only if every ω-model of T
which contains Y also contains X.

The bad news is that there is no theory whose ω-models are exactly the ones that are hyperarith-
metically closed. This follows from a more general result of Van Wesep [Van77, 2.2.2]: For every theory
T whose ω-models are all hyperarithmetically closed, there is another theory T ′ whose models are all
also hyperarithmetically closed and which has more ω-models than T does. Examples of known theo-
ries of hyperarithmetic analysis are the following schemes: Σ1

1-dependent choice (Σ1
1-DC0), Σ1

1-choice
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(Σ1
1-AC0), ∆1

1-comprehension (∆1
1-CA0), and weak-Σ1

1-choice (weak-Σ1
1-AC0). The unrelativezed ver-

sions of these results were proved by Harrison [Har68], Kreisel [Kre62], [Kle59] and [Sim99, Theorem
VIII.4.16]. As listed, these statements go from strongest to weakest, they all imply ACA0, and, except
for Σ1

1-DC0, they are implied by ATR0 (see [Sim99, VIII.3 and VIII.4]). Moreover, the implications
Σ1

1-DC0⇒Σ1
1-AC0, Σ1

1-AC0⇒∆1
1-CA0, and ∆1

1-CA0⇒weak-Σ1
1-AC0 can not be reversed as proved by

Friedman [Fri67], Steel [Ste78] and van Wesep [Van77], respectively.
We say that a sentence S is a sentence of hyperarithmetic analysis if RCA0+S is a theory of hyper-

arithmetic analysis. In [Fri75, Section II], Friedman mentions two sentences related to hyperarithmetic
analysis. These sentences, ABW (arithmetic Bolzano-Weierstrass) and SL (sequential limit systems),
use the concept of arithmetic set of reals, which is not used outside logic. Another previously known
sentence of hyperarithmetic analysis is Game-AC studied by Van Wesep [Van77]. He studied it in a
more general context than second order arithmetic. But if we restrict it to second order arithmetic, it
essentially says that if we have a sequence of open games such that player II has a winning strategy in
each of them, then there exists a sequence of strategies for all of them. He proved that, when restricted
to second order arithmetic, Game-AC is equivalent to Σ1

1-AC0.
However, to the author’s knowledge, no previously published mathematical theorem, which does not

mention concepts from logic, has been proved a statement of hyperarithmetic analysis. In [Monc] we
present an example of such a theorem. This theorem, that we call INDEC, was first proved by Jullien in
[Jul69, Theorem IV.3.3]. INDEC is published in English in, for example, [Fra00, 6.3.4(3)] and [Ros82,
Lemma 10.3].

Statement 7.2. Let INDEC be the statement: Every scattered indecomposable linear ordering is either
indecomposable to the right or indecomposable to the left.

In [Monc], not only did we prove that INDEC is a statement of hyperarithmetic analysis, but also
that, over RCA0, INDEC is implied by ∆1

1-CA0 and implies ACA0. Note that since HYP is the minimum
ω-model of INDEC, neither ACA0nor ACA0

+ can imply it.
Another interesting fact about INDEC is that it is incomparable over ACA0 to other natural state-

ments of mathematics. This is probably the first example of incomparable previously published purely
mathematical statements which are between ACA0 and ATR0. The statements we have in mind are
the following: The existence of elementary equivalence invariants for Boolean Algebras, and Ramsey
Theorem. The former statement was studied by Shore [Sho06]. He first analyzed how to work with
the statement in second order arithmetic and then proved that it is equivalent to ACA0

+ over RCA0.
(ACA0

+ is equivalent to ACA0 plus the sentence ∀X(X(ω) exists), where X(ω) is the ωth Turing jump
of X.) The latter statement, Ramsey’s Theorem, has been extensively studied in the context of reverse
mathematics (see [Sim99, III.7], [CJS01], or [Mil04, Chapter 7]). It is known that it is slightly stronger
than ACA0. (Essentially, the reason why these statements are incomparable with INDEC is that Σ1

1-AC0

is conservative over ACA0 for Π1
2 formulas [BS75].)

To prove that the ω-models of INDEC are hyperarithmetically closed, we start by considering an
ω-modelM of INDEC. Of course, we think ofM as set of subsets of ω. Then, we prove that for every
computable increasing sequence of ordinals {αn}n∈ω, converging to an computable ordinal α, we have
that if (∀n)0(αn) ∈M, then 0(α) ∈M. To prove this we use Ash and Knight’s machinery to construct
a specific linear ordering such that when we apply INDEC to it, we can deduce that 0(α) ∈ M. Then
we relativize and use effective transfinite induction to prove that for every set X ∈ M and every X-
computable ordinal α ∈ M, X(α) ∈ M. The Ash and Knight’s machinery to which we refer is related
to Ash’s 0(α)-priority arguments (see [AK00]).

8. Open questions

We now mention open questions and possible directions for further research related to the work
mentioned in this paper.

8.1. Equimorphism invariants.

8.1.1. Identification of the elements of Tr. In relation with the finite equimorphism invariants, the main
question we leave open is whether, given a tree with labels in ON ×{+,−}, we can tell if it belongs to
Tr via a finite manipulation of the symbols in the tree, using some basic operations on ordinals. Using
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our results, what is left to do is to find a procedure to check that an ideal in Tr has a certain cofinality,
the ideal being given by the minimal elements of its complement (see Proposition 3.12).

8.1.2. Operations on Tr. Then comes the question of which operations on Tr can be done via a finite
manipulation of symbols. An interesting operation is the product of linear orderings.

8.1.3. Invariants for Galvin’s Class. The same idea we used to define invariants for S can be used to
define equimorphism invariants for the class of σ-scattered linear orderings.

Definition 8.1. We say that L is σ-scattered if it is a countable union of scattered linear orderings.
Let M be the class of equimorphism types of σ-scattered linear orderings.

This class was first studied by Galvin. The reason why one can define invariants for this class as we
did for the class of scattered linear orderings is that versions of Theorems 2.1, 2.4 and 2.7 can be proved
for this class. (Each of these theorems is due either to Galvin or to Laver; see [Lav71].) In this case,
the labels of the trees should also include information about how the linear ordering is constructed
from smaller ones. In other words, the label at the root of T(L) should now include τ(L), which now is
an element of ON ×{+,−}∪{ηα,β : 〈α, β〉 is admissible}. Defining these invariants in a manner which
gives the same properties we had for the case of scattered linear orderings is not that straightforward.

8.1.4. Sharpness of Laver’s Theorem. When Laver proved Fräıssé’s conjecture, he not only proved that
S is well-quasi-ordered, but also that M is well-quasi-ordered. Another interesting question about the
σ-scattered linear orderings is whether Laver’s theorem is best possible. In other words, is it consistent
with ZFC that M is the well-founded part of the whole class of equimorphism types? (The well-founded
part of a partial ordering P is the set of x ∈ P such that there is no infinite descending sequence in
P starting at x. Note that Laver’s theorem says that M is included in the well-founded part of the
class of equimorphism types.) Using Laver’s theorem, we have that M is the well-founded part of the
whole class of equimorphism types if and only if the complement of M has no minimal equimorphism
type. It is known that is it consistent that M is not equal to this well-founded part. This follows from
Baumgartner [Bau73]. Recent results by Moore [Mooa, Moob] might be useful to solve this question.

8.2. Reverse mathematics.

8.2.1. Fräıssé’s conjecture. The main question that is left open is whether Fräıssé’s conjecture is equiv-
alent to ATR0. This question has been open for more than fifteen years. Our results make this question
even more interesting since we know now that Fräıssé’s conjecture is equivalent to many other state-
ments regarding linear orderings (or signed trees).

8.2.2. The coloring Theorem. In [Lav73], Laver used his previous work on FRA to prove some partition
results about scattered linear ordering. The theorem we are interested in, when restricted to the class
countable linear orderings, says the following.

Theorem 8.2. [Lav73] For every countable linear ordering L there exists a natural number nL such
that for every coloring of the elements of L with finitely many colors, there exists a subset of L which
is equimorphic to L and is colored with at most nL many colors.

In [Mon05a, Section 6.7] we show that Laver’s theorem above implies FRA over RCA0, but we do not
know whether the other implication holds or not. A short discussion about this reversal can also be
found in [Mon05a, Section 6.7]. We think that it is very likely that these two statements are equivalent.

Analyzing the proof-theoretic strength of the other partition results in [Lav73] could be interesting
too.

8.2.3. Extendibility. An interesting question left open in [DHLS03] is whether the extendibility of ω
is equivalent to ACA0, or is strictly in between WKL0 and ACA0. Recall that the extendibility of ω,
is equivalent to the statement that say that every well-founded partial ordering has a well-ordered
linearization.

With respect to the extendibility of η, putting together results of J. Miller (unpublished) and of
[Mon06], we get that it is equivalent to ATR0 over Σ1

1-AC0+Σ1
1-induction. This is not a very satisfactory

answer since the base system is too strong. So the question here is whether this equivalence can be
proved over a weaker system like RCA0.
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The equivalence between Jullien’s Theorem and Fräıssé’s conjecture was also not proved over RCA0.
It was proved over RCA∗, which is a very weak system, but it would still be better to have this
equivalence over RCA0.

8.3. Maximal order type of Hα. An important invariant related to well-quasi-orderings is the max-
imal order type. If W = (W,6

W
) is a well-quasi-ordering we let the length, or maximal order type of

W be
o(W) = sup{(W,6

L
) : where 6

L
is a linearization of W}.

Note that every linearization of a well-quasi-ordering is a well-ordering, so the supremum above is taken
over a set of ordinals. It was shown by de Jongh and Parikh [dJP77] that this supremum is actually
attained by a linearization of W, and this is why o(W) is referred as the maximum order type of W.
Another way of computing o(W) is by taking the well-founded-rank of Bad(W), the tree of finite bad
sequences of W:

Bad(W) = {〈x0, ..., xn−1〉 ∈W<ω : ∀i < j < n (xi 66W
xj)}.

Note that W is well-quasi-ordered if and only if Bad(W) is a well-founded tree. For a study on
computable maximal linearizations of well-quasi-orderings see [Mona].

Finding the maximal order type of Hα for each countable ordinal α is not only interesting in itself,
but it could also be very useful for the study of the proof-theoretic strength of FRA. For instance,
this is the way Rathjen and Weiermann [RW93] found the exact proof theoretic strength of Kruskal’s
theorem.

8.4. Hyperarithmetic analysis. A question left open in [Monc] is whether INDEC (defined in Section
7) is equivalent to one of the already known systems of hyperarithmetic analysis. The systems it could
be equivalent to are ∆1

1-CA0 and weak-Σ1
1-AC0.

Four other statements of hyperarithmetic analysis involving clopen games are introduced in [Monc],
but only some implications among them are proved. For example we look at the Determined-Game
Choice Axiom, which says that given a sequence of determined clopen games, there exists a sequence
of winning strategies for them. We prove that it is in between Σ1

1-AC0 and ∆1
1-CA0, but we do not

know if it is equivalent to either of those or if it is strictly in between.
Probably the most interesting question coming out of [Monc] is whether there are more natural

examples of statements of hyperarithmetic analysis.
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[Fra48] Roland Fräıssé. Sur la comparaison des types d’ordres. C. R. Acad. Sci. Paris, 226:1330–1331, 1948.
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