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Abstract: Studying the jump of structures [Montalbán 2009], [Puzarenko 2009], [Stu-
kachev 2009] that for each set X that computes the halting problem ∅′ there is a
countable family of sets which is Σ-definable precisely in the admissible sets A whose
jumps compute X. Moreover, for every countable family of sets which computes ∅′
there is a family of families of sets which is Σ-definable precisely in the admissible sets
A whose jumps compute X. These results, in fact, hold for the hierarchy of n-families
(families of families of families of . . . ).
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1 Introduction

The study of computational properties of families was started in [Kalimullin and

Puzarenko 2009] and [Kalimullin and Faizrahmanov 2016 (a)].

Definition 1. A 0-family is a subset of ω. For an integer n > 0, an n-family is

a countable set of (n− 1)-families.

According to [Kalimullin and Faizrahmanov 2016 (a)] the definition of computably

enumerable n-families is inductive: an n-family F is computably enumerable if



it’s elements, (n− 1)-families, are uniformly computably enumerable. More pre-

cisely we give this definition generalized to an arbitrary admissible sets (see

[Ershov 1996]):

Definition 2. [Kalimullin and Faizrahmanov 2016 (a)] A Σ-formula Φ (possi-

bly with parameters) defines a 0-family X ⊂ ω in an admissible set A if it

defines the the predicate x ∈ A. A Σ-formula Φ containing at least one param-

eter x defines an (n + 1)-family F, if there is a Σ-definable subset E ⊆ A such

that the formulae Φ(x), x ∈ E, define all elements of F and only them.

This definition extends the definition given in [Kalimullin and Puzarenko 2009].

We will see below that for the n-families it is enough to consider only special

cases of admissible sets: the hereditary finite structures HF(M), where M is

some algebraic structure. Let M be the domain of M and let σ be the language

of M. The domain of HF(M) is the class of HF (M) of hereditarily finite sets

over the M is defined by induction as follows:

– H0(M) = {∅};

– Hn+1(M) = Hn(M) ∪ Pω(Hn(M) ∪M);

– HF (M) =
⋃
n<ωHn(M) ∪M

(where Pω(X) denotes the set of all finite subsets of X). The structure HF(M) is

defined in a signature σ∪{U (1),∈(2), ∅} (called a hereditarily finite superstructure

over M), so that UHF(M) = M , ∈HF(M)⊆ (HF (M)) × (HF (M) \ M) is the

membership relation on HF(M), the constant symbol ∅ is interpreted as the

empty “set”, and symbols in the signature σ are interpreted in the same way as

on M.

For example we can code every n-family F into the admissible superstructure

HF(MF) over the special structure MF defined as follows.

– Let A be an arbitrary 0-family. A structure MA of signature σ = {r, I1, R2}
is defined by following:

the domain of the structure is representable as a disjoint union ω∪X, where

X = {xn : x ∈ A};

RMA = {〈n, n+ 1〉 : n ∈ ω}∪{〈xn, n〉 : n ∈ A}, rMA = 0 and IMA = {rMA}.

– Let F = {Si : i ∈ ω} be an n-family, n > 0. Following [Kalimullin and

Puzarenko 2009] we can code F into a structure MF of signature σ fix an

element rMF and consider a disjoint structures Mk
i of signature σ such that

for all k, i ∈ ω :

1. Mk
i
∼= MSi

(the parameter k ∈ ω guarantees that each Si is repeated

infinitely many times);



2. rMF 6∈ |Mk
i |;

The domain of the structure is a disjoint union
⋃
k,i |Mk

i | ∪ {rMF}.

For each x, y ∈ |MF| we define

R(x, y)⇔ x = (∃k, i) [x = rMF & y = rM
k
i ∨ RMk

i (x, y)].

Let IMF =
⋃
k,i I

Mk
i . By this inductive definition the elements of IMF were

appeared originally as rMA for sets (0-families) A ∈ · · · ∈ F. For i ∈ IMF we

denote the corresponding such set via Ai.

It is easy to check that every n-family F is Σ-definable in HF(MF). For example,

if n = 0 then a 0-family A ⊆ ω is defined by the formula saying that there is a

sequence

n0 = r, n1, n2, . . . , nx, p, q,

such that R(ni, ni+1) for all i < x, and R(nx, p), R(nx, q). Moreover, it follows

from [Kalimullin and Puzarenko 2009] that the Σ-definability of F is equivalent

to the Σ-definability of MF itself.

Proposition 3. [Kalimullin and Puzarenko 2009] An n-family F is Σ-definable

in a countable admissible set A iff the structure MF (and, therefore, HF(MF))

is Σ-interpretable in A.

Under Σ-interpretation of a structure M in a language σ we understand a Σ-

definable structure N in the language σ ∪ {∼}, where ∼ is a new congruence

relation on N such that N/ ∼∼= M.

Definition 4. Let F be an n-family and M be a structure. We say that F is Σ-

reducible to M (written F 6Σ M) if Σ-definable in HF(M). Similarly, M 6Σ F

if M is Σ-interpretable in HF(MF). If F and S are n- and m-families correspond-

ingly we say that F is Σ-reducible to S if F 6 MS. As usual, the relation ≡Σ
holds in the case of Σ-reductions from the left to the right and from the right

to the left.

Note that for an n-family F and the (n+ 1)-family {F} we have {F} ≡Σ F. By

this reason we can look on the n-family F as to an m-family for m > n.

If Y is arbitrary set and F is an n-family, n > 0, then we define by induction

the join of Y and F by letting

Y ⊕ F = {Y ⊕ S : S ∈ F}.

Recall that for the case n = 0 the standard notation is

Y ⊕A = {2x : x ∈ Y } ∪ {2x+ 1 : x ∈ A}.



For an n-family F and an integer k denote by Fk the n-family {k} ⊕ F. Clearly

that for every integer k and n-family F, we have F ≡Σ Fk. For n-families F,G

define the n-family

F ⊕ G = F0 ∪ G1.

It is easy to see that F ≤Σ F ⊕ G, G ≤Σ F ⊕ G, and

F ≤Σ M,G ≤Σ M =⇒ F ⊕ G ≤Σ M

for every structure M.

2 Jump and jump inversion on n-families

Definition 5. [Montalbán 2009], [Puzarenko 2009], [Stukachev 2009]. For any

structure M the structure J(M) = (HF(M), UΣ), where where UΣ is a ternary

Σ-predicate on HF(M) universal for the class of all binary Σ-predicates on

HF(M), is called a Σ-jump.

For any n-family F instead of J(MF) we simply write J(F). The concept of a Σ-

jump with respect to Σ-reducibility does not depend on the choice of a universal

Σ-predicate. Furthermore, this Σ-jump on structures having T -(e-)degrees acts

in the same way as a T -(e-)jump (see [Puzarenko 2009]). As in the classical case,

the Σ-jump operation satisfies the following:

1. A 6Σ J(A);

2. A 6Σ B⇒ J(A) 6Σ J(B).

We define Jn(A) by induction on n ∈ ω as follows: J0(A) = A, Jn+1(A) =

J(Jn(A)). It was shown in [Puzarenko 2009] that for any structures M and A of

a finite signature M is Σm+1-definable in A iff M 6Σ Jm(A).

Example 1. ([Puzarenko 2009]). For 0-familes A the jump J(A) is Σ-equivalent

to MJ(A), where J(A) is the the enumeration jump of A:

J(A) = K(A)⊕K(A) and K(A) = {n : n ∈ Φn(A)},

for the Gödel numbering of enumeration operators {Φn}n∈ω.

Example 2. It is easy to check that for the family InfCE of all infinite c.e.

sets we have J(InfCE) ≡Σ J(J(∅)) ≡e ∅′′. Indeed, ∅′′ is computably isomorphic

to {n : Wn is infinite}, and a c.e. set Wn is infinite if and only if the set the

(uniformly) computable set

Vn = {s : Wn,s 6= Wn,s+1}



is infinite, and so, if and only if F ⊆ Vn for some F ∈ InfCE. The predicate

F ⊆ Vn can be recognised by J(F ).

The inverse reduction J(InfCE) ≤Σ J(J(∅)) is obvious. Moreover, we can

prove slightly different. Suppose MJ(J(∅)) ≤Σ J(M) for some countable M, i.e.,

let {n : Wn is infinite} is Σ2-definable in HF(M). Then there is ∆0-formula Φ

such that

Wn is infinite ⇐⇒ HF(M) |= (∃a)(∀b)Φ(n, a, b)

Then the sequence

Vn,a =

{
Wn, if HF(M) |= (∀b)Φ(n, a, b);

ω, otherwise,

exhausting all infinite c.e. sets can be determined by the Σ-predicate

x ∈ Vn,a ⇐⇒ x ∈Wn ∨ x ∈ ω & (∃b)¬Φ(n, a, b).

This allows to provide the reducibility MInfCE ≤Σ M for every countable M

such that J(J(∅)) ≤Σ M, i.e. the 1-family InfCE is the the least jump inversion

for the 0-family J(J(∅)).
Let us look for such least jump inversion for any n-family F. For each n-family

F, recursively define a finitary (n+ 1)-family E(F):

E(F) =

{
H1 ∪ {{2x} : x ∈ A}, if n = 0 and F = A ⊆ ω,
Hn+1 ∪ {E(S) : S ∈ F0}, if n > 0,

where H1 = {{2n, 2n + 1} : n ∈ ω} and Hn+1 = {Hn}. This is very simi-

lar to a definitions in [Kalimullin and Puzarenko 2009] and [Faizrahmanov and

Kalimullin 2016 (b), (c)].

According to the following theorem we will call E(F) as the least Σ-jump

inversion for F (meaning that in fact it is an inversion of J(∅)⊕ F).

Theorem 6. For any n-family F the (n+1)-family E(F) is a least jump inversion

of F. Namely,

1) F 6Σ J(E(F));

2) for each countable structure B of a finite signature E(F) 6Σ B if F 6Σ
J(B).

3) J(E(F)) 6Σ J(∅)⊕ F.

Proof. 1) To show that F 6Σ J(E(F)) fix a structure A ∼= ME(F) and define a

Σ2-subset M of HF(A), constant rM ∈M and ∆2-predicates IM, RM on M such

that the structure M = 〈M ; rM, IM, RM〉 is isomorphic to MF0 . Let C be the set



of all x ∈ |A| for which there exists a finite sequence x0, x1, . . . , xk+1 such that

x0 = x, IA(xk+1), RA(xi, xi+1) for every i 6 k and for some n ∈ ω the singleton

{2n} is encoded under xk+1. Denote by D the set of all end vertices in C, i.e.

such elements x ∈ C that ¬RA(x, y) for every y ∈ C. Consider a binary relation

G on HF(A) consisting of all pairs 〈x, n〉 ∈ D × ω for which there is an y ∈ |A|
such that IA(y), RA(x, y) and the singleton {2n} is encoded under y. By the

definition of E(F) the relation G is Σ2-predicate on HF(A). Note that if we put

under every element x ∈ D a copy of structure MAx
, where Ax = {n : G(x, n)},

then the structure
⋃
x∈DMAx ∪(A � C) will be isomorphic to MF0 . To formalize

this we define

Bx = {〈x, 2n〉 : x ∈ D,n ∈ ω \ {0}}

for every x ∈ D and

Fx = {〈x, 2n+ 1〉 : G(x, n), n ∈ ω}.

Let M =
⋃
x∈D(Bx ∪ Fx) ∪ C. For every x, y ∈ M set RM(x, y) iff one of the

following conditions holds:

1. x, y ∈ C and RA(x, y);

2. y ∈ D and (∃z ∈ D) [x = 〈z, 1〉];

3. (∃n ∈ ω)(∃z ∈ D) [x = 〈z, 2n〉& y = 〈z, 2n+ 2〉];

4. (∃n ∈ ω)(∃z ∈ D) [x = 〈z, 2n+ 1〉& y = 〈z, 2n〉].

Finally, we define rM = rA ∈ C and IM(x) iff x ∈ D. Clearly thatM isΣ2-subset

of HF(A) and IM, RM are ∆2-predicates on M . Therefore, F 6Σ J(E(F)).

2) Let an n-family F is Σ-reducible to J(B) for some structure B of a finite

signature. Hence F0 6Σ J(B). Fix a Σ2-subset A of HF(B), constant rA and

∆2-predicates IA, RA, η on A such that η is the congruence relation on the

structure A = (A; rA, IA, RA) and A/η ∼= MF0 . Let Ψ be a ∆0-formula such

that for all x1, . . . , xn ∈ A and every m ∈ ω

HF(B) |= (∃a)(∀b)Ψ(a, b, x1, . . . , xn, k)

iff RA(rA, x1), RA(xi, xi+1) for every i, 1 6 i < n, and k belongs to the set

which is encoded under xn. To show that E(F) 6Σ B define a Σ-subset M

of HF(B), constant rM and Σ-predicates IM, RM, θ on M such that θ is the

congruence relation on the structure M = (M ; rM, IM, RM) and M/θ ∼= ME(F).

Let M =
n⋃
i=1

Mi ∪ {〈0, 0〉} ∪ L1 ∪ L2 ∪ L3, where

Mi = {〈〈x1, . . . , xi〉, 2i〉 : x1, . . . , xi ∈ HF (B)}, 1 6 i 6 n,

L1 = {〈〈k, i, x1, . . . , xn, a〉, 2j + 1〉 : k, i, j ∈ ω, x1, . . . , xn, a ∈ HF (B)},



L2 = {〈〈k, i, x1, . . . , xn, a, b〉, 2n+ 2〉 : k, i ∈ ω, x1, . . . , xn, a, b ∈ HF (B)},

L3 = {〈〈k, i, x1, . . . , xn, a, b〉, 2n+ 4〉 : k, i ∈ ω, x1, . . . , xn, a, b ∈ HF (B)}.

Set rM = 〈0, 0〉, RM(rM, 〈x, 2〉) for every x ∈ HF (B) and

RM(〈〈x1, . . . , xi〉, 2i〉, 〈〈x1, . . . , xi, xi+1〉, 2i+ 2〉), x1, . . . , xi, xi+1 ∈ HF (B)

for every i, 1 6 i < n. To continue the definition of M we put under every element

y = 〈〈x1, . . . , xn〉, 2n〉 ∈Mn a copy of structure E(Ay), where Ay is the set which

is encoded under element xn in the structure A/η if RA(xi, xi+1) for every i, i 6
i < n, and Ay = ∅ otherwise. More precisely, define IM(〈〈k, i, x1, . . . , xn, a〉, 1〉),

RM(〈〈x1, . . . , xn〉, 2n〉, 〈〈k, i, x1, . . . , xn, a〉, 1〉),

RM(〈〈k, i, x1, . . . , xn, a〉, 2j + 1〉, 〈〈k, i, x1, . . . , xn, a〉, 2j + 3〉),

RM(〈〈k, i, x1, . . . , xn, a, b〉, 2n+ 2〉, 〈〈k, i, x1, . . . , xn, a〉, 4k + 1〉)

for every k, i, j ∈ ω, x1, . . . , xn, a, b ∈ HF (B). Set

RM(〈〈k, i, x1, . . . , xn, a, b〉, 2n+ 4〉, 〈〈k, i, x1, . . . , xn, a〉, 4k + 1〉)

if HF(B) |= Ψ(a, b, x1, . . . , xn, k) and

RM(〈〈k, i, x1, . . . , xn, a, b〉, 2n+ 4〉, 〈〈k, i, x1, . . . , xn, a〉, 4k + 3〉)

otherwise. Finally, define xθy iff there is a z such that RM(x, z) and RM(y, z).

3) By Theorem 1 from [Stukachev 2009] there is a structure B such that

J(∅)⊕F ≡Σ J(B). Since F 6Σ J(B) we have E(F) 6Σ B. Therefore, J(E(F)) 6Σ
J(B) 6Σ J(∅)⊕ F. This ends the proof.

Corollary 7. For every n-families F and G

1. F ≤Σ G =⇒ E(F) ≤Σ E(G);

2. E(F ⊕ G) ≡ E(F)⊕ E(G).

Proof. 1. Follows from F ≤Σ G ≤Σ E(G).

2. Follows from E(A⊕B) = H1 ∪ {{2x : x ∈ A⊕B}} = H1 ∪ {{4x} : x ∈ A} ∪
{{4x+ 2} : x ∈ B}} ≡Σ {X ⊕ Y : X ∈ E(A) & Y ∈ E(B)} = E(A)⊕ E(B).

By the definition of E(·) the least double jump inversion E2(F) = E(E(F))

of an n-family F is an (n + 2)-family. But we know from [Faizrahmanov and

Kalimullin 2016 (b)] that under Turing reducibility of presentations of n-families

the least double jump is an (n+ 1)-family. For example, for the case of 0-family



A the least double jump E2(A) has the same Turing degrees of presentations of

ME2(A) as the degrees of presentations of MG, where G is the 1-family

G = {F ⊆ ω : F is finite} ∪ {{x} : x ∈ A}.

Below we show that for the case of Σ-reducibility we can not have an equivalence

between E2(F) and some (n+ 1)-family even for n = 0.

Theorem 8. For a set A we have

J(G) ≤Σ J(∅)⊕ E(A) =⇒ J(G) ≤Σ J(∅)

and, therefore, for a set a set A /∈ Σ0
3 we have J(G) 6≡Σ J(∅) ⊕ E(A) for every

1-family G.

Proof. (Sketch) Let us look on the jump of J(G) = J(MG) for 1-families G.

Due [Kalimullin and Puzarenko 2009] all Σ-predicates in MG can be encoded in

the sets

A1 ⊕A2 ⊕ · · · ⊕Am ⊕ E(G),

where Ai ∈ G and the set E(G) = {u : (∃A ∈ G) [Du ⊆ A]} codes the ∃-theory

of MG. But the family of jumps of these sets can not fully represent the jump

of the whole G since we need to keep the information when a jump for a tuple

A1, . . . , Am is an extension of the jump for a tuple A1, . . . , Am, Am+1. It is more

easily to identify J(G) up to ≡Σ with the following structure J(G) in the language

σ = {r, I1, R2, ◦2}.
Consider the families

K(G) = {J(A) : A ∈ E(G)⊕ G} and

M(G) = {J(A) : A ∈ 〈E(G)⊕ G〉⊕},

where 〈·〉⊕ is the ⊕-closure of a class of sets.

Fix a structures K ∼= MK(G) and M ∼= MM(G) such that

|K| ∩ |M| = {rK} = {rM}.

Let |J(G)| = |K| ∪ |M|, rJ(G) = rK and

IJ(G)(x) ⇐⇒ IK(x) ∨ IM(x),

RJ(G)(x, y) ⇐⇒ RK(x, y) ∨ RM(x, y),

IJ(G)(x) ⇐⇒ IK(x)

for all x, y ∈ |J(G)|. The binary operation ◦ is defined on IJ(G) by such a way

that (IJ(G), ◦) is a free non-associative algebra with the set of free generators

IJ(G) = IK such that

J(X) = Ai & J(Y ) = Aj =⇒ J(X ⊕ Y ) = Ai◦j .



Suppose that

J(G) ≤Σ J(∅)⊕ E(A) = {J(∅)⊕ {2n, 2n+ 1} : n ∈ ω} ∪ {J(∅)⊕ {2n} : n ∈ A}

by some Σ-formula Φ. For simplicity we assume that Φ has no parameters.

Note that the structure MJ(∅)⊕E(A) is bi-embeddable with MJ(∅)⊕H1
≤Σ

J(∅), where

J(∅)⊕H1 = {J(∅)⊕ {2n, 2n+ 1} : n ∈ ω}.

Moreover, they are densely bi-embeddable in the sense that for every finite sub-

structure M0 ⊆ MJ(∅)⊕E(A) there is a substructure M0 ⊆ M1 ⊆ MJ(∅)⊕E(A)

such that M1
∼= MJ(∅)⊕H1

, and vice versa. Considering the same formula Φ

in HF(MJ(∅)⊕H1
) we get a structure L densely bi-embeddabe with J(G). But

J(X) ⊆ J(Y ) implies J(X) = J(Y ) so that this is possible only if J(G) ∼= L.

Hence, J(G) ≡Σ J(G) ≤Σ J(∅).
In the case when Φ has parameters instead of H1 we should consider a 1-

family in the form

H1 ∪ {n1} ∪ {n2} ∪ · · · ∪ {nk},

where the finite collection n1, . . . , nk ∈ A depends from these parameters to

preserve the dense bi-embeddability property up to finitely many constants.

To prove the second part of the theorem suppose that J(G) ≡Σ J(∅)⊕ E(A).

Then by the first part J(G) ≤Σ J(∅). From another hand, by Theorem 6

A ≤Σ J(E(A)) ≤Σ J2(G) ≤Σ J2(∅) ≡Σ J2(∅),

so that A ∈ Σ0
3 .

Since J(E2(A)) ≡Σ J(∅)⊕ E(A) by Theorem 6 we have also the following

Corollary 9. For a set a set A /∈ Σ0
3 there is no 1-family G such that G ≡Σ

E2(A), so that the least double jump inversion of a 0-family A can not be replaced

by a 1-family.

Acknowledgments

The research of the first author was funded by the subsidy allocated to Kazan

Federal University for the state assignment in the sphere of scientific activities,

project no. 1.1515.2017/PP. The research of the third author was supported by

RFBR Grant No. 15-01-08252 .



References

[Montalbán 2009] Montalbán, A.; “Notes on the jump of a structure”. In Mathemat-
ical Theory and Computational Practice (eds K. Ambos-Spies, B. Lwe & W. Mer-
ckle), pp. 372-378. Lecture Notes in Computer Science, vol. 5635. Berlin, Germany:
Springer.

[Puzarenko 2009] Puzarenko, V. G.; “A certain reducibility on admissible sets”; Sib.
Mat. Zh. [in Russian], 50, 2 (2009), 415-429.

[Stukachev 2009] Stukachev, A. I.; “A jump inversion theorem for the semilattices of
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