The least $\boldsymbol{\Sigma}$-jump inversion theorem for \boldsymbol{n}-families

Marat Faizrahmanov
(N.I. Lobachevsky Institute of Mathematics and Mechanics Kazan (Volga Region) Federal University, Kazan, Russia
marat.faizrahmanov@gmail.com)
Antonio Montalbán
(University of California
Berkeley, USA
antonio@math.berkeley.edu)
Iskander Kalimullin
(N.I. Lobachevsky Institute of Mathematics and Mechanics Kazan (Volga Region) Federal University, Kazan, Russia
ikalimul@gmail.com)
Vadim Puzarenko
(S.L. Sobolev Institute of Mathematics
Novosibirsk, Russia
vagrig01973@mail.ru)

Abstract

Studying the jump of structures [Montalbán 2009], [Puzarenko 2009], [Stukachev 2009] that for each set X that computes the halting problem \emptyset^{\prime} there is a countable family of sets which is Σ-definable precisely in the admissible sets \mathbb{A} whose jumps compute X. Moreover, for every countable family of sets which computes \emptyset^{\prime} there is a family of families of sets which is Σ-definable precisely in the admissible sets \mathbb{A} whose jumps compute X. These results, in fact, hold for the hierarchy of n-families (families of families of families of ...). Key Words: jump of structure, enumeration jump, Σ-jump, Σ-reducibility, countable family, n-family Category: F.1.1., F.1.2., F.4.1.

1 Introduction

The study of computational properties of families was started in [Kalimullin and Puzarenko 2009] and [Kalimullin and Faizrahmanov 2016 (a)].

Definition 1. A 0 -family is a subset of ω. For an integer $n>0$, an n-family is a countable set of $(n-1)$-families.

According to [Kalimullin and Faizrahmanov 2016 (a)] the definition of computably enumerable n-families is inductive: an n-family \mathcal{F} is computably enumerable if
it's elements, $(n-1)$-families, are uniformly computably enumerable. More precisely we give this definition generalized to an arbitrary admissible sets (see [Ershov 1996]):

Definition 2. [Kalimullin and Faizrahmanov 2016 (a)] A Σ-formula Φ (possibly with parameters) defines a 0 -family $X \subset \omega$ in an admissible set \mathbb{A} if it defines the the predicate $x \in A$. A Σ-formula Φ containing at least one parameter x defines an $(n+1)$-family \mathcal{F}, if there is a Σ-definable subset $E \subseteq \mathbb{A}$ such that the formulae $\Phi(x), x \in E$, define all elements of \mathcal{F} and only them.

This definition extends the definition given in [Kalimullin and Puzarenko 2009].
We will see below that for the n-families it is enough to consider only special cases of admissible sets: the hereditary finite structures $\mathbb{H} \mathbb{F}(\mathfrak{M})$, where \mathfrak{M} is some algebraic structure. Let M be the domain of \mathfrak{M} and let σ be the language of \mathfrak{M}. The domain of $\mathbb{H} \mathbb{F}(\mathfrak{M})$ is the class of $\operatorname{HF}(M)$ of hereditarily finite sets over the M is defined by induction as follows:
$-H_{0}(M)=\{\emptyset\} ;$
$-H_{n+1}(M)=H_{n}(M) \cup \mathcal{P}_{\omega}\left(H_{n}(M) \cup M\right) ;$
$-H F(M)=\bigcup_{n<\omega} H_{n}(M) \cup M$
(where $P_{\omega}(X)$ denotes the set of all finite subsets of $\left.X\right)$. The structure $\mathbb{H} \mathbb{F}(\mathfrak{M})$ is defined in a signature $\sigma \cup\left\{U^{(1)}, \in^{(2)}, \emptyset\right\}$ (called a hereditarily finite superstructure over $\mathfrak{M})$, so that $U^{\mathbb{H} \mathbb{F}(\mathfrak{M})}=M, \in^{\mathbb{H} \mathbb{F}(\mathfrak{M})} \subseteq(H F(M)) \times(H F(M) \backslash M)$ is the membership relation on $\mathbb{H} \mathbb{F}(\mathfrak{M})$, the constant symbol \emptyset is interpreted as the empty "set", and symbols in the signature σ are interpreted in the same way as on \mathfrak{M}.

For example we can code every n-family \mathcal{F} into the admissible superstructure $\mathbb{H} \mathbb{F}\left(\mathfrak{M}_{\mathcal{F}}\right)$ over the special structure $\mathfrak{M}_{\mathcal{F}}$ defined as follows.

- Let A be an arbitrary 0-family. A structure \mathfrak{M}_{A} of signature $\sigma=\left\{r, I^{1}, R^{2}\right\}$ is defined by following:
the domain of the structure is representable as a disjoint union $\omega \cup X$, where $X=\left\{x_{n}: x \in A\right\} ;$
$R^{\mathfrak{M}_{A}}=\{\langle n, n+1\rangle: n \in \omega\} \cup\left\{\left\langle x_{n}, n\right\rangle: n \in A\right\}, r^{\mathfrak{M}_{A}}=0$ and $I^{\mathfrak{M}_{A}}=\left\{r^{\mathfrak{M}_{A}}\right\}$.
- Let $\mathcal{F}=\left\{\mathcal{S}_{i}: i \in \omega\right\}$ be an n-family, $n>0$. Following [Kalimullin and Puzarenko 2009] we can code \mathcal{F} into a structure $\mathfrak{M}_{\mathcal{F}}$ of signature σ fix an element $r^{\mathfrak{M}_{\mathcal{F}}}$ and consider a disjoint structures \mathfrak{M}_{i}^{k} of signature σ such that for all $k, i \in \omega$:

1. $\mathfrak{M}_{i}^{k} \cong \mathfrak{M}_{\mathcal{S}_{i}}$ (the parameter $k \in \omega$ guarantees that each \mathcal{S}_{i} is repeated infinitely many times);

$$
\text { 2. } r^{\mathfrak{M}_{\mathcal{F}}} \notin\left|\mathfrak{M}_{i}^{k}\right| ;
$$

The domain of the structure is a disjoint union $\bigcup_{k, i}\left|\mathfrak{M}_{i}^{k}\right| \cup\left\{r^{\mathfrak{M}_{\mathcal{F}}}\right\}$.
For each $x, y \in\left|\mathfrak{M}_{\mathcal{F}}\right|$ we define

$$
R(x, y) \Leftrightarrow x=(\exists k, i)\left[x=r^{\mathfrak{M}_{\mathcal{F}}} \& y=r^{\mathfrak{M}_{i}^{k}} \vee R^{\mathfrak{M}_{i}^{k}}(x, y)\right]
$$

Let $I^{\mathfrak{M}_{\mathcal{F}}}=\bigcup_{k, i} I^{\mathfrak{M}_{i}^{k}}$. By this inductive definition the elements of $I^{\mathfrak{M}_{\mathcal{F}}}$ were appeared originally as $r^{\mathfrak{M}_{A}}$ for sets (0 -families) $A \in \cdots \in \mathcal{F}$. For $i \in I^{\mathfrak{M}_{\mathcal{F}}}$ we denote the corresponding such set via A_{i}.

It is easy to check that every n-family \mathcal{F} is Σ-definable in $\mathbb{H} \mathbb{F}\left(\mathfrak{M}_{\mathcal{F}}\right)$. For example, if $n=0$ then a 0 -family $A \subseteq \omega$ is defined by the formula saying that there is a sequence

$$
n_{0}=r, n_{1}, n_{2}, \ldots, n_{x}, p, q
$$

such that $R\left(n_{i}, n_{i+1}\right)$ for all $i<x$, and $R\left(n_{x}, p\right), R\left(n_{x}, q\right)$. Moreover, it follows from [Kalimullin and Puzarenko 2009] that the Σ-definability of \mathcal{F} is equivalent to the Σ-definability of $\mathfrak{M}_{\mathcal{F}}$ itself.

Proposition 3. [Kalimullin and Puzarenko 2009] An n-family \mathcal{F} is Σ-definable in a countable admissible set \mathbb{A} iff the structure $\mathfrak{M}_{\mathcal{F}}$ (and, therefore, $\mathbb{H} \mathbb{F}\left(\mathfrak{M}_{\mathcal{F}}\right)$) is Σ-interpretable in \mathbb{A}.

Under Σ-interpretation of a structure \mathfrak{M} in a language σ we understand a Σ definable structure \mathfrak{N} in the language $\sigma \cup\{\sim\}$, where \sim is a new congruence relation on \mathfrak{N} such that $\mathfrak{N} / \sim \cong \mathfrak{M}$.

Definition 4. Let \mathcal{F} be an n-family and \mathfrak{M} be a structure. We say that \mathcal{F} is Σ reducible to \mathfrak{M} (written $\mathcal{F} \leqslant_{\Sigma} \mathfrak{M}$) if Σ-definable in $\mathbb{H} \mathbb{F}(\mathfrak{M})$. Similarly, $\mathfrak{M} \leqslant_{\Sigma} \mathcal{F}$ if \mathfrak{M} is Σ-interpretable in $\mathbb{H F}\left(\mathfrak{M}_{\mathcal{F}}\right)$. If \mathcal{F} and \mathcal{S} are n - and m-families correspondingly we say that \mathcal{F} is Σ-reducible to \mathcal{S} if $\mathcal{F} \leqslant \mathfrak{M}_{\mathcal{S}}$. As usual, the relation \equiv_{Σ} holds in the case of Σ-reductions from the left to the right and from the right to the left.

Note that for an n-family \mathcal{F} and the $(n+1)$-family $\{\mathcal{F}\}$ we have $\{\mathcal{F}\} \equiv_{\Sigma} \mathcal{F}$. By this reason we can look on the n-family \mathcal{F} as to an m-family for $m>n$.

If Y is arbitrary set and \mathcal{F} is an n-family, $n>0$, then we define by induction the join of Y and \mathcal{F} by letting

$$
Y \oplus \mathcal{F}=\{Y \oplus \mathcal{S}: \mathcal{S} \in \mathcal{F}\}
$$

Recall that for the case $n=0$ the standard notation is

$$
Y \oplus A=\{2 x: x \in Y\} \cup\{2 x+1: x \in A\}
$$

For an n-family \mathcal{F} and an integer k denote by \mathcal{F}^{k} the n-family $\{k\} \oplus \mathcal{F}$. Clearly that for every integer k and n-family \mathcal{F}, we have $\mathcal{F} \equiv_{\Sigma} \mathcal{F}^{k}$. For n-families \mathcal{F}, \mathcal{G} define the n-family

$$
\mathcal{F} \oplus \mathcal{G}=\mathcal{F}^{0} \cup \mathcal{G}^{1}
$$

It is easy to see that $\mathcal{F} \leq_{\Sigma} \mathcal{F} \oplus \mathcal{G}, \mathcal{G} \leq_{\Sigma} \mathcal{F} \oplus \mathcal{G}$, and

$$
\mathcal{F} \leq_{\Sigma} \mathfrak{M}, \mathcal{G} \leq_{\Sigma} \mathfrak{M} \Longrightarrow \mathcal{F} \oplus \mathcal{G} \leq_{\Sigma} \mathfrak{M}
$$

for every structure \mathfrak{M}.

2 Jump and jump inversion on n-families

Definition 5. [Montalbán 2009], [Puzarenko 2009], [Stukachev 2009]. For any structure \mathfrak{M} the structure $\mathcal{J}(\mathfrak{M})=\left(\mathbb{H} \mathbb{F}(\mathfrak{M}), U_{\Sigma}\right)$, where where U_{Σ} is a ternary Σ-predicate on $\mathbb{H F}(\mathfrak{M})$ universal for the class of all binary Σ-predicates on $\mathbb{H} \mathbb{F}(\mathfrak{M})$, is called a Σ-jump.

For any n-family \mathcal{F} instead of $\mathcal{J}\left(\mathfrak{M}_{\mathcal{F}}\right)$ we simply write $\mathcal{J}(\mathcal{F})$. The concept of a Σ jump with respect to Σ-reducibility does not depend on the choice of a universal Σ-predicate. Furthermore, this Σ-jump on structures having T-(e-)degrees acts in the same way as a T-(e-)jump (see [Puzarenko 2009]). As in the classical case, the Σ-jump operation satisfies the following:

1. $\mathfrak{A} \leqslant \Sigma \mathcal{J}(\mathfrak{A})$;
2. $\mathfrak{A} \leqslant{ }_{\Sigma} \mathfrak{B} \Rightarrow \mathcal{J}(\mathfrak{A}) \leqslant_{\Sigma} \mathcal{J}(\mathfrak{B})$.

We define $\mathfrak{J}^{n}(\mathfrak{A})$ by induction on $n \in \omega$ as follows: $\mathfrak{J}^{0}(\mathfrak{A})=\mathfrak{A}, \mathfrak{J}^{n+1}(\mathfrak{A})=$ $\mathcal{J}\left(\mathcal{J}^{n}(\mathfrak{A})\right)$. It was shown in [Puzarenko 2009] that for any structures \mathfrak{M} and \mathfrak{A} of a finite signature \mathfrak{M} is Σ_{m+1}-definable in \mathfrak{A} iff $\mathfrak{M} \leqslant \Sigma \mathcal{g}^{m}(\mathfrak{A})$.

Example 1. ([Puzarenko 2009]). For 0-familes A the jump $\mathcal{J}(A)$ is Σ-equivalent to $\mathfrak{M}_{J(A)}$, where $J(A)$ is the the enumeration jump of A :

$$
J(A)=K(A) \oplus \overline{K(A)} \text { and } K(A)=\left\{n: n \in \Phi_{n}(A)\right\}
$$

for the Gödel numbering of enumeration operators $\left\{\Phi_{n}\right\}_{n \in \omega}$.
Example 2. It is easy to check that for the family InfCE of all infinite c.e. sets we have $\mathcal{J}(\operatorname{InfCE}) \equiv_{\Sigma} J(J(\emptyset)) \equiv_{e} \overline{\emptyset^{\prime \prime}}$. Indeed, $\overline{\emptyset^{\prime \prime}}$ is computably isomorphic to $\left\{n: W_{n}\right.$ is infinite $\}$, and a c.e. set W_{n} is infinite if and only if the set the (uniformly) computable set

$$
V_{n}=\left\{s: W_{n, s} \neq W_{n, s+1}\right\}
$$

is infinite, and so, if and only if $F \subseteq V_{n}$ for some $F \in \operatorname{InfCE}$. The predicate $F \subseteq V_{n}$ can be recognised by $J(F)$.

The inverse reduction $\mathcal{J}(\operatorname{InfCE}) \leq_{\Sigma} J(J(\emptyset))$ is obvious. Moreover, we can prove slightly different. Suppose $\mathfrak{M}_{J(J(\emptyset))} \leq_{\Sigma} \mathcal{J}(\mathfrak{M})$ for some countable \mathfrak{M}, i.e., let $\left\{n: W_{n}\right.$ is infinite $\}$ is Σ_{2}-definable in $\mathbb{H} \mathbb{F}(\mathfrak{M})$. Then there is Δ_{0}-formula Φ such that

$$
W_{n} \text { is infinite } \Longleftrightarrow \mathbb{H} \mathbb{F}(\mathfrak{M}) \models(\exists a)(\forall b) \Phi(n, a, b)
$$

Then the sequence

$$
V_{n, a}= \begin{cases}W_{n}, & \text { if } \mathbb{H} \mathbb{F}(\mathfrak{M}) \models(\forall b) \Phi(n, a, b) ; \\ \omega, & \text { otherwise }\end{cases}
$$

exhausting all infinite c.e. sets can be determined by the Σ-predicate

$$
x \in V_{n, a} \Longleftrightarrow x \in W_{n} \vee x \in \omega \&(\exists b) \neg \Phi(n, a, b) .
$$

This allows to provide the reducibility $\mathfrak{M}_{\text {InfCE }} \leq_{\Sigma} \mathfrak{M}$ for every countable \mathfrak{M} such that $J(J(\emptyset)) \leq_{\Sigma} \mathfrak{M}$, i.e. the 1-family InfCE is the the least jump inversion for the 0-family $J(J(\emptyset))$.

Let us look for such least jump inversion for any n-family \mathcal{F}. For each n-family \mathcal{F}, recursively define a finitary $(n+1)$-family $\mathcal{E}(\mathcal{F})$:

$$
\mathcal{E}(\mathcal{F})= \begin{cases}\mathcal{H}_{1} \cup\{\{2 x\}: x \in A\}, & \text { if } n=0 \text { and } \mathcal{F}=A \subseteq \omega, \\ \mathcal{H}_{n+1} \cup\left\{\mathcal{E}(\mathcal{S}): \mathcal{S} \in \mathcal{F}^{0}\right\}, & \text { if } n>0,\end{cases}
$$

where $\mathcal{H}_{1}=\{\{2 n, 2 n+1\}: n \in \omega\}$ and $H_{n+1}=\left\{\mathcal{H}_{n}\right\}$. This is very similar to a definitions in [Kalimullin and Puzarenko 2009] and [Faizrahmanov and Kalimullin 2016 (b), (c)].

According to the following theorem we will call $\mathcal{E}(\mathcal{F})$ as the least Σ-jump inversion for \mathcal{F} (meaning that in fact it is an inversion of $J(\emptyset) \oplus \mathcal{F})$.

Theorem 6. For any n-family \mathcal{F} the $(n+1)$-family $\mathcal{E}(\mathcal{F})$ is a least jump inversion of \mathcal{F}. Namely,

1) $\mathcal{F} \leqslant_{\Sigma} \mathcal{J}(\mathcal{E}(\mathcal{F}))$;
2) for each countable structure \mathfrak{B} of a finite signature $\mathcal{E}(\mathcal{F}) \leqslant_{\Sigma} \mathfrak{B}$ if $\mathcal{F} \leqslant_{\Sigma}$ $\mathcal{J}(\mathfrak{B})$.
3) $\mathcal{J}(\mathcal{E}(\mathcal{F})) \leqslant \Sigma J(\emptyset) \oplus \mathcal{F}$.

Proof. 1) To show that $\mathcal{F} \leqslant_{\Sigma} \mathcal{J}(\mathcal{E}(\mathcal{F}))$ fix a structure $\mathfrak{A} \cong \mathfrak{M}_{\mathcal{E}(\mathcal{F})}$ and define a Σ_{2}-subset M of $\mathbb{H} \mathbb{F}(\mathfrak{A})$, constant $r^{\mathfrak{M}} \in M$ and Δ_{2}-predicates $I^{\mathfrak{M}}, R^{\mathfrak{M}}$ on M such that the structure $\mathfrak{M}=\left\langle M ; r^{\mathfrak{M}}, I^{\mathfrak{M}}, R^{\mathfrak{M}}\right\rangle$ is isomorphic to $\mathfrak{M}_{\mathcal{F} 0}$. Let C be the set
of all $x \in|\mathfrak{A}|$ for which there exists a finite sequence $x_{0}, x_{1}, \ldots, x_{k+1}$ such that $x_{0}=x, I^{\mathfrak{A}}\left(x_{k+1}\right), R^{\mathfrak{A}}\left(x_{i}, x_{i+1}\right)$ for every $i \leqslant k$ and for some $n \in \omega$ the singleton $\{2 n\}$ is encoded under x_{k+1}. Denote by D the set of all end vertices in C, i.e. such elements $x \in C$ that $\neg R^{\mathfrak{A}}(x, y)$ for every $y \in C$. Consider a binary relation G on $\mathbb{H} \mathbb{F}(\mathfrak{A})$ consisting of all pairs $\langle x, n\rangle \in D \times \omega$ for which there is an $y \in|\mathfrak{A}|$ such that $I^{\mathfrak{A}}(y), R^{\mathfrak{A}}(x, y)$ and the singleton $\{2 n\}$ is encoded under y. By the definition of $\mathcal{E}(\mathcal{F})$ the relation G is Σ_{2}-predicate on $\mathbb{H} \mathbb{F}(\mathfrak{A})$. Note that if we put under every element $x \in D$ a copy of structure $\mathfrak{M}_{A_{x}}$, where $A_{x}=\{n: G(x, n)\}$, then the structure $\bigcup_{x \in D} \mathfrak{M}_{A_{x}} \cup(\mathfrak{A} \upharpoonright C)$ will be isomorphic to $\mathfrak{M}_{\mathcal{F} 0}$. To formalize this we define

$$
B_{x}=\{\langle x, 2 n\rangle: x \in D, n \in \omega \backslash\{0\}\}
$$

for every $x \in D$ and

$$
F_{x}=\{\langle x, 2 n+1\rangle: G(x, n), n \in \omega\} .
$$

Let $M=\bigcup_{x \in D}\left(B_{x} \cup F_{x}\right) \cup C$. For every $x, y \in M$ set $R^{\mathfrak{M}}(x, y)$ iff one of the following conditions holds:

1. $x, y \in C$ and $R^{\mathfrak{A}}(x, y)$;
2. $y \in D$ and $(\exists z \in D)[x=\langle z, 1\rangle]$;
3. $(\exists n \in \omega)(\exists z \in D)[x=\langle z, 2 n\rangle \& y=\langle z, 2 n+2\rangle]$;
4. $(\exists n \in \omega)(\exists z \in D)[x=\langle z, 2 n+1\rangle \& y=\langle z, 2 n\rangle]$.

Finally, we define $r^{\mathfrak{M}}=r^{\mathfrak{A}} \in C$ and $I^{\mathfrak{M}}(x)$ iff $x \in D$. Clearly that M is Σ_{2}-subset of $\mathbb{H} \mathbb{F}(\mathfrak{A})$ and $I^{\mathfrak{M}}, R^{\mathfrak{M}}$ are Δ_{2}-predicates on M. Therefore, $\mathcal{F} \leqslant_{\Sigma} \mathcal{J}(\mathcal{E}(\mathcal{F}))$.
2) Let an n-family \mathcal{F} is Σ-reducible to $\mathcal{J}(\mathfrak{B})$ for some structure \mathfrak{B} of a finite signature. Hence $\mathcal{F}^{0} \leqslant \Sigma \mathcal{J}(\mathfrak{B})$. Fix a Σ_{2}-subset A of $\mathbb{H} \mathbb{F}(\mathfrak{B})$, constant $r^{\mathfrak{A}}$ and Δ_{2}-predicates $I^{\mathfrak{A}}, R^{\mathfrak{A}}, \eta$ on A such that η is the congruence relation on the structure $\mathfrak{A}=\left(A ; r^{\mathfrak{A}}, I^{\mathfrak{A}}, R^{\mathfrak{A}}\right)$ and $\mathfrak{A} / \eta \cong \mathfrak{M}_{\mathcal{F}^{0}}$. Let Ψ be a Δ_{0}-formula such that for all $x_{1}, \ldots, x_{n} \in A$ and every $m \in \omega$

$$
\mathbb{H} \mathbb{F}(\mathfrak{B}) \models(\exists a)(\forall b) \Psi\left(a, b, x_{1}, \ldots, x_{n}, k\right)
$$

iff $R^{\mathfrak{A}}\left(r^{\mathfrak{A}}, x_{1}\right), R^{\mathfrak{A}}\left(x_{i}, x_{i+1}\right)$ for every $i, 1 \leqslant i<n$, and k belongs to the set which is encoded under x_{n}. To show that $\mathcal{E}(\mathcal{F}) \leqslant \Sigma \mathfrak{B}$ define a Σ-subset M of $\mathbb{H} \mathbb{F}(\mathfrak{B})$, constant $r^{\mathfrak{M}}$ and Σ-predicates $I^{\mathfrak{M}}, R^{\mathfrak{M}}, \theta$ on M such that θ is the congruence relation on the structure $\mathfrak{M}=\left(M ; r^{\mathfrak{M}}, I^{\mathfrak{M}}, R^{\mathfrak{M}}\right)$ and $\mathfrak{M} / \theta \cong \mathfrak{M}_{\mathcal{E}(\mathcal{F})}$.
Let $M=\bigcup_{i=1}^{n} M_{i} \cup\{\langle 0,0\rangle\} \cup L_{1} \cup L_{2} \cup L_{3}$, where

$$
\begin{gathered}
M_{i}=\left\{\left\langle\left\langle x_{1}, \ldots, x_{i}\right\rangle, 2 i\right\rangle: x_{1}, \ldots, x_{i} \in H F(\mathfrak{B})\right\}, 1 \leqslant i \leqslant n, \\
L_{1}=\left\{\left\langle\left\langle k, i, x_{1}, \ldots, x_{n}, a\right\rangle, 2 j+1\right\rangle: k, i, j \in \omega, x_{1}, \ldots, x_{n}, a \in H F(\mathfrak{B})\right\},
\end{gathered}
$$

$$
\begin{aligned}
L_{2} & =\left\{\left\langle\left\langle k, i, x_{1}, \ldots, x_{n}, a, b\right\rangle, 2 n+2\right\rangle: k, i \in \omega, x_{1}, \ldots, x_{n}, a, b \in H F(\mathfrak{B})\right\} \\
L_{3} & =\left\{\left\langle\left\langle k, i, x_{1}, \ldots, x_{n}, a, b\right\rangle, 2 n+4\right\rangle: k, i \in \omega, x_{1}, \ldots, x_{n}, a, b \in H F(\mathfrak{B})\right\} .
\end{aligned}
$$

Set $r^{\mathfrak{M}}=\langle 0,0\rangle, R^{\mathfrak{M}}\left(r^{\mathfrak{M}},\langle x, 2\rangle\right)$ for every $x \in H F(\mathfrak{B})$ and

$$
R^{\mathfrak{M}}\left(\left\langle\left\langle x_{1}, \ldots, x_{i}\right\rangle, 2 i\right\rangle,\left\langle\left\langle x_{1}, \ldots, x_{i}, x_{i+1}\right\rangle, 2 i+2\right\rangle\right), x_{1}, \ldots, x_{i}, x_{i+1} \in H F(\mathfrak{B})
$$

for every $i, 1 \leqslant i<n$. To continue the definition of \mathfrak{M} we put under every element $y=\left\langle\left\langle x_{1}, \ldots, x_{n}\right\rangle, 2 n\right\rangle \in M_{n}$ a copy of structure $\mathcal{E}\left(A_{y}\right)$, where A_{y} is the set which is encoded under element x_{n} in the structure \mathfrak{A} / η if $R^{\mathfrak{A}}\left(x_{i}, x_{i+1}\right)$ for every $i, i \leqslant$ $i<n$, and $A_{y}=\emptyset$ otherwise. More precisely, define $I^{\mathfrak{M}}\left(\left\langle\left\langle k, i, x_{1}, \ldots, x_{n}, a\right\rangle, 1\right\rangle\right)$,

$$
\begin{gathered}
R^{\mathfrak{M}}\left(\left\langle\left\langle x_{1}, \ldots, x_{n}\right\rangle, 2 n\right\rangle,\left\langle\left\langle k, i, x_{1}, \ldots, x_{n}, a\right\rangle, 1\right\rangle\right), \\
R^{\mathfrak{M}}\left(\left\langle\left\langle k, i, x_{1}, \ldots, x_{n}, a\right\rangle, 2 j+1\right\rangle,\left\langle\left\langle k, i, x_{1}, \ldots, x_{n}, a\right\rangle, 2 j+3\right\rangle\right), \\
R^{\mathfrak{M}}\left(\left\langle\left\langle k, i, x_{1}, \ldots, x_{n}, a, b\right\rangle, 2 n+2\right\rangle,\left\langle\left\langle k, i, x_{1}, \ldots, x_{n}, a\right\rangle, 4 k+1\right\rangle\right)
\end{gathered}
$$

for every $k, i, j \in \omega, x_{1}, \ldots, x_{n}, a, b \in H F(\mathfrak{B})$. Set

$$
R^{\mathfrak{M}}\left(\left\langle\left\langle k, i, x_{1}, \ldots, x_{n}, a, b\right\rangle, 2 n+4\right\rangle,\left\langle\left\langle k, i, x_{1}, \ldots, x_{n}, a\right\rangle, 4 k+1\right\rangle\right)
$$

if $\mathbb{H P}(\mathfrak{B}) \models \Psi\left(a, b, x_{1}, \ldots, x_{n}, k\right)$ and

$$
R^{\mathfrak{M}}\left(\left\langle\left\langle k, i, x_{1}, \ldots, x_{n}, a, b\right\rangle, 2 n+4\right\rangle,\left\langle\left\langle k, i, x_{1}, \ldots, x_{n}, a\right\rangle, 4 k+3\right\rangle\right)
$$

otherwise. Finally, define $x \theta y$ iff there is a z such that $R^{\mathfrak{M}}(x, z)$ and $R^{\mathfrak{M}}(y, z)$.
3) By Theorem 1 from [Stukachev 2009] there is a structure \mathfrak{B} such that $J(\emptyset) \oplus \mathcal{F} \equiv_{\Sigma} \mathcal{J}(\mathfrak{B})$. Since $\mathcal{F} \leqslant_{\Sigma} \mathcal{J}(\mathfrak{B})$ we have $\mathcal{E}(\mathcal{F}) \leqslant_{\Sigma} \mathfrak{B}$. Therefore, $\mathcal{J}(\mathcal{E}(\mathcal{F})) \leqslant_{\Sigma}$ $\mathcal{J}(\mathfrak{B}) \leqslant{ }_{\Sigma} J(\emptyset) \oplus \mathcal{F}$. This ends the proof.

Corollary 7. For every n-families \mathcal{F} and \mathcal{G}

1. $\mathcal{F} \leq_{\Sigma} \mathcal{G} \Longrightarrow \mathcal{E}(\mathcal{F}) \leq_{\Sigma} \mathcal{E}(\mathcal{G})$;
2. $\mathcal{E}(\mathcal{F} \oplus \mathcal{G}) \equiv \mathcal{E}(\mathcal{F}) \oplus \mathcal{E}(\mathcal{G})$.

Proof. 1. Follows from $\mathcal{F} \leq_{\Sigma} \mathcal{G} \leq_{\Sigma} \mathcal{E}(\mathcal{G})$.
2. Follows from $\mathcal{E}(A \oplus B)=\mathcal{H}_{1} \cup\{\{2 x: x \in A \oplus B\}\}=\mathcal{H}_{1} \cup\{\{4 x\}: x \in A\} \cup$ $\{\{4 x+2\}: x \in B\}\} \equiv_{\Sigma}\{X \oplus Y: X \in \mathcal{E}(A) \& Y \in \mathcal{E}(B)\}=\mathcal{E}(A) \oplus \mathcal{E}(B)$.

By the definition of $\mathcal{E}(\cdot)$ the least double jump inversion $\mathcal{E}^{2}(\mathcal{F})=\mathcal{E}(\mathcal{E}(\mathcal{F}))$ of an n-family \mathcal{F} is an $(n+2)$-family. But we know from [Faizrahmanov and Kalimullin 2016 (b)] that under Turing reducibility of presentations of n-families the least double jump is an $(n+1)$-family. For example, for the case of 0 -family
A the least double jump $\mathcal{E}^{2}(A)$ has the same Turing degrees of presentations of $\mathfrak{M}_{\mathcal{E}^{2}(A)}$ as the degrees of presentations of $\mathfrak{M}_{\mathcal{G}}$, where \mathcal{G} is the 1-family

$$
\mathcal{G}=\{F \subseteq \omega: F \text { is finite }\} \cup\{\overline{\{x\}}: x \in A\} .
$$

Below we show that for the case of Σ-reducibility we can not have an equivalence between $\mathcal{E}^{2}(\mathcal{F})$ and some $(n+1)$-family even for $n=0$.

Theorem 8. For a set A we have

$$
\mathcal{J}(\mathcal{G}) \leq_{\Sigma} J(\emptyset) \oplus \mathcal{E}(A) \Longrightarrow \mathcal{J}(\mathcal{G}) \leq_{\Sigma} J(\emptyset)
$$

and, therefore, for a set a set $A \notin \Sigma_{3}^{0}$ we have $\mathcal{J}(\mathcal{G}) \not \equiv \Sigma_{\Sigma} J(\emptyset) \oplus \mathcal{E}(A)$ for every 1-family \mathcal{G}.

Proof. (Sketch) Let us look on the jump of $\mathcal{J}(\mathcal{G})=\mathcal{J}\left(\mathfrak{M}_{\mathcal{G}}\right)$ for 1-families \mathcal{G}. Due [Kalimullin and Puzarenko 2009] all Σ-predicates in $\mathfrak{M}_{\mathcal{G}}$ can be encoded in the sets

$$
A_{1} \oplus A_{2} \oplus \cdots \oplus A_{m} \oplus E(\mathcal{G})
$$

where $A_{i} \in \mathcal{G}$ and the set $E(\mathcal{G})=\left\{u:(\exists A \in \mathcal{G})\left[D_{u} \subseteq A\right]\right\}$ codes the \exists-theory of $\mathfrak{M}_{\mathcal{G}}$. But the family of jumps of these sets can not fully represent the jump of the whole \mathcal{G} since we need to keep the information when a jump for a tuple A_{1}, \ldots, A_{m} is an extension of the jump for a tuple $A_{1}, \ldots, A_{m}, A_{m+1}$. It is more easily to identify $\mathcal{J}(\mathcal{G})$ up to \equiv_{Σ} with the following structure $\mathfrak{J}(\mathcal{G})$ in the language $\sigma=\left\{r, I^{1}, R^{2}, \circ^{2}\right\}$.

Consider the families

$$
\begin{aligned}
& \mathcal{K}(\mathcal{G})=\{J(A): A \in E(\mathcal{G}) \oplus \mathcal{G}\} \text { and } \\
& \mathcal{M}(\mathcal{G})=\left\{J(A): A \in\langle E(\mathcal{G}) \oplus \mathcal{G}\rangle_{\oplus}\right\}
\end{aligned}
$$

where $\langle\cdot\rangle_{\oplus}$ is the \oplus-closure of a class of sets.
Fix a structures $\mathfrak{K} \cong \mathfrak{M}_{\mathcal{K}(\mathcal{G})}$ and $\mathfrak{M} \cong \mathfrak{M}_{\mathcal{M}(\mathcal{G})}$ such that

$$
|\mathfrak{K}| \cap|\mathfrak{M}|=\left\{r^{\mathfrak{K}}\right\}=\left\{r^{\mathfrak{M}}\right\}
$$

Let $|\mathfrak{J}(\mathcal{G})|=|\mathfrak{K}| \cup|\mathfrak{M}|, r^{\mathfrak{J}(\mathcal{G})}=r^{\mathfrak{K}}$ and

$$
\begin{aligned}
& I^{\mathfrak{J}(\mathcal{G})}(x) \Longleftrightarrow I^{\mathfrak{K}}(x) \vee I^{\mathfrak{M}}(x), \\
& R^{\mathfrak{J}(\mathcal{G})}(x, y) \Longleftrightarrow R^{\mathfrak{K}}(x, y) \vee R^{\mathfrak{M}}(x, y), \\
& I^{\mathfrak{J}(\mathcal{G})}(x) \Longleftrightarrow I^{\mathfrak{K}}(x)
\end{aligned}
$$

for all $x, y \in|\mathfrak{J}(\mathcal{G})|$. The binary operation \circ is defined on $I^{\mathfrak{J}(\mathcal{G})}$ by such a way that $\left(I^{\mathfrak{J}(\mathcal{G})}, \circ\right)$ is a free non-associative algebra with the set of free generators $I^{\mathfrak{J}(\mathcal{G})}=I^{\mathfrak{K}}$ such that

$$
J(X)=A_{i} \& J(Y)=A_{j} \Longrightarrow J(X \oplus Y)=A_{i \circ j}
$$

Suppose that
$\mathfrak{J}(\mathcal{G}) \leq_{\Sigma} J(\emptyset) \oplus \mathcal{E}(A)=\{J(\emptyset) \oplus\{2 n, 2 n+1\}: n \in \omega\} \cup\{J(\emptyset) \oplus\{2 n\}: n \in A\}$
by some Σ-formula Φ. For simplicity we assume that Φ has no parameters.
Note that the structure $\mathfrak{M}_{J(\emptyset) \oplus \mathcal{E}(A)}$ is bi-embeddable with $\mathfrak{M}_{J(\emptyset) \oplus \mathcal{H}_{1}} \leq \Sigma$ $J(\emptyset)$, where

$$
J(\emptyset) \oplus \mathcal{H}_{1}=\{J(\emptyset) \oplus\{2 n, 2 n+1\}: n \in \omega\}
$$

Moreover, they are densely bi-embeddable in the sense that for every finite substructure $\mathfrak{M}_{0} \subseteq \mathfrak{M}_{J(\emptyset) \oplus \mathcal{E}(A)}$ there is a substructure $\mathfrak{M}_{0} \subseteq \mathfrak{M}_{1} \subseteq \mathfrak{M}_{J(\emptyset) \oplus \mathcal{E}(A)}$ such that $\mathfrak{M}_{1} \cong \mathfrak{M}_{J(\emptyset) \oplus \mathcal{H}_{1}}$, and vice versa. Considering the same formula Φ in $\mathbb{H} \mathbb{F}\left(\mathfrak{M}_{J(\emptyset) \oplus \mathcal{H}_{1}}\right)$ we get a structure \mathfrak{L} densely bi-embeddabe with $\mathfrak{J}(\mathcal{G})$. But $J(X) \subseteq J(Y)$ implies $J(X)=J(Y)$ so that this is possible only if $\mathfrak{J}(\mathcal{G}) \cong \mathfrak{L}$. Hence, $\mathfrak{J}(\mathcal{G}) \equiv_{\Sigma} \mathcal{J}(\mathcal{G}) \leq_{\Sigma} J(\emptyset)$.

In the case when Φ has parameters instead of \mathcal{H}_{1} we should consider a 1family in the form

$$
\mathcal{H}_{1} \cup\left\{n_{1}\right\} \cup\left\{n_{2}\right\} \cup \cdots \cup\left\{n_{k}\right\}
$$

where the finite collection $n_{1}, \ldots, n_{k} \in A$ depends from these parameters to preserve the dense bi-embeddability property up to finitely many constants.

To prove the second part of the theorem suppose that $\mathcal{J}(\mathcal{G}) \equiv_{\Sigma} J(\emptyset) \oplus \mathcal{E}(A)$. Then by the first part $\mathcal{J}(\mathcal{G}) \leq_{\Sigma} \mathcal{J}(\emptyset)$. From another hand, by Theorem 6

$$
A \leq_{\Sigma} \mathcal{J}(\mathcal{E}(A)) \leq_{\Sigma} \mathcal{J}^{2}(\mathcal{G}) \leq_{\Sigma} \mathfrak{J}^{2}(\emptyset) \equiv_{\Sigma} J^{2}(\emptyset)
$$

so that $A \in \Sigma_{3}^{0}$.
Since $\mathcal{J}\left(\mathcal{E}^{2}(A)\right) \equiv_{\Sigma} J(\emptyset) \oplus \mathcal{E}(A)$ by Theorem 6 we have also the following
Corollary 9. For a set a set $A \notin \Sigma_{3}^{0}$ there is no 1 -family \mathcal{G} such that $\mathcal{G} \equiv_{\Sigma}$ $\mathcal{E}^{2}(A)$, so that the least double jump inversion of a 0-family A can not be replaced by a 1-family.

Acknowledgments

The research of the first author was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, project no. 1.1515.2017/PP. The research of the third author was supported by RFBR Grant No. 15-01-08252 .

References

[Montalbán 2009] Montalbán, A.; "Notes on the jump of a structure". In Mathematical Theory and Computational Practice (eds K. Ambos-Spies, B. Lwe \& W. Merckle), pp. 372-378. Lecture Notes in Computer Science, vol. 5635. Berlin, Germany: Springer.
[Puzarenko 2009] Puzarenko, V. G.; "A certain reducibility on admissible sets"; Sib. Mat. Zh. [in Russian], 50, 2 (2009), 415-429.
[Stukachev 2009] Stukachev, A.I.; "A jump inversion theorem for the semilattices of Σ-degrees"; Sib. Élektron. Mat. Izv., 6 (2009) 182-190.
[Kalimullin and Puzarenko 2009] Kalimullin, I. S., Puzarenko, V. G.; "Reducibility on families"; Algebra Log. [in Russian], 48, 1 (2009), 31-53.
[Kalimullin and Faizrahmanov 2016 (a)] Kalimullin, I. Sh., Faizrakhmanov M. Kh.: "A Hierarchy of Classes of Families and n-Low Degrees"; Algebra i Logika [in Russian], 54, 4 (2015) 536-541.
[Faizrahmanov and Kalimullin 2016 (b)] Faizrahmanov, M., Kalimullin, I.: "The Enumeration Spectrum Hierarchy of n-Families"; Math. Log. Q., 62, 4-5 (2016) 420-426.
[Faizrahmanov and Kalimullin 2016 (c)] Faizrahmanov, M. Kh., Kalimullin, IS.; "The Enumeration Spectrum Hierarchy and Low α_{α} Degrees"; J. Univ. Comp. Sc., 22, 7 (2016) 943-955.
[Ershov 1996] Ershov, Yu. L.; "Definability and Computability"; Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1996).

