The least Σ -jump inversion theorem for n-families

Marat Faizrahmanov

(N.I. Lobachevsky Institute of Mathematics and Mechanics Kazan (Volga Region) Federal University, Kazan, Russia marat.faizrahmanov@gmail.com)

Antonio Montalbán

(University of California Berkeley, USA antonio@math.berkeley.edu)

Iskander Kalimullin

(N.I. Lobachevsky Institute of Mathematics and Mechanics Kazan (Volga Region) Federal University, Kazan, Russia ikalimul@gmail.com)

Vadim Puzarenko

(S.L. Sobolev Institute of Mathematics Novosibirsk, Russia vagrig01973@mail.ru)

Abstract: Studying the jump of structures [Montalbán 2009], [Puzarenko 2009], [Stukachev 2009] that for each set X that computes the halting problem \emptyset' there is a countable family of sets which is Σ -definable precisely in the admissible sets $\mathbb A$ whose jumps compute X. Moreover, for every countable family of sets which computes \emptyset' there is a family of families of sets which is Σ -definable precisely in the admissible sets $\mathbb A$ whose jumps compute X. These results, in fact, hold for the hierarchy of n-families (families of families o

Key Words: jump of structure, enumeration jump, Σ -jump, Σ -reducibility, countable family, n-family

Category: F.1.1., F.1.2., F.4.1.

1 Introduction

The study of computational properties of families was started in [Kalimullin and Puzarenko 2009] and [Kalimullin and Faizrahmanov 2016 (a)].

Definition 1. A 0-family is a subset of ω . For an integer n > 0, an n-family is a countable set of (n-1)-families.

According to [Kalimullin and Faizrahmanov 2016 (a)] the definition of computably enumerable n-families is inductive: an n-family $\mathcal F$ is computably enumerable if

it's elements, (n-1)-families, are uniformly computably enumerable. More precisely we give this definition generalized to an arbitrary admissible sets (see [Ershov 1996]):

Definition 2. [Kalimullin and Faizrahmanov 2016 (a)] A Σ -formula Φ (possibly with parameters) defines a 0-family $X \subset \omega$ in an admissible set \mathbb{A} if it defines the predicate $x \in A$. A Σ -formula Φ containing at least one parameter x defines an (n+1)-family \mathcal{F} , if there is a Σ -definable subset $E \subseteq \mathbb{A}$ such that the formulae $\Phi(x)$, $x \in E$, define all elements of \mathcal{F} and only them.

This definition extends the definition given in [Kalimullin and Puzarenko 2009].

We will see below that for the n-families it is enough to consider only special cases of admissible sets: the hereditary finite structures $\mathbb{HF}(\mathfrak{M})$, where \mathfrak{M} is some algebraic structure. Let M be the domain of \mathfrak{M} and let σ be the language of \mathfrak{M} . The domain of $\mathbb{HF}(\mathfrak{M})$ is the class of HF(M) of hereditarily finite sets over the M is defined by induction as follows:

$$- H_0(M) = \{\emptyset\};$$

$$-H_{n+1}(M) = H_n(M) \cup \mathcal{P}_{\omega}(H_n(M) \cup M);$$

$$-HF(M) = \bigcup_{n < \omega} H_n(M) \cup M$$

(where $P_{\omega}(X)$ denotes the set of all finite subsets of X). The structure $\mathbb{HF}(\mathfrak{M})$ is defined in a signature $\sigma \cup \{U^{(1)}, \in^{(2)}, \emptyset\}$ (called a hereditarily finite superstructure over \mathfrak{M}), so that $U^{\mathbb{HF}(\mathfrak{M})} = M$, $\in \mathbb{HF}(\mathfrak{M}) \subseteq (HF(M)) \times (HF(M) \setminus M)$ is the membership relation on $\mathbb{HF}(\mathfrak{M})$, the constant symbol \emptyset is interpreted as the empty "set", and symbols in the signature σ are interpreted in the same way as on \mathfrak{M} .

For example we can code every n-family \mathcal{F} into the admissible superstructure $\mathbb{HF}(\mathfrak{M}_{\mathcal{F}})$ over the special structure $\mathfrak{M}_{\mathcal{F}}$ defined as follows.

– Let A be an arbitrary 0-family. A structure \mathfrak{M}_A of signature $\sigma = \{r, I^1, R^2\}$ is defined by following:

the domain of the structure is representable as a disjoint union $\omega \cup X$, where $X = \{x_n : x \in A\}$;

$$R^{\mathfrak{M}_A} = \{\langle n, n+1 \rangle : n \in \omega\} \cup \{\langle x_n, n \rangle : n \in A\}, r^{\mathfrak{M}_A} = 0 \text{ and } I^{\mathfrak{M}_A} = \{r^{\mathfrak{M}_A}\}.$$

- Let $\mathcal{F} = \{\mathcal{S}_i : i \in \omega\}$ be an *n*-family, n > 0. Following [Kalimullin and Puzarenko 2009] we can code \mathcal{F} into a structure $\mathfrak{M}_{\mathcal{F}}$ of signature σ fix an element $r^{\mathfrak{M}_{\mathcal{F}}}$ and consider a disjoint structures \mathfrak{M}_i^k of signature σ such that for all $k, i \in \omega$:
 - 1. $\mathfrak{M}_{i}^{k} \cong \mathfrak{M}_{S_{i}}$ (the parameter $k \in \omega$ guarantees that each S_{i} is repeated infinitely many times);

2.
$$r^{\mathfrak{M}_{\mathfrak{F}}} \notin |\mathfrak{M}_{i}^{k}|;$$

The domain of the structure is a disjoint union $\bigcup_{k,i} |\mathfrak{M}_i^k| \cup \{r^{\mathfrak{M}_{\mathcal{F}}}\}.$

For each $x, y \in |\mathfrak{M}_{\mathcal{F}}|$ we define

$$R(x,y) \Leftrightarrow x = (\exists k,i) [x = r^{\mathfrak{M}_{\mathcal{F}}} \& y = r^{\mathfrak{M}_i^k} \lor R^{\mathfrak{M}_i^k}(x,y)].$$

Let $I^{\mathfrak{M}_{\mathcal{F}}} = \bigcup_{k,i} I^{\mathfrak{M}_i^k}$. By this inductive definition the elements of $I^{\mathfrak{M}_{\mathcal{F}}}$ were appeared originally as $r^{\mathfrak{M}_A}$ for sets (0-families) $A \in \cdots \in \mathcal{F}$. For $i \in I^{\mathfrak{M}_{\mathcal{F}}}$ we denote the corresponding such set via A_i .

It is easy to check that every n-family \mathcal{F} is Σ -definable in $\mathbb{HF}(\mathfrak{M}_{\mathcal{F}})$. For example, if n=0 then a 0-family $A\subseteq\omega$ is defined by the formula saying that there is a sequence

$$n_0 = r, n_1, n_2, \dots, n_x, p, q,$$

such that $R(n_i, n_{i+1})$ for all i < x, and $R(n_x, p)$, $R(n_x, q)$. Moreover, it follows from [Kalimullin and Puzarenko 2009] that the Σ -definability of \mathfrak{B} is equivalent to the Σ -definability of $\mathfrak{M}_{\mathfrak{F}}$ itself.

Proposition 3. [Kalimullin and Puzarenko 2009] An n-family \mathfrak{F} is Σ -definable in a countable admissible set \mathbb{A} iff the structure $\mathfrak{M}_{\mathfrak{F}}$ (and, therefore, $\mathbb{HF}(\mathfrak{M}_{\mathfrak{F}})$) is Σ -interpretable in \mathbb{A} .

Under Σ -interpretation of a structure \mathfrak{M} in a language σ we understand a Σ -definable structure \mathfrak{N} in the language $\sigma \cup \{\sim\}$, where \sim is a new congruence relation on \mathfrak{N} such that $\mathfrak{N}/\sim \cong \mathfrak{M}$.

Definition 4. Let \mathcal{F} be an n-family and \mathfrak{M} be a structure. We say that \mathcal{F} is Σ reducible to \mathfrak{M} (written $\mathcal{F} \leqslant_{\Sigma} \mathfrak{M}$) if Σ -definable in $\mathbb{HF}(\mathfrak{M})$. Similarly, $\mathfrak{M} \leqslant_{\Sigma} \mathcal{F}$ if \mathfrak{M} is Σ -interpretable in $\mathbb{HF}(\mathfrak{M}_{\mathcal{F}})$. If \mathcal{F} and \mathcal{S} are n- and m-families correspondingly we say that \mathcal{F} is Σ -reducible to \mathcal{S} if $\mathcal{F} \leqslant \mathfrak{M}_{\mathcal{S}}$. As usual, the relation \equiv_{Σ} holds in the case of Σ -reductions from the left to the right and from the right to the left.

Note that for an *n*-family \mathcal{F} and the (n+1)-family $\{\mathcal{F}\}$ we have $\{\mathcal{F}\} \equiv_{\Sigma} \mathcal{F}$. By this reason we can look on the *n*-family \mathcal{F} as to an *m*-family for m > n.

If Y is arbitrary set and \mathcal{F} is an n-family, n > 0, then we define by induction the *join* of Y and \mathcal{F} by letting

$$Y \oplus \mathcal{F} = \{Y \oplus \mathcal{S} : \mathcal{S} \in \mathcal{F}\}.$$

Recall that for the case n = 0 the standard notation is

$$Y \oplus A = \{2x : x \in Y\} \cup \{2x + 1 : x \in A\}.$$

For an *n*-family \mathcal{F} and an integer k denote by \mathcal{F}^k the *n*-family $\{k\} \oplus \mathcal{F}$. Clearly that for every integer k and *n*-family \mathcal{F} , we have $\mathcal{F} \equiv_{\Sigma} \mathcal{F}^k$. For *n*-families \mathcal{F}, \mathcal{G} define the *n*-family

$$\mathfrak{F} \oplus \mathfrak{G} = \mathfrak{F}^0 \cup \mathfrak{G}^1$$
.

It is easy to see that $\mathfrak{F} \leq_{\Sigma} \mathfrak{F} \oplus \mathfrak{G}$, $\mathfrak{G} \leq_{\Sigma} \mathfrak{F} \oplus \mathfrak{G}$, and

$$\mathcal{F} \leq_{\Sigma} \mathfrak{M}, \mathcal{G} \leq_{\Sigma} \mathfrak{M} \implies \mathcal{F} \oplus \mathcal{G} \leq_{\Sigma} \mathfrak{M}$$

for every structure \mathfrak{M} .

2 Jump and jump inversion on n-families

Definition 5. [Montalbán 2009], [Puzarenko 2009], [Stukachev 2009]. For any structure \mathfrak{M} the structure $\mathfrak{J}(\mathfrak{M}) = (\mathbb{HF}(\mathfrak{M}), U_{\Sigma})$, where where U_{Σ} is a ternary Σ -predicate on $\mathbb{HF}(\mathfrak{M})$ universal for the class of all binary Σ -predicates on $\mathbb{HF}(\mathfrak{M})$, is called a Σ -jump.

For any n-family \mathcal{F} instead of $\mathcal{J}(\mathfrak{M}_{\mathcal{F}})$ we simply write $\mathcal{J}(\mathcal{F})$. The concept of a Σ -jump with respect to Σ -reducibility does not depend on the choice of a universal Σ -predicate. Furthermore, this Σ -jump on structures having T-(e-)degrees acts in the same way as a T-(e-)jump (see [Puzarenko 2009]). As in the classical case, the Σ -jump operation satisfies the following:

- 1. $\mathfrak{A} \leqslant_{\Sigma} \mathfrak{J}(\mathfrak{A});$
- 2. $\mathfrak{A} \leqslant_{\Sigma} \mathfrak{B} \Rightarrow \mathfrak{J}(\mathfrak{A}) \leqslant_{\Sigma} \mathfrak{J}(\mathfrak{B})$.

We define $\mathcal{J}^n(\mathfrak{A})$ by induction on $n \in \omega$ as follows: $\mathcal{J}^0(\mathfrak{A}) = \mathfrak{A}$, $\mathcal{J}^{n+1}(\mathfrak{A}) = \mathcal{J}(\mathcal{J}^n(\mathfrak{A}))$. It was shown in [Puzarenko 2009] that for any structures \mathfrak{M} and \mathfrak{A} of a finite signature \mathfrak{M} is Σ_{m+1} -definable in \mathfrak{A} iff $\mathfrak{M} \leqslant_{\Sigma} \mathcal{J}^m(\mathfrak{A})$.

Example 1. ([Puzarenko 2009]). For 0-familes A the jump $\mathcal{J}(A)$ is Σ -equivalent to $\mathfrak{M}_{J(A)}$, where J(A) is the the enumeration jump of A:

$$J(A) = K(A) \oplus \overline{K(A)}$$
 and $K(A) = \{n : n \in \Phi_n(A)\},\$

for the Gödel numbering of enumeration operators $\{\Phi_n\}_{n\in\omega}$.

Example 2. It is easy to check that for the family InfCE of all infinite c.e. sets we have $\mathcal{J}(\text{InfCE}) \equiv_{\Sigma} J(J(\emptyset)) \equiv_{e} \overline{\emptyset''}$. Indeed, $\overline{\emptyset''}$ is computably isomorphic to $\{n: W_n \text{ is infinite}\}$, and a c.e. set W_n is infinite if and only if the set the (uniformly) computable set

$$V_n = \{s : W_{n,s} \neq W_{n,s+1}\}$$

is infinite, and so, if and only if $F \subseteq V_n$ for some $F \in \text{InfCE}$. The predicate $F \subseteq V_n$ can be recognised by J(F).

The inverse reduction $\mathcal{J}(\text{InfCE}) \leq_{\Sigma} J(J(\emptyset))$ is obvious. Moreover, we can prove slightly different. Suppose $\mathfrak{M}_{J(J(\emptyset))} \leq_{\Sigma} \mathcal{J}(\mathfrak{M})$ for some countable \mathfrak{M} , i.e., let $\{n: W_n \text{ is infinite}\}$ is Σ_2 -definable in $\mathbb{HF}(\mathfrak{M})$. Then there is Δ_0 -formula Φ such that

$$W_n$$
 is infinite $\iff \mathbb{HF}(\mathfrak{M}) \models (\exists a)(\forall b)\Phi(n,a,b)$

Then the sequence

$$V_{n,a} = \begin{cases} W_n, & \text{if } \mathbb{HF}(\mathfrak{M}) \models (\forall b) \Phi(n, a, b); \\ \omega, & \text{otherwise,} \end{cases}$$

exhausting all infinite c.e. sets can be determined by the Σ -predicate

$$x \in V_{n,a} \iff x \in W_n \lor x \in \omega \& (\exists b) \neg \Phi(n,a,b).$$

This allows to provide the reducibility $\mathfrak{M}_{InfCE} \leq_{\Sigma} \mathfrak{M}$ for every countable \mathfrak{M} such that $J(J(\emptyset)) \leq_{\Sigma} \mathfrak{M}$, i.e. the 1-family InfCE is the *the least jump inversion* for the 0-family $J(J(\emptyset))$.

Let us look for such least jump inversion for any n-family \mathcal{F} . For each n-family \mathcal{F} , recursively define a finitary (n+1)-family $\mathcal{E}(\mathcal{F})$:

$$\mathcal{E}(\mathcal{F}) = \begin{cases} \mathcal{H}_1 \cup \{\{2x\} : x \in A\}, & \text{if } n = 0 \text{ and } \mathcal{F} = A \subseteq \omega, \\ \mathcal{H}_{n+1} \cup \{\mathcal{E}(\mathcal{S}) : \mathcal{S} \in \mathcal{F}^0\}, & \text{if } n > 0, \end{cases}$$

where $\mathcal{H}_1 = \{\{2n, 2n+1\} : n \in \omega\}$ and $H_{n+1} = \{\mathcal{H}_n\}$. This is very similar to a definitions in [Kalimullin and Puzarenko 2009] and [Faizrahmanov and Kalimullin 2016 (b), (c)].

According to the following theorem we will call $\mathcal{E}(\mathcal{F})$ as the *least* Σ -jump inversion for \mathcal{F} (meaning that in fact it is an inversion of $J(\emptyset) \oplus \mathcal{F}$).

Theorem 6. For any n-family \mathcal{F} the (n+1)-family $\mathcal{E}(\mathcal{F})$ is a least jump inversion of \mathcal{F} . Namely,

- 1) $\mathfrak{F} \leqslant_{\Sigma} \mathfrak{J}(\mathcal{E}(\mathfrak{F}))$;
- 2) for each countable structure \mathfrak{B} of a finite signature $\mathcal{E}(\mathfrak{F}) \leqslant_{\Sigma} \mathfrak{B}$ if $\mathfrak{F} \leqslant_{\Sigma} \mathfrak{J}(\mathfrak{B})$.
- 3) $\mathcal{J}(\mathcal{E}(\mathcal{F})) \leqslant_{\Sigma} J(\emptyset) \oplus \mathcal{F}$.

Proof. 1) To show that $\mathcal{F} \leqslant_{\Sigma} \mathcal{J}(\mathcal{E}(\mathcal{F}))$ fix a structure $\mathfrak{A} \cong \mathfrak{M}_{\mathcal{E}(\mathcal{F})}$ and define a Σ_2 -subset M of $\mathbb{HF}(\mathfrak{A})$, constant $r^{\mathfrak{M}} \in M$ and Δ_2 -predicates $I^{\mathfrak{M}}$, $R^{\mathfrak{M}}$ on M such that the structure $\mathfrak{M} = \langle M; r^{\mathfrak{M}}, I^{\mathfrak{M}}, R^{\mathfrak{M}} \rangle$ is isomorphic to $\mathfrak{M}_{\mathcal{F}^0}$. Let C be the set

of all $x \in |\mathfrak{A}|$ for which there exists a finite sequence $x_0, x_1, \ldots, x_{k+1}$ such that $x_0 = x$, $I^{\mathfrak{A}}(x_{k+1})$, $R^{\mathfrak{A}}(x_i, x_{i+1})$ for every $i \leq k$ and for some $n \in \omega$ the singleton $\{2n\}$ is encoded under x_{k+1} . Denote by D the set of all end vertices in C, i.e. such elements $x \in C$ that $\neg R^{\mathfrak{A}}(x, y)$ for every $y \in C$. Consider a binary relation G on $\mathbb{HF}(\mathfrak{A})$ consisting of all pairs $\langle x, n \rangle \in D \times \omega$ for which there is an $y \in |\mathfrak{A}|$ such that $I^{\mathfrak{A}}(y)$, $R^{\mathfrak{A}}(x, y)$ and the singleton $\{2n\}$ is encoded under y. By the definition of $\mathcal{E}(\mathcal{F})$ the relation G is Σ_2 -predicate on $\mathbb{HF}(\mathfrak{A})$. Note that if we put under every element $x \in D$ a copy of structure \mathfrak{M}_{A_x} , where $A_x = \{n : G(x, n)\}$, then the structure $\bigcup_{x \in D} \mathfrak{M}_{A_x} \cup (\mathfrak{A} \upharpoonright C)$ will be isomorphic to $\mathfrak{M}_{\mathcal{F}^0}$. To formalize this we define

$$B_x = \{\langle x, 2n \rangle : x \in D, n \in \omega \setminus \{0\}\}\$$

for every $x \in D$ and

$$F_x = \{ \langle x, 2n+1 \rangle : G(x,n), n \in \omega \}.$$

Let $M = \bigcup_{x \in D} (B_x \cup F_x) \cup C$. For every $x, y \in M$ set $R^{\mathfrak{M}}(x, y)$ iff one of the following conditions holds:

- 1. $x, y \in C$ and $R^{\mathfrak{A}}(x, y)$:
- 2. $y \in D$ and $(\exists z \in D) [x = \langle z, 1 \rangle];$
- 3. $(\exists n \in \omega)(\exists z \in D) [x = \langle z, 2n \rangle \& y = \langle z, 2n + 2 \rangle];$
- 4. $(\exists n \in \omega)(\exists z \in D) [x = \langle z, 2n+1 \rangle \& y = \langle z, 2n \rangle].$

Finally, we define $r^{\mathfrak{M}} = r^{\mathfrak{A}} \in C$ and $I^{\mathfrak{M}}(x)$ iff $x \in D$. Clearly that M is Σ_2 -subset of $\mathbb{HF}(\mathfrak{A})$ and $I^{\mathfrak{M}}$, $R^{\mathfrak{M}}$ are Δ_2 -predicates on M. Therefore, $\mathfrak{F} \leqslant_{\Sigma} \mathfrak{J}(\mathcal{E}(\mathfrak{F}))$.

2) Let an n-family \mathcal{F} is Σ -reducible to $\mathcal{J}(\mathfrak{B})$ for some structure \mathfrak{B} of a finite signature. Hence $\mathcal{F}^0 \leq_{\Sigma} \mathcal{J}(\mathfrak{B})$. Fix a Σ_2 -subset A of $\mathbb{HF}(\mathfrak{B})$, constant $r^{\mathfrak{A}}$ and Δ_2 -predicates $I^{\mathfrak{A}}$, $R^{\mathfrak{A}}$, η on A such that η is the congruence relation on the structure $\mathfrak{A} = (A; r^{\mathfrak{A}}, I^{\mathfrak{A}}, R^{\mathfrak{A}})$ and $\mathfrak{A}/\eta \cong \mathfrak{M}_{\mathcal{F}^0}$. Let Ψ be a Δ_0 -formula such that for all $x_1, \ldots, x_n \in A$ and every $m \in \omega$

$$\mathbb{HF}(\mathfrak{B}) \models (\exists a)(\forall b) \Psi(a, b, x_1, \dots, x_n, k)$$

iff $R^{\mathfrak{A}}(r^{\mathfrak{A}}, x_1)$, $R^{\mathfrak{A}}(x_i, x_{i+1})$ for every $i, 1 \leq i < n$, and k belongs to the set which is encoded under x_n . To show that $\mathcal{E}(\mathfrak{F}) \leq_{\Sigma} \mathfrak{B}$ define a Σ -subset M of $\mathbb{HF}(\mathfrak{B})$, constant $r^{\mathfrak{M}}$ and Σ -predicates $I^{\mathfrak{M}}$, $R^{\mathfrak{M}}$, θ on M such that θ is the congruence relation on the structure $\mathfrak{M} = (M; r^{\mathfrak{M}}, I^{\mathfrak{M}}, R^{\mathfrak{M}})$ and $\mathfrak{M}/\theta \cong \mathfrak{M}_{\mathcal{E}(\mathfrak{F})}$.

Let
$$M = \bigcup_{i=1}^{n} M_i \cup \{(0,0)\} \cup L_1 \cup L_2 \cup L_3$$
, where

$$M_i = \{ \langle \langle x_1, \dots, x_i \rangle, 2i \rangle : x_1, \dots, x_i \in HF(\mathfrak{B}) \}, \ 1 \leqslant i \leqslant n,$$

$$L_1 = \{ \langle \langle k, i, x_1, \dots, x_n, a \rangle, 2j + 1 \rangle : k, i, j \in \omega, \ x_1, \dots, x_n, a \in HF(\mathfrak{B}) \},$$

$$L_2 = \{ \langle \langle k, i, x_1, \dots, x_n, a, b \rangle, 2n + 2 \rangle : k, i \in \omega, \ x_1, \dots, x_n, a, b \in HF(\mathfrak{B}) \},$$

$$L_3 = \{ \langle \langle k, i, x_1, \dots, x_n, a, b \rangle, 2n + 4 \rangle : k, i \in \omega, \ x_1, \dots, x_n, a, b \in HF(\mathfrak{B}) \}.$$

Set
$$r^{\mathfrak{M}} = \langle 0, 0 \rangle$$
, $R^{\mathfrak{M}}(r^{\mathfrak{M}}, \langle x, 2 \rangle)$ for every $x \in HF(\mathfrak{B})$ and

$$R^{\mathfrak{M}}(\langle\langle x_1,\ldots,x_i\rangle,2i\rangle,\langle\langle x_1,\ldots,x_i,x_{i+1}\rangle,2i+2\rangle),\ x_1,\ldots,x_i,x_{i+1}\in HF(\mathfrak{B})$$

for every $i, 1 \leq i < n$. To continue the definition of \mathfrak{M} we put under every element $y = \langle \langle x_1, \ldots, x_n \rangle, 2n \rangle \in M_n$ a copy of structure $\mathcal{E}(A_y)$, where A_y is the set which is encoded under element x_n in the structure \mathfrak{A}/η if $R^{\mathfrak{A}}(x_i, x_{i+1})$ for every $i, i \leq i < n$, and $A_y = \emptyset$ otherwise. More precisely, define $I^{\mathfrak{M}}(\langle \langle k, i, x_1, \ldots, x_n, a \rangle, 1 \rangle)$,

$$R^{\mathfrak{M}}(\langle\langle x_1,\ldots,x_n\rangle,2n\rangle,\langle\langle k,i,x_1,\ldots,x_n,a\rangle,1\rangle),$$

$$R^{\mathfrak{M}}(\langle\langle k, i, x_1, \dots, x_n, a \rangle, 2j+1 \rangle, \langle\langle k, i, x_1, \dots, x_n, a \rangle, 2j+3 \rangle),$$

$$R^{\mathfrak{M}}(\langle\langle k, i, x_1, \dots, x_n, a, b \rangle, 2n+2 \rangle, \langle\langle k, i, x_1, \dots, x_n, a \rangle, 4k+1 \rangle)$$

for every $k, i, j \in \omega$, $x_1, \ldots, x_n, a, b \in HF(\mathfrak{B})$. Set

$$R^{\mathfrak{M}}(\langle\langle k, i, x_1, \dots, x_n, a, b \rangle, 2n+4), \langle\langle k, i, x_1, \dots, x_n, a \rangle, 4k+1\rangle)$$

if
$$\mathbb{HF}(\mathfrak{B}) \models \Psi(a, b, x_1, \dots, x_n, k)$$
 and

$$R^{\mathfrak{M}}(\langle\langle k, i, x_1, \dots, x_n, a, b \rangle, 2n+4), \langle\langle k, i, x_1, \dots, x_n, a \rangle, 4k+3\rangle)$$

otherwise. Finally, define $x\theta y$ iff there is a z such that $R^{\mathfrak{M}}(x,z)$ and $R^{\mathfrak{M}}(y,z)$.

3) By Theorem 1 from [Stukachev 2009] there is a structure \mathfrak{B} such that $J(\emptyset) \oplus \mathfrak{F} \equiv_{\Sigma} \mathfrak{J}(\mathfrak{B})$. Since $\mathfrak{F} \leqslant_{\Sigma} \mathfrak{J}(\mathfrak{B})$ we have $\mathcal{E}(\mathfrak{F}) \leqslant_{\Sigma} \mathfrak{B}$. Therefore, $\mathcal{J}(\mathcal{E}(\mathfrak{F})) \leqslant_{\Sigma} \mathfrak{J}(\mathfrak{B}) \leqslant_{\Sigma} J(\emptyset) \oplus \mathfrak{F}$. This ends the proof.

Corollary 7. For every n-families \mathfrak{F} and \mathfrak{G}

1.
$$\mathfrak{F} \leq_{\Sigma} \mathfrak{G} \implies \mathcal{E}(\mathfrak{F}) \leq_{\Sigma} \mathcal{E}(\mathfrak{G});$$

2.
$$\mathcal{E}(\mathfrak{F} \oplus \mathfrak{G}) \equiv \mathcal{E}(\mathfrak{F}) \oplus \mathcal{E}(\mathfrak{G})$$
.

Proof. 1. Follows from $\mathfrak{F} \leq_{\Sigma} \mathfrak{G} \leq_{\Sigma} \mathfrak{E}(\mathfrak{G})$.

2. Follows from
$$\mathcal{E}(A \oplus B) = \mathcal{H}_1 \cup \{\{2x : x \in A \oplus B\}\} = \mathcal{H}_1 \cup \{\{4x\} : x \in A\} \cup \{\{4x+2\} : x \in B\}\} \equiv_{\Sigma} \{X \oplus Y : X \in \mathcal{E}(A) \& Y \in \mathcal{E}(B)\} = \mathcal{E}(A) \oplus \mathcal{E}(B).$$

By the definition of $\mathcal{E}(\cdot)$ the least double jump inversion $\mathcal{E}^2(\mathcal{F}) = \mathcal{E}(\mathcal{E}(\mathcal{F}))$ of an n-family \mathcal{F} is an (n+2)-family. But we know from [Faizrahmanov and Kalimullin 2016 (b)] that under Turing reducibility of presentations of n-families the least double jump is an (n+1)-family. For example, for the case of 0-family

A the least double jump $\mathcal{E}^2(A)$ has the same Turing degrees of presentations of $\mathfrak{M}_{\mathcal{E}^2(A)}$ as the degrees of presentations of $\mathfrak{M}_{\mathcal{G}}$, where \mathcal{G} is the 1-family

$$\mathfrak{G} = \{ F \subseteq \omega : F \text{ is finite} \} \cup \{ \overline{\{x\}} : x \in A \}.$$

Below we show that for the case of Σ -reducibility we can not have an equivalence between $\mathcal{E}^2(\mathcal{F})$ and some (n+1)-family even for n=0.

Theorem 8. For a set A we have

$$\mathcal{J}(\mathfrak{G}) \leq_{\Sigma} J(\emptyset) \oplus \mathcal{E}(A) \implies \mathcal{J}(\mathfrak{G}) \leq_{\Sigma} J(\emptyset)$$

and, therefore, for a set a set $A \notin \Sigma_3^0$ we have $\mathfrak{J}(\mathfrak{G}) \not\equiv_{\Sigma} J(\emptyset) \oplus \mathcal{E}(A)$ for every 1-family \mathfrak{G} .

Proof. (Sketch) Let us look on the jump of $\mathcal{J}(\mathfrak{G}) = \mathcal{J}(\mathfrak{M}_{\mathfrak{G}})$ for 1-families \mathfrak{G} . Due [Kalimullin and Puzarenko 2009] all Σ -predicates in $\mathfrak{M}_{\mathfrak{G}}$ can be encoded in the sets

$$A_1 \oplus A_2 \oplus \cdots \oplus A_m \oplus E(\mathfrak{G}),$$

where $A_i \in \mathcal{G}$ and the set $E(\mathcal{G}) = \{u : (\exists A \in \mathcal{G}) [D_u \subseteq A]\}$ codes the \exists -theory of $\mathfrak{M}_{\mathcal{G}}$. But the family of jumps of these sets can not fully represent the jump of the whole \mathcal{G} since we need to keep the information when a jump for a tuple A_1, \ldots, A_m is an extension of the jump for a tuple $A_1, \ldots, A_m, A_{m+1}$. It is more easily to identify $\mathcal{J}(\mathcal{G})$ up to $\equiv_{\mathcal{L}}$ with the following structure $\mathfrak{J}(\mathcal{G})$ in the language $\sigma = \{r, I^1, R^2, \circ^2\}$.

Consider the families

$$\mathcal{K}(\mathfrak{G}) = \{J(A) : A \in E(\mathfrak{G}) \oplus \mathfrak{G}\}$$
 and

$$\mathcal{M}(\mathfrak{G}) = \{ J(A) : A \in \langle E(\mathfrak{G}) \oplus \mathfrak{G} \rangle_{\oplus} \},\,$$

where $\langle \cdot \rangle_{\oplus}$ is the \oplus -closure of a class of sets.

Fix a structures $\mathfrak{K} \cong \mathfrak{M}_{\mathfrak{K}(\mathfrak{S})}$ and $\mathfrak{M} \cong \mathfrak{M}_{\mathfrak{M}(\mathfrak{S})}$ such that

$$|\mathfrak{K}| \cap |\mathfrak{M}| = \{r^{\mathfrak{K}}\} = \{r^{\mathfrak{M}}\}.$$

Let $|\mathfrak{J}(\mathfrak{G})| = |\mathfrak{K}| \cup |\mathfrak{M}|, r^{\mathfrak{J}(\mathfrak{G})} = r^{\mathfrak{K}}$ and

$$I^{\mathfrak{J}(\mathfrak{G})}(x) \iff I^{\mathfrak{K}}(x) \vee I^{\mathfrak{M}}(x),$$

$$R^{\mathfrak{J}(\mathfrak{S})}(x,y) \iff R^{\mathfrak{K}}(x,y) \vee R^{\mathfrak{M}}(x,y),$$

 $I^{\mathfrak{J}(\mathfrak{S})}(x) \iff I^{\mathfrak{K}}(x)$

for all $x, y \in |\mathfrak{J}(\mathfrak{G})|$. The binary operation \circ is defined on $I^{\mathfrak{J}(\mathfrak{G})}$ by such a way that $(I^{\mathfrak{J}(\mathfrak{G})}, \circ)$ is a free non-associative algebra with the set of free generators $I^{\mathfrak{J}(\mathfrak{G})} = I^{\mathfrak{K}}$ such that

$$J(X) = A_i \& J(Y) = A_j \implies J(X \oplus Y) = A_{i \circ j}.$$

Suppose that

$$\mathfrak{J}(\mathfrak{G}) \leq_{\Sigma} J(\emptyset) \oplus \mathcal{E}(A) = \{J(\emptyset) \oplus \{2n, 2n+1\} : n \in \omega\} \cup \{J(\emptyset) \oplus \{2n\} : n \in A\}$$

by some Σ -formula Φ . For simplicity we assume that Φ has no parameters.

Note that the structure $\mathfrak{M}_{J(\emptyset)\oplus\mathcal{E}(A)}$ is bi-embeddable with $\mathfrak{M}_{J(\emptyset)\oplus\mathcal{H}_1} \leq_{\Sigma} J(\emptyset)$, where

$$J(\emptyset) \oplus \mathcal{H}_1 = \{J(\emptyset) \oplus \{2n, 2n+1\} : n \in \omega\}.$$

Moreover, they are densely bi-embeddable in the sense that for every finite substructure $\mathfrak{M}_0 \subseteq \mathfrak{M}_{J(\emptyset) \oplus \mathcal{E}(A)}$ there is a substructure $\mathfrak{M}_0 \subseteq \mathfrak{M}_1 \subseteq \mathfrak{M}_{J(\emptyset) \oplus \mathcal{E}(A)}$ such that $\mathfrak{M}_1 \cong \mathfrak{M}_{J(\emptyset) \oplus \mathcal{H}_1}$, and vice versa. Considering the same formula Φ in $\mathbb{HF}(\mathfrak{M}_{J(\emptyset) \oplus \mathcal{H}_1})$ we get a structure \mathfrak{L} densely bi-embeddabe with $\mathfrak{J}(\mathfrak{G})$. But $J(X) \subseteq J(Y)$ implies J(X) = J(Y) so that this is possible only if $\mathfrak{J}(\mathfrak{G}) \cong \mathfrak{L}$. Hence, $\mathfrak{J}(\mathfrak{G}) \cong \mathfrak{L}$ $\mathfrak{J}(\mathfrak{G}) \cong \mathfrak{L}$ $\mathfrak{L}(\mathfrak{G}) \cong \mathfrak{L}$ $\mathfrak{L}(\mathfrak{G}) \cong \mathfrak{L}(\mathfrak{G}) \cong \mathfrak{L}(\mathfrak{G})$

In the case when Φ has parameters instead of \mathcal{H}_1 we should consider a 1-family in the form

$$\mathcal{H}_1 \cup \{n_1\} \cup \{n_2\} \cup \cdots \cup \{n_k\},\$$

where the finite collection $n_1, \ldots, n_k \in A$ depends from these parameters to preserve the dense bi-embeddability property up to finitely many constants.

To prove the second part of the theorem suppose that $\mathcal{J}(\mathfrak{G}) \equiv_{\Sigma} J(\emptyset) \oplus \mathcal{E}(A)$. Then by the first part $\mathcal{J}(\mathfrak{G}) \leq_{\Sigma} \mathcal{J}(\emptyset)$. From another hand, by Theorem 6

$$A \leq_{\Sigma} \mathcal{J}(\mathcal{E}(A)) \leq_{\Sigma} \mathcal{J}^{2}(\mathcal{G}) \leq_{\Sigma} \mathcal{J}^{2}(\emptyset) \equiv_{\Sigma} J^{2}(\emptyset),$$

so that $A \in \Sigma_3^0$.

Since $\mathcal{J}(\mathcal{E}^2(A)) \equiv_{\Sigma} J(\emptyset) \oplus \mathcal{E}(A)$ by Theorem 6 we have also the following

Corollary 9. For a set a set $A \notin \Sigma_3^0$ there is no 1-family \mathfrak{G} such that $\mathfrak{G} \equiv_{\Sigma} \mathcal{E}^2(A)$, so that the least double jump inversion of a 0-family A can not be replaced by a 1-family.

Acknowledgments

The research of the first author was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, project no. 1.1515.2017/PP. The research of the third author was supported by RFBR Grant No. 15-01-08252.

References

- [Montalbán 2009] Montalbán, A.; "Notes on the jump of a structure". In Mathematical Theory and Computational Practice (eds K. Ambos-Spies, B. Lwe & W. Merckle), pp. 372-378. Lecture Notes in Computer Science, vol. 5635. Berlin, Germany: Springer.
- [Puzarenko 2009] Puzarenko, V.G.; "A certain reducibility on admissible sets"; Sib. Mat. Zh. [in Russian], 50, 2 (2009), 415-429.
- [Stukachev 2009] Stukachev, A.I.; "A jump inversion theorem for the semilattices of Σ -degrees"; Sib. Élektron. Mat. Izv., 6 (2009) 182-190.
- [Kalimullin and Puzarenko 2009] Kalimullin, I.S., Puzarenko, V.G.; "Reducibility on families"; Algebra Log. [in Russian], 48, 1 (2009), 31-53.
- [Kalimullin and Faizrahmanov 2016 (a)] Kalimullin, I. Sh., Faizrakhmanov M. Kh.: "A Hierarchy of Classes of Families and n-Low Degrees"; Algebra i Logika [in Russian], 54, 4 (2015) 536-541.
- [Faizrahmanov and Kalimullin 2016 (b)] Faizrahmanov, M., Kalimullin, I.: "The Enumeration Spectrum Hierarchy of n-Families"; Math. Log. Q., 62, 4-5 (2016) 420-426.
- [Faizrahmanov and Kalimullin 2016 (c)] Faizrahmanov, M. Kh., Kalimullin, I.S.; "The Enumeration Spectrum Hierarchy and Low $_{\alpha}$ Degrees"; J. Univ. Comp. Sc., 22, 7 (2016) 943-955.
- [Ershov 1996] Ershov, Yu. L.; "Definability and Computability"; Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1996).