The least Y-jump inversion theorem for n-families
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Abstract: Studying the jump of structures [Montalbdn 2009], [Puzarenko 2009], [Stu-
kachev 2009] that for each set X that computes the halting problem @ there is a
countable family of sets which is X-definable precisely in the admissible sets A whose
jumps compute X. Moreover, for every countable family of sets which computes @’
there is a family of families of sets which is X-definable precisely in the admissible sets
A whose jumps compute X. These results, in fact, hold for the hierarchy of n-families
(families of families of families of ...).
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1 Introduction

The study of computational properties of families was started in [Kalimullin and
Puzarenko 2009] and [Kalimullin and Faizrahmanov 2016 (a)].

Definition 1. A 0-family is a subset of w. For an integer n > 0, an n-family is
a countable set of (n — 1)-families.

According to [Kalimullin and Faizrahmanov 2016 (a)] the definition of computably
enumerable n-families is inductive: an n-family J is computably enumerable if



it’s elements, (n — 1)-families, are uniformly computably enumerable. More pre-
cisely we give this definition generalized to an arbitrary admissible sets (see
[Ershov 1996]):

Definition 2. [Kalimullin and Faizrahmanov 2016 (a)] A Y-formula ¢ (possi-
bly with parameters) defines a 0-family X C w in an admissible set A if it
defines the the predicate x € A. A Y-formula @ containing at least one param-
eter x defines an (n + 1)-family JF, if there is a YX-definable subset E C A such
that the formulae @(x), x € F, define all elements of F and only them.

This definition extends the definition given in [Kalimullin and Puzarenko 2009).

We will see below that for the n-families it is enough to consider only special
cases of admissible sets: the hereditary finite structures HF (), where 9 is
some algebraic structure. Let M be the domain of 9t and let ¢ be the language
of M. The domain of HF(9M) is the class of HF(M) of hereditarily finite sets
over the M is defined by induction as follows:

— Ho(M) = {0};
_ Hn+1(M):Hn(M)U(Pw(Hn(M)UM)’
— HF(M) =, ., Ho(M)UM

n<w N

(where P,,(X) denotes the set of all finite subsets of X). The structure HF () is
defined in a signature cU{U W, e®), 0} (called a hereditarily finite superstructure
over M), so that U = Af cHFOMC (HF(M)) x (HF(M) \ M) is the
membership relation on HF (1), the constant symbol @ is interpreted as the
empty “set”, and symbols in the signature o are interpreted in the same way as
on M.

For example we can code every n-family J into the admissible superstructure
HIF(2t) over the special structure Mg defined as follows.

— Let A be an arbitrary O-family. A structure 94 of signature o = {r, I, R?}
is defined by following:

the domain of the structure is representable as a disjoint union wU X, where
X={z,:ze A}
R™a ={(n,n+1):ncwu{{z,,n) :nc A}, r™4 =0and [ = {y7a},

— Let § = {8; : i € w} be an n-family, n > 0. Following [Kalimullin and
Puzarenko 2009] we can code JF into a structure Mg of signature o fix an
element 77 and consider a disjoint structures ¥ of signature o such that
for all k,i € w:

1. IMMF = M, (the parameter k € w guarantees that each §; is repeated
infinitely many times);



2. 17 & M|
The domain of the structure is a disjoint union |J, ; [¥| U {r™}.

For each z,y € |Mg| we define

R(z,y) & x = (Fk,i) [z = T &y = Py RO (x,y)].

Let I™ =/, ; 17, By this inductive definition the elements of ™7 were
appeared originally as 774 for sets (O-families) A € --- € F. For i € I™7 we
denote the corresponding such set via A;.

It is easy to check that every n-family F is Y-definable in HIF (95). For example,
if n = 0 then a O-family A C w is defined by the formula saying that there is a
sequence

Nog=7,1n1,N2,...,Ng,P,(q,

such that R(n;,n;y1) for all i < z, and R(ng,p), R(ng,q). Moreover, it follows
from [Kalimullin and Puzarenko 2009] that the X-definability of F is equivalent
to the XY-definability of Mg itself.

Proposition 3. [Kalimullin and Puzarenko 2009] An n-family F is X -definable
in a countable admissible set A iff the structure Mg (and, therefore, HF (M) )
is X-interpretable in A.

Under Y-interpretation of a structure 9 in a language o we understand a X-
definable structure 91 in the language o U {~}, where ~ is a new congruence
relation on 91 such that 91/ ~= M.

Definition 4. Let F be an n-family and 9t be a structure. We say that F is X-
reducible to M (written F < M) if X-definable in HF(IM). Similarly, M <z F
if M is X-interpretable in HF (M5). If F and 8 are n- and m-families correspond-
ingly we say that F is Y-reducible to 8 if F < 9Ms. As usual, the relation =5
holds in the case of X-reductions from the left to the right and from the right
to the left.

Note that for an n-family F and the (n 4 1)-family {F} we have {F} =5 F. By
this reason we can look on the n-family JF as to an m-family for m > n.

If Y is arbitrary set and JF is an n-family, n > 0, then we define by induction
the join of Y and F by letting

YeF={Y®8§:8ecTF}.
Recall that for the case n = 0 the standard notation is

YeA={2z:2€Y}U{20+1:2€ A}



For an n-family F and an integer & denote by F* the n-family {k} @ F. Clearly
that for every integer k and n-family F, we have F =5, F*. For n-families F, G
define the n-family

FTo5=79%ugl.

Itiseasy toseethat F <y FP G, G < FP G, and
T<eMG<sM = TG <sM

for every structure 91.

2 Jump and jump inversion on n-families

Definition 5. [Montalbdn 2009], [Puzarenko 2009], [Stukachev 2009]. For any
structure 9 the structure J(M) = (HF (M), Us), where where Uy is a ternary
XY-predicate on HF(91) universal for the class of all binary X-predicates on
HEF (), is called a X-jump.

For any n-family F instead of J(9M5) we simply write J(F). The concept of a X-
jump with respect to X-reducibility does not depend on the choice of a universal
Y-predicate. Furthermore, this X-jump on structures having T-(e-)degrees acts
in the same way as a T-(e-)jump (see [Puzarenko 2009]). As in the classical case,
the Y-jump operation satisfies the following;:

1. A QE H(Q[),
2. A< B = J(A) <5 J(B).

We define §*(21) by induction on n € w as follows: J°(A) = 2, J"TH(QA) =
J(3"(A)). It was shown in [Puzarenko 2009] that for any structures 9t and 2 of
a finite signature M is X, 1 1-definable in 20 iff M <5 J™(A).

Example 1. ([Puzarenko 2009]). For 0-familes A the jump J(A) is X-equivalent
to M4y, where J(A) is the the enumeration jump of A:

J(A)=K(A) @ K(A) and K(A) ={n:n € d,(A)},
for the Godel numbering of enumeration operators {@;, },cw-
Example 2. It is easy to check that for the family InfCE of all infinite c.e.
sets we have J(InfCE) =5 J(J(0)) =, 0”. Indeed, " is computably isomorphic
to {n : W, is infinite}, and a c.e. set W,, is infinite if and only if the set the
(uniformly) computable set

Vo= {S : Wn,s 7é Wn,erl}



is infinite, and so, if and only if F' C V,, for some F € InfCE. The predicate
F C V, can be recognised by J(F).

The inverse reduction J(InfCE) <5 J(J(()) is obvious. Moreover, we can
prove slightly different. Suppose M ;( ;@) <x J(IM) for some countable M, i.e.,
let {n : W, is infinite} is Yy-definable in HIF(9). Then there is Agp-formula ¢
such that

W, is infinite <= HF (M) = (3a)(vd)P(n, a,d)

Then the sequence

Vo= W, if HF(OM) = (Vb)P(n, a,b);
" lw,  otherwise,

exhausting all infinite c.e. sets can be determined by the X-predicate
r€Vy, <= zeW,Vzecwk& (3b)~P(n,a,b).

This allows to provide the reducibility M <5 M for every countable 9t
such that J(J(0)) <5 9, i.e. the 1-family InfCE is the the least jump inversion
for the O-family J(J(0)).

Let us look for such least jump inversion for any n-family F. For each n-family
F, recursively define a finitary (n + 1)-family &(F):

£(F) = Hiu{{2z}:2 € A}, ifn=0and F=ACuw,
| Har  U{ES) : S €5}, ifn>0,

where H; = {{2n,2n + 1} : n € w} and H, ;1 = {H,}. This is very simi-
lar to a definitions in [Kalimullin and Puzarenko 2009] and [Faizrahmanov and
Kalimullin 2016 (b), (c)].

According to the following theorem we will call £(F) as the least X-jump
inversion for ¥ (meaning that in fact it is an inversion of J(0) & F).

Theorem 6. For any n-family F the (n+1)-family E(F) is a least jump inversion
of F. Namely,

1) < J(ET));

2) for each countable structure B of a finite signature E(F) <z B if F <x
J(B).

3) J(E@F) <z JD)oF.

Proof. 1) To show that F <y J(&(F)) fix a structure A = Mg 5y and define a

Yy-subset M of HIF(1), constant 7™ € M and As-predicates I™, R™ on M such
that the structure M = (M; ™ 17 R™) is isomorphic to Mgo. Let C be the set



of all z € |2 for which there exists a finite sequence g, 1, ..., Zk4+1 such that
xo =z, [*(zp41), R¥ (2, 2441) for every i < k and for some n € w the singleton
{2n} is encoded under zy;1. Denote by D the set of all end vertices in C, i.e.
such elements x € C that =R¥(z,y) for every y € C. Consider a binary relation
G on HF(2) consisting of all pairs (z,n) € D x w for which there is an y € ||
such that I*(y), R¥(x,y) and the singleton {2n} is encoded under y. By the
definition of &(JF) the relation G is Xy-predicate on HF(2A). Note that if we put
under every element x € D a copy of structure M4, where A, = {n : G(x,n)},
then the structure | J_ ., M4, U(2A | C) will be isomorphic to Mgo. To formalize
this we define

xeD

B, ={(z,2n) :x € D;n € w\ {0}}

for every x € D and
F,={(z,2n+1) : G(z,n),n € w}.

Let M = J,cp(Bs U F,) UC. For every z,y € M set R™(z,y) iff one of the
following conditions holds:

1. 2,y € C and R*(x,y);

2. ye Dand (32 € D) [z = (z,1)];

3. (Inew)(3ze D)z =(z2n) &y = (z,2n + 2)];
4 Gnew) (3 eD)r=(z2m+ 1) &y = (z2n)].

Finally, we define 7™ = r® € C and I™(z) iff z € D. Clearly that M is X,-subset
of HF(21) and I™, R™ are As-predicates on M. Therefore, ¥ <5 J(&(F)).

2) Let an n-family F is X-reducible to J(B) for some structure B of a finite
signature. Hence 3% <y J(B). Fix a Xy-subset A of HF(B), constant 7% and
Ag-predicates I%, R®, n on A such that 7 is the congruence relation on the
structure A = (A;r%, 1% R*) and A/n = Mgo. Let ¥ be a Ag-formula such
that for all z1,...,z, € A and every m € w

HF(B) = (Ja)(Vb) ¥(a,b,x1,...,Tn, k)

iff R¥(r®, 1), R*(x;,2i11) for every i, 1 < i < n, and k belongs to the set
which is encoded under z,. To show that &(F) <y B define a Y-subset M
of HIF(B), constant r™ and X-predicates 1™, R™, § on M such that 6 is the
congruence relation on the structure M = (M; 7™, 1™, R™) and 9/0 = Me ()
Let M = U Ml U {<0,0>} U Ll U LQ U L3, where

i=1

1=

Ml:{<<xlavxl>727’>xl7axz EHF(%)}a 1<Z<Tl,

L1 :{<<k7iv$17“~axnva>72j+1>:kaiaj € w, xh...,xn,aEHF(‘B)},



Ly = {{{k,i,x1,...,2n,0,0),2n +2) - ki €w, x1,...,2,,a,b € HF(B)},
Ly ={{(k,i,21,...,0p,a,b),2n +4) : ki € w, x1,...,Tn,a,b € HF(B)}.
Set 7™ = (0,0), R™(r™, (x,2)) for every x € HF(8) and

Rm<<<$1,...,.’Ei>,2i>,<<$1,...,xi,$i+1>,2i+2>>, T1,...3 25, Tit1 € HF(%)

for every i, 1 < i < n. To continue the definition of 90t we put under every element
y= ((z1,...,2n),2n) € M, a copy of structure E(A,), where A, is the set which
is encoded under element z,, in the structure /7 if R*(z;, x;11) for every i, i <
i <n, and A, = () otherwise. More precisely, define I ({(k,i,21,...,2n,a), 1)),

R™(({x1,...,xn),2n), ((k,i,21,...,2,,a),1)),
R™(((k,i,21,. .., 20, a),2j + 1), ((k,4,21,..., 20, a), 25 + 3)),
R™(({kyi,x1,. .., Tn,a,0), 20 +2), (k,d,21,...,2,,a), 4k + 1))
for every k,i,j € w, z1,...,2pn,a,b € HF(2B). Set
R™(({k,i,21,. .., Tn,a,0), 20 +4), (k,i,21,...,2,,a), 4k + 1))
if HF(*B) = ¥(a,b,z1,..., 2y, k) and
R™(((kyi,x1,...,xp,a,b), 20 +4), ((k,i,z1,..., 2, a), 4k + 3))

otherwise. Finally, define 20y iff there is a z such that R™(z,2) and R™(y, 2).

3) By Theorem 1 from [Stukachev 2009] there is a structure B such that
J(D)®F =5 J(B). Since F <5 J(B) we have E(F) <x B. Therefore, J(E(F)) <z
J(B) <x J(0) @ F. This ends the proof.

Corollary 7. For every n-families F and G
1. F<s§ = &(F) <z &(9);

2. 8(F@9) =E(F)DES).

Proof. 1. Follows from F <5 G <y &(9).

2. Follows from E(A@ B) =H,U{{2z: 2 € A& B}} =FH; U{{4a} :z € A} U
{{dz+2}:2eB}}=x{XdY : X € E(A) &Y € &(B)} = E(A) @ E(B).

By the definition of &(-) the least double jump inversion €2(F) = E(&(F))
of an n-family F is an (n + 2)-family. But we know from [Faizrahmanov and
Kalimullin 2016 (b)] that under Turing reducibility of presentations of n-families
the least double jump is an (n + 1)-family. For example, for the case of 0-family



A the least double jump €2(A) has the same Turing degrees of presentations of
Me2(4) as the degrees of presentations of Mg, where G is the 1-family

9:{Fgw:Fisﬁnite}U{{T}:xeA}.

Below we show that for the case of YX-reducibility we can not have an equivalence
between £2(F) and some (n + 1)-family even for n = 0.

Theorem 8. For a set A we have

J(9) <z J0) @ E(A) = J(9) <x J(0)
and, therefore, for a set a set A ¢ X9 we have J(3G) #£x J(0) ® E(A) for every
1-family §G.

Proof. (Sketch) Let us look on the jump of J(9) = J(Mg) for 1-families G.
Due [Kalimullin and Puzarenko 2009] all X-predicates in 9g can be encoded in
the sets

A©A D DA, ®E®9),

where A; € G and the set E(G) = {u : (34 € §)[D, C A]} codes the 3-theory
of Mg. But the family of jumps of these sets can not fully represent the jump
of the whole G since we need to keep the information when a jump for a tuple
Ay, ..., A, is an extension of the jump for a tuple Ay,..., Ay, Apgr. It is more
easily to identify J(G) up to =5 with the following structure J(§) in the language
o={r, I, R? o?}.

Consider the families

K(G) ={J(A): A€ E(9)® G} and
M(G) ={J(A): A€ (E(S) @ G)a}

where (-) . is the @©-closure of a class of sets.
Fix a structures & = Myc(gy and M = My (g) such that

[/l | = {rt) = (7).
Let |3(9)| = [R| U ||, r3) = % and
PO () = () v IM(2),
R (z,y) <= R(x,y) v R™(z,y),
13(9)(x) — I*(x)

for all ,y € |3(G)|. The binary operation o is defined on I3(9) by such a way
that (I9(9) o) is a free non-associative algebra with the set of free generators
I39) = 1% such that

JX)=A4&JY)=4;, = JX&Y)= A,



Suppose that
JG <sJD)@EA)={JD)®{2n,2n+ 1} :ncw}U{JD) D {2n} :n e A}

by some X-formula . For simplicity we assume that ¢ has no parameters.
Note that the structure 9 ;g)pe(a) is bi-embeddable with 9 jpypac, <x
J(0), where
J(0) @ Hy ={J(0) & {2n,2n+ 1} : n € w}.

Moreover, they are densely bi-embeddable in the sense that for every finite sub-
structure My C M jp)@e(a) there is a substructure My C My C My pygpe(a)
such that My = M j@)pac,, and vice versa. Considering the same formula ¢
in HIF(9M jgy@sc,) we get a structure £ densely bi-embeddabe with J(G). But
J(X) € J(Y) implies J(X) = J(Y) so that this is possible only if J(9) = £.
Hence, J(3) = 3(9) <s J(0).

In the case when @ has parameters instead of H; we should consider a 1-
family in the form

g‘fl U {nl} U {712} y---u {nk},

where the finite collection nq,...,ny € A depends from these parameters to
preserve the dense bi-embeddability property up to finitely many constants.

To prove the second part of the theorem suppose that J(G) =5 J(0) ¢ E(A).
Then by the first part J(9) <x J(0). From another hand, by Theorem 6

A<sJ(E(A) <5 I*9) <z 2(0) == J*(D),
so that A € 9.

Since J(€%(A)) =x J(0) ® €(A) by Theorem 6 we have also the following

Corollary 9. For a set a set A ¢ X3 there is no 1-family G such that § =x
E2(A), so that the least double jump inversion of a O-family A can not be replaced
by a 1-family.
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