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ON THE n-BACK-AND-FORTH TYPES OF BOOLEAN ALGEBRAS

KENNETH HARRIS AND ANTONIO MONTALBÁN

Abstract. The objective of this paper is to uncover the structure of the back-and-
forth equivalence classes at the finite levels for the class of Boolean algebras. As an
application, we obtain bounds on the computational complexity of determining the
back-and-forth equivalence classes of a Boolean algebra for finite levels. This result
has implications for characterizing the relatively intrinsically Σ0

n relations of Boolean
algebras as existential formulas over a finite set of relations.

1. Introduction

The program of effective mathematics is concerned with computational aspects of
mathematical structures. One asks questions like the following: what is the simplest
way to represent a certain structure? Given two isomorphic computable structures,
what conditions guarantee that some isomorphism is computable? Or, that every iso-
morphism is computable? What conditions on a relation in a computable structure
guarantee that the image of the relation in any computable copy of the structure is
computable? Or, that the image is computably enumerable? How do solutions to these
problems generalize within the hyperarithmetic hierarchy?

Each of the questions in the previous paragraph has been resolved by providing an
effective version of the classical construction of isomorphisms by the back-and-forth
method. (See [AK00, Chapters 16-18] for a statement and resolution of each of these
questions.) Answering these questions for a specific class of structures requires an anal-
ysis of the complexity of the back-and-forth relations on those structures. This paper
provides such an analysis of the back-and-forth relations at finite levels for Boolean
algebras in order to apply the effective back-and-forth methods for building computable
copies of Boolean algebras.

The back-and-forth method, or the method of extension of partial isomorphisms,
originated with Cantor’s stepwise construction of an isomorphism between any two
countable dense linear orders without endpoints. The method is basic in model the-
ory, for example, in the proof that any two countably homogeneous models realizing
the same types are isomorphic. Langford extended the application of the method to
show that any two dense linear orders without endpoints were elementarily equivalent
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(regardless of their cardinality). Ehrenfeucht and Fräıssé gave a purely algebraic char-
acterization of elementary equivalence in first-order structures in terms of families of
partial isomorphisms with a (one-at-a-time) back-and-forth property. Karp generalized
this characterization and showed that the mathematical framework where the technique
is naturally expressed is the infinitary logic L∞ω. For more details on this history and
Karp’s contribution, see [Bar73] or [Dic85, Section 4].

The investigation of general back-and-forth techniques in the context of effective
mathematics started with the work of Ash on α-systems in [Ash86b] and [Ash86a]. The
objects studied are countable structures over a computable language, and the construc-
tions are over computable ordinals. Ash and Knight produced a general metatheorem
for applying the α-system machinery. The backbone for applying the metatheorem is
a hierarchy of back-and-forth relations on finite approximations of the construction.
The construction in the Ash and Knight metatheorem can be viewed as a hierarchy of
worker constructions, where the worker at each level has limited information about the
structure to be constructed; the back-and-forth relations ensure that mistakes made by
workers at lower levels can be repaired at higher levels later in the construction. Success
in the construction depends on the workers at each level having access to the appropriate
back-and-forth relations to guide their constructions. (See [AK00, Chapters 13 and 14]
for more details.) To apply the metatheorem to a particular type of structure, one has
to understand how the back-and-forth relations behave for that structure. These rela-
tions have been determined for some types of structure. Ash studied the back-and-forth
relations on well-orderings [Ash87] and on superatomic Boolean algebras [Ash86b]; Ash
and Knight [AK00] studied vector spaces; Barker [Bar95] and Calvert [Cal05] studied
reduced Abelian p-groups; and Csima, Montalbán and Shore [CMS06] analyzed satu-
rated Boolean algebras.

We are interested in the back-and-forth relations for Boolean algebras at finite levels
of the hierarchy of back-and-forth relations. Let L be the language of Boolean algebras
and Lω1ω the infinitary language allowing countable conjunctions and disjunctions, but
finite nesting of quantifiers. The subclasses of infinitary formulas Σn and Πn have
n alternations of existential and universal quantifiers (counting infinite disjunctions
as existential quantification and infinite conjunctions as universal quantification). We
write Σn(A) (Πn(A)) for the set of Σn (Πn) sentences true in A. The n-back-and-forth
relation between two Boolean algebras holds when Πn(A) ⊆ Πn(B) (or, equivalently,
when Σn(B) ⊆ Σn(A), see Subsection 2.3). We write A ≤n B when either of these two
conditions is obtained and A ≡n B when both A ≤n B and B ≤n A.

Our first aim in this paper is to provide a combinatorial characterization of the n-
back-and-forth equivalence classes. We aim for a map Tn(·) on Boolean algebras so
that

A ≡n B ⇐⇒ Tn(A) = Tn(B);

furthermore, we want the object given by Tn(A) to be computationally simpler than
Σn(A), so that determining whether Tn(A) = Tn(B) is, ideally, computable. One of the
main results of this paper is to produce invariants which satisfy these two conditions
(Section 7). The definition of these invariants is based on a modification of a topological



ON THE n-BACK-AND-FORTH TYPES OF BOOLEAN ALGEBRAS 3

invariant defined by Flum and Ziegler [FZ80]. To each countable Boolean algebra A,
we assign an object, Tn(A), which encodes how A may be partitioned into a finite
join of elements. Let INVn be the set of possible values of Tn(A) (we will show that
INVn is countable). On the elements of INVn, we define a partial ordering ≤n, a
binary operation +, and a function (·)n−1 : INVn → INVn−1 satisfying the following
properties for all Boolean algebras A and B:

Tn(A) ≤n Tn(B) ⇐⇒ A ≤n B,
Tn(A) + Tn(B) = Tn(A⊕ B),

(Tn(A))n−1 = Tn−1(A)

(where A⊕B is the directed sum of A and B). The definitions are purely combinatorial,
and the structures (given for each n)

(INVn,≤n,+, (·)n)

are uniformly computable in n.
The key to our investigation of the n-back-and-forth types are n-indecomposable

Boolean algebras:

Definition 3.1. A Boolean algebra A is n-indecomposable if for any partition of A
into subalgebras, A = A0 ⊕ . . .⊕Ak, there is an i ≤ k such that A ≡n Ai.

We summarize the main results about n-indecomposable algebras.

(a) For each n, there are only finitely many n-back-and-forth equivalence classes among
the n-indecomposable algebras (Theorem 3.17).

(b) Every Boolean algebra can be decomposed into a finite sum of n-indecomposable
subalgebras (Theorem 3.13).

(c) These decompositions fully determine the n-back-and-forth equivalence classes among
all Boolean algebras (Lemma 3.14).

BFn will denote the set of invariants in INVn which correspond to n-indecomposable
Boolean algebras. By (b) and (c), INVn is finitely generated by BFn under +. The
general n-back-and-forth invariants, INVn, record all the possible ways an algebra can
be partitioned into finitely many n-indecomposable subalgebras, up to n-back-and-forth
equivalence.

A second aim of this paper is to provide an analysis of the computational complexity
of the relations on a Boolean algebra A determined by Tn(A � a) ≥n σ for a ∈ A and
σ ∈ INVn. We use, for this purpose, the hierarchy of computable infinitary formulas,
Σc
n and Πc

n, which restricts conjunctions and disjunctions to computably enumerable sets
of formulas (see Subsection 2.2). The important property of this class is that for any
formula φ(x) ∈ Πc

n, the relation {a ∈ A : A |= φ(a)} is Π0
n. We show that for each

σ ∈ INVn, there is a Πc
n formula φcσ(x) and a Πc

n+1 formula ψcσ(x) such that for each
a ∈ A,

A |= φcσ(a) ⇐⇒ Tn(A � a) ≥n σ
A |= ψcσ(a) ⇐⇒ Tn(A � a) ≤n σ

(Lemmas 8.10 and 8.11).
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One application of these invariants is a quantifier elimination result for Σc
n+1 formu-

las. Let Rσ be the unary predicate which holds of an element a ∈ A if and only if
Tn(A � a) ≥n σ; then, from the previous paragraph, the set {a ∈ A : A |= Rσ(a)} is a
Π0
n(A) subset of A for any σ ∈ INVn. We show that every Σc

n+1 formula in the lan-
guage of Boolean algebras is equivalent to a Σ0

1 formula over the finitely many additional
predicates Rα, for α ∈ BFn.

Theorem 8.12. Let B be a Boolean algebra, R ⊆ B and n ∈ ω. The following are
equivalent.

(1) R is relatively intrinsically Σn+1. That is, if A ∼= B and (A, Q) ∼= (B, R), then
Q is a Σ0

n+1(A) subset of A.
(2) R is explicitly Σn+1. That is, R can be defined in B by a computable infinitary

Σc
n+1 formula.

(3) There is a 0(n)-computable sequence {ϕi : i ∈ ω} of finitary Σ1 formulas over
the predicates Rα, for α ∈ BFn, such that

x ∈ R ⇐⇒
∨
i∈ω

ϕi(x).

The equivalence between the first two statements is due to Ash, Knight, Manasse,
Slaman; Chisholm (see [AK00, Theorem 10.1]).

This theorem says that the finitely many predicates, Rα for α ∈ BFn, essentially
give all the structural information about a Boolean algebra that can be computed in n
Turing jumps. The bound on the complexity of the sequence {ϕi : i ∈ ω} cannot be
improved from 0(n) because the Σc

n+1 formulas are strong enough to code any Σ0
n+1 set

(see Section 2.2 for further details).
We also have a characterization of when the Σc

n+1-diagram of a Boolean algebra A
(that is, the Σc

n+1 sentences with constants from A which are true in A) is Σ0
n+1.

Theorem 8.13. Let A be a presentation of a Boolean algebra. The following are equiv-
alent.

(a) The Σc
n+1-diagram of A is a Σ0

n+1 set of formulas.

(b) The relations Rα(A) are computable in 0(n) for each α ∈ BFn.

A Boolean algebra is n-approximable if it satisfies either of the conditions in the
theorem. Note that being n-approximable is a property of a presentation of a Boolean
algebra rather than a property of the isomorphism type of a Boolean algebra. Of course,
every computable Boolean algebra is n-approximable; and every lown Boolean algebra is
also n-approximable. The main open question is whether every n-approximable Boolean
algebra has a computable copy. This is true for n ∈ {1, 2, 3, 4}: Downey and Jockusch
[DJ94] proved that every low Boolean algebra has a computable copy; this was ex-
tended by Thurber [Thu95] to low2 Boolean algebras, and by Knight and Stob [KS00]
to low4. Each proof proceeds by showing that any n-approximable Boolean algebra
has an (n − 1)-approximable copy, for n ∈ {1, 2, 3, 4}. It is still open whether every
5-approximable Boolean algebra has a computable copy. It is sufficient here to show
that every 5-approximable Boolean algebra has a 4-approximable copy. A motivation
for this work is to obtain a better understanding of the presentations of n-approximable
algebras in order to provide a means of determining whether every lown Boolean algebra
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has a computable copy. To this end, we have enumerated BFn for n ∈ {1, 2, 3, 4, 5} in
Section 6.

We mention two antecedents of our work. Jockusch and Soare [JS94] produced finitely
many invariants for the back-and-forth relations on Boolean algebras through level two,
as well as topological invariants for the Stone space of a Boolean algebra along the same
lines as Flum and Ziegler [FZ80]. Pavel Alaev [Ala04] described the back-and-forth
relations on Boolean algebras through level four by means of numerical invariants and
used these invariants in combination with an extension of the Ash-Knight α-system
machinery.

2. Preliminaries

2.1. Boolean algebras. Boolean algebras will be taken to be countable and in the
signature ∧,∨,−, 0, 1, but otherwise we follow the standard reference [Mon89]. Boolean
algebras will be denoted by A,B, C and their elements by a, b, c. We abbreviate a ≤ b
for a ∧ b = a and denote the relative algebra by A � a = {b ∈ A : b ≤ a}.

A partition of an element a in a Boolean algebra A is a finite sequence a0, . . . , ak of
pairwise disjoint elements (that is, ai ∧ aj = 0 when i 6= j) such that a = a0 ∨ . . . ∨ ak;
a partition of a Boolean algebra A is a partition of its unit, 1A. We write a = (ai)i≤k
to mean that a0, . . . , ak is a partition of a. If (ai)i≤k is any sequence of elements from
A, then a sequence (bi,j)i≤k,j≤`i is a refinement of (ai)i≤k if ai =

∨
j≤`i bi,j. If (ai)i≤k and

(bj)j≤` are partitions, then there is a common refinement partition (ci,j)i≤k,j≤` (where
ci,j = ai ∧ bj) satisfying ai =

∨
j≤` ci,j and bj =

∨
i≤k ci,j. Note that any finite sequence

of elements (ai)i≤k can be refined to a partition (cj)j≤2k , where each cj is of the form∧
i≤k bi and each bi is ai or −ai.

An ultrafilter U of a Boolean algebra A is a nonempty, proper subset of A satisfying

(Uf.a) For any partition (ai)i≤k of A, ai ∈ U for some i ≤ k.
(Uf.b) For all a ∈ U , if b ≥ a, then b ∈ U .
(Uf.c) For all a, b ∈ U , a ∧ b ∈ U .

For any a ∈ U , we write U � a for the set {b ∈ U : b ≤ a}. If U is an ultrafilter on A,
then U � a is an ultrafilter onA � a. Conversely, if U is an ultrafilter onA � a, then there
is a unique ultrafilter U on A with U ⊆ U ; it is given by U =

{
x ∈ A : x ∧ a ∈ U

}
.

The set of ultrafilters of A is denoted by Ult(A). There is a natural topology on Ult(A),
the Stone space of A, determined by the basic open sets Oa = {U ∈ Ult(A) : a ∈ U}
for a ∈ A. This topological space is Hausdorff, compact and zero-dimensional – see
[Mon89, §7].

2.2. Syntax. We will be working in a predicate language appropriate for countable
Boolean algebras, Lω1ω, which allows conjunctions and disjunctions over arbitrary count-
able sets of formulas and finite nesting of quantifiers. The non-logical signature includes
the Boolean operators ∧,∨,−, and constants 0, 1; the logical symbols are the connec-
tives

∧
(countable conjunction),

∨
(countable disjunction), ¬ (negation), the quantifiers

∃ and ∀, and = (identity). We will also write a = a0 ∨̇ . . . ∨̇ ak to emphasize that
a0, . . . , ak is a partition of a. All formulas have only finitely many distinct free variables.
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Satisfaction of formulas of Lω1ω in a Boolean algebra is defined in the natural way, and
A |= φ(a0, . . . , ak) means A satisfies the formula φ(x0, . . . , xk) at the tuple of elements
(a0, . . . , ak).

The subclass of formulas in normal form will be denoted by Σn and Πn and defined
inductively for n ∈ ω. The Σ0 and Π0 formulas are the finitary open formulas (that
is, quantifier-free formulas with no infinite disjunctions or conjunctions). For n > 0, a
Σn formula is a countable disjunction of formulas of the form ∃xψ, where x is a finite
sequence of variables and ψ ∈ Πm for some m < n. Similarly, a Πn formula is a countable
conjunction of formulas of the form ∀xψ, where x is a finite sequence of variables and
ψ ∈ Σm for some m < n. The negation of a Σn formula is logically equivalent to a Πn

formula (see [AK00, Lemma 6.1]).
The class of computable infinitary formulas, Lcω1ω

, was introduced in [Ash86b] and
restricts conjunctions and disjunctions to computably enumerable sets of formulas. We
provide an informal description of the class Σc

n and Πc
n for n ∈ ω, although the definitions

can be extended over the computable ordinals. The Σc
0 and Πc

0 formulas are the finitary
open formulas. The computable infinitary Σc

n+1 formulas are restricted to disjunctions
over a c.e. set of formulas of the form ∃xψ, where x is a finite sequence of variables and
ψ ∈ Πc

m for some m ≤ n. The computable infinitary Πc
n+1 formulas are restricted to

conjunctions over a c.e. set of formulas of the form ∀xψ, where x is a finite sequence
of variables and ψ ∈ Σc

m for some m ≤ n. The important fact about computable
infinitary formulas is that the complexity of the formula matches the complexity of
its interpretation. If ϕ(x0, . . . , xk) ∈ Σc

n, then the set of tuples (a0, . . . , ak) for which
A |= ϕ(a0, . . . , ak) is Σ0

n(A), and if ϕ(x0, . . . , xk) ∈ Πc
n, then the set of tuples (a0, . . . , ak)

for which A |= ϕ(a0, . . . , ak) is Π0
n(A). See [AK00, Chapter 7] for a formal definition

of the computable infinitary formulas and their properties. Our use of the notation Σc
n

and Πc
n was used in [AK90], although not in [AK00].

The sentences in Σc
n+1 are strong enough to code any Σ0

n+1 set in the following sense.

For any Σ0
n+1 set X = W 0(n)

e there is a computable sequence of Σc
n+1 sentences 〈θe,k〉k∈ω

such that k ∈ X implies θk ≡ > and k 6∈ X implies θk ≡ ⊥ (see [AK00, Theorem 7.9]).
Let ψk be a Σc

2 sentence stating there are exactly k elements in the universe; that is,

∃x1 . . . xk∀y
[ ∨

1≤i≤k

y = xi ∧
∧

1≤i<j≤k

xi 6= xj
]
.

For n ≥ 1, the sentence θe,k ∧ ψk is Σc
n+1. By dovetailing computable disjunctions, the

sentence ϕe :=
∨
k∈ω(θe,k ∧ ψk) can be rewritten equivalently as a Σc

n+1 sentence. Now,
A |= ϕe if and only if |A| = k for some k ∈ X.

2.3. Back-and-forth relations. We refer the reader to [AK00, Chapter 15, especially
§15.3.4] for more details on back-and-forth relations in Boolean algebras.

The back-and-forth relation on Boolean algebras, A ≤n B, was defined in the in-
troduction as Πn(A) ⊆ Πn(B), or equivalently Σn(B) ⊆ Σn(A). However, it is more
convenient to use an alternative characterization. The two accounts of ≤n converge in
Theorem 2.3.

Definition 2.1. The relation ≤n on Boolean algebras is defined by recursion on n ∈ ω.
Let A and B be Boolean algebras. Define A ≤0 B if either both A and B are the
one-element Boolean algebra or neither is; define A ≤n+1 B if for every partition (bi)i≤k
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of B, there is a partition (ai)i≤k of A such that B � bi ≤n A � ai for all i ≤ k. We write
A ≡n B when both A ≤n B and B ≤n A .

For a ∈ A and b ∈ B define a ≤n b if A � a ≤n B � b. For any partition (ai)i≤k of A
and (bi)i≤k of B, we write (ai)i≤k ≤n (bi)i≤k if ai ≤n bi for each i ≤ k. So, A ≤n+1 B
if and only if for every partition (bi)i≤k of B, there is a partition (ai)i≤k of A with
(bi)i≤k ≤n (ai)i≤k.

The following is essentially from [AK00, Lemma 15.12].

Lemma 2.2. Let (ai)i≤k be a partition of A and (bi)i≤k be a partition of B satisfying
(a)i≤k ≤n (b)i≤k. Then A ≤n B.

Proof. The proof is by induction on n ∈ ω. The result is trivial for the basis case n = 0.
Suppose the statement of the lemma is true for n. Let (ai)i≤k be a partition of A and
(bi)i≤k be a partition of B satisfying (ai)i≤k ≤n+1 (bi)i≤k. To show A ≤n+1 B, consider
any partition (dj)j≤` of B, and let (bi,j)i≤k,j≤` be the common refinement with (bi)i≤k, so
that dj =

∨
i≤k bi,j and bi =

∨
j≤` bi,j. Then, for each i ≤ k there is a partition (ai,j)j≤`

of ai where ai,j ≥n bi,j. Let cj =
∨
i≤k ai,j, so that by the inductive hypothesis cj ≥n dj.

Thus, (cj)j≤` is a partition of A with (cj)j≤` ≥n (dj)j≤`. Since (dj)j≤` was arbitrary, we
have A ≤n+1 B by Definition 2.1. �

The next theorem connects the syntactic characterization of back-and-forth relations
from the introduction with the characterization by partitions (see [AK00, Proposition
15.1]).

Theorem 2.3. Let (ai)i≤k be a partition of A and (bi)i≤k be a partition of B. Then for
any n ∈ ω the following are equivalent.

(1) (ai)i≤k ≤n (bi)i≤k.
(2) The Σn formulas true of (bi)i≤k in B are true of (ai)i≤k in A.
(3) The Πn formulas true of (ai)i≤k in A are true of (bi)i≤k in B.

Since Σn,Πn ⊂ Σn+1, we have the following.

Corollary 2.4. If A ≤n+1 B, then A ≡n B.

3. Indecomposable algebras

Indecomposable Boolean algebras are the essence of our analysis of back-and-forth
invariants. Heuristically, an indecomposable algebra is one which is similar to one of
its subalgebras regardless of how it is split, where similarity captures some equivalence
relation on Boolean algebras of interest. For example, when the relation is that of
isomorphism, a pseudo-indecomposable Boolean algebra A is one satisfying A ∼= A � a
or A ∼= A � −a for each a ∈ A. In this paper we are interested in the family of
back-and-forth equivalence relations ≡n for n ∈ ω.

Definition 3.1. A Boolean algebra A is n-indecomposable if for any partition (ai)i≤k
of A, there is an i with A ≡n A � ai.

We will show in Theorem 4.1 that this definition is equivalent to the condition that
A ≡n A � a or A ≡n A �−a for any a ∈ A. We will also say more at the end of
Section 7 about the relation between pseudo-indecomposable algebras and the notion
of indecomposable captured in this definition.
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It is more convenient to approach the characterization of n-indecomposable algebras
from a different viewpoint. We start with the topological characterization of the n-types
of accumulation points in the Stone space of the algebra and impose an additional rela-
tion, ≤n, on these n-types. It follows from the work of Flum and Ziegler [FZ80] that for
every ultrafilter U of a Boolean algebra A, there is an a ∈ U (the basic neighborhood Oa
of U in the Stone space) such that for every b ∈ U with b ≤ a (equivalently in the Stone
space, Ob ⊆ Oa), the Boolean algebrasA � b are all ≡n-equivalent. (See [Hei81] or [FZ80,
Part II, §1, C] for further discussion of the classification of the accumulation points in a
Stone space. Knowledge of this material is not presupposed in what follows.) We classify
accumulation points in the Stone space using equivalence classes under ≡n, the n-back-
and-forth types; we use these types to pick-out the n-indecomposable algebras (see
Definition 3.5). The key theorems are that every Boolean algebra can be decomposed
into finitely many n-indecomposable types (Theorem 3.13) and that the n-back-and-
forth types are invariants for n-indecomposable algebras (Theorem 3.17). These two
theorems allow us to describe invariants for the n-back-and-forth equivalence classes
of all Boolean algebras by decomposing algebras into finitely many n-indecomposable
subalgebras (see Section 7). The heuristic approach to n-indecomposability from Defi-
nition 3.1 and our more technically involved definition in terms of accumulation points
(Definition 3.5) converge in Theorem 4.1. In Section 6 we provide a description of all
n-back-and-forth types for n ≤ 5.

3.1. Indecomposable types. In Definition 3.6, we will define finite partial orderings
(ABFn,≤n) where the elements of ABFn+1 are subsets of ABFn. The reader could
jump ahead and read Definition 3.6 now, though it might look too technical at first. We
call the elements of ABFn n-bf-types. Before actually defining these partial orderings,
we define invariant maps tn : Ult(A) → ABFn and commence to assign n-bf-types to
Boolean algebras.

Definition 3.2. For X ⊂ ABFn, we let maxX be the antichain of ≤n-maximal ele-
ments of X.

Definition 3.3. We assume A is not the trivial one element algebra. To each ultrafilter
U of a Boolean algebra A and each n ∈ ω, we assign an n-bf-type as follows.

t0(U) = ∗, where ∗ is a new symbol.

t̂n+1(U) =
{
α ∈ ABFn : ∀a ∈ U ∃V ∈ Ult A

[
V 6= U & a ∈ V & tn(V ) = α

]}
.

tn+1(U) = max t̂n+1(U).

The definition is usefully rephrased in topological terms on the Stone space: t̂n+1(U)
consists of the elements α ∈ ABFn such that U is an accumulation point of {V ∈
Ult(A) : tn(V ) = α}. (In the Stone space, the elements a ∈ U correspond to basic
clopen neighborhoods of U , U ∈ Oa; so α ∈ t̂n+1(U) if each basic clopen neighborhood
of U meets {V ∈ Ult(A) : tn(V ) = α} in a point distinct from U .)

To each nonzero element a ∈ A, we assign an n-bf-type as follows. For n = 0,
let t0(a) = ∗. Given tn, let t̂n+1(a) ⊂ ABFn be the set of α ∈ ABFn such that
there are infinitely many distinct ultrafilters V with a ∈ V and tn(V ) = α; then, let
tn+1(a) = max t̂n+1(a). (In the Stone space, α ∈ t̂n+1(a) if the clopen neighborhood Oa
contains infinitely many points of {V ∈ Ult(A) : tn(V ) = α}.)
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We extend the map to Boolean algebras A by tn(A) = tn(1A).

The invariants defined in [FZ80] just iterate the function t̂n, and do not mention the
antichain of maximal elements; nor do they consider any ordering on the set of invariants.
The reason we need to use this refined version of their invariants is that we are seeking an
invariant that corresponds to the hierarchy of n-back-and-forth equivalence relations.
Both our n-invariants and Flum and Ziegler’s record information on how a Boolean
algebra can be partitioned into (n − 1)-invariants. Our invariants record exactly the
amount of information necessary to decide the n-back-and-forth relations (Definition
2.1).

Definition 3.4. For X ⊂ ABFn, we let dcX ⊂ ABFn be the ≤n-downward closure
of X.

Definition 3.5. For n > 0 an element a ∈ A is n-indecomposable for ultrafilter U 3 a
if (i) tn(U) = tn(a) and (ii) for all V 6= U with a ∈ V , tn−1(V ) ∈ dc tn(a).

For n = 0, every nonzero a ∈ A is 0-indecomposable for any ultrafilter U 3 a.
A Boolean algebraA is n-indecomposable for ultrafilter U ⊂ A if 1A is n-indecomposable

for ultrafilter U .

We will show in the next section that the following are equivalent for a Boolean
algebra A: A is n-indecomposable for the ultrafilter U ; A ≡n A � a for all a ∈ U ; and,
for every partition (ai)i≤k of A there is some i ≤ k with A ≡n A � ai.

In this section, when we write that A is n-indecomposable, we mean that it is n-
indecomposable for some ultrafilter U .

We now define the abstract n-bf-types, ABFn (n ∈ ω). The model for the relation
≤n on ABFn is Definition 2.1 of the n-back-and-forth relation on Boolean algebras and
its consequence Corollary 2.4.

Definition 3.6. By recursion on n, we define a finite set ABFn (for n > 0, a collection
of subsets of ABFn−1), a relation ≤n on the subsets of ABFn−1 (so a relation on ABFn

by restriction), and a map (·)n−1 : ABFn → ABFn−1.

• Let ABF0 = {∗} and ∗ ≤0 ∗.
• For α ⊆ ABFn, let (α)n = max{(γ)n−1 : γ ∈ α}, if n > 0; and let (α)0 = ∗.
• For α, β ⊆ ABFn, let α ≤n+1 β if (α)n ≡n (β)n and ∀δ ∈ β∃γ ∈ α (γ ≥n δ).
• For α, β ⊆ ABFn, let α ≡n+1 β if α ≤n+1 β and β ≤n+1 α.
• Let ABFn+1 be the set of ≤n-antichains of ABFn.

Not all these n-bf-types can be realized in a Boolean algebra (hence the name abstract
n-bf-types). We will provide conditions that describe which of the n-bf-types are realized
in some Boolean algebra in Section 5. Later on, we will use BFn to denote only the set
of n-bf-types which are realized as tn(A) for some n-indecomposable A. For now, we
work with ABFn, the set of all abstract n-bf-types, realizable or not.

We introduce the following convenient notation.

Notation 3.7. Let n ≥ 1, α, β ∈ ABFn, and γ ∈ ABFn−1.

• We will write γ ∈wα when γ ∈ dcα (that is, there is a δ ∈ α with δ ≥n−1 γ).
• We will write α ≤w

n β when dc β ⊆ dcα (that is, for every δ ∈ β, there is a γ ∈ α
with δ ≤n−1 γ). We will write α <w

n β if α ≤w
n β but not β ≤w

n α.
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This notation will be useful because given a Boolean algebraA that is n-indecomposable
for ultrafilter U and V ∈ Ult(A) with V 6= U , both tn−1(V ) ∈w tn(A) and tn(A) ≤w

n

tn(V ) hold. (This is a consequence of Lemma 3.10.)
Note that if α, β ⊆ ABFn are ≤n-antichains and α ≡n+1 β, then α = β. The reason

is that if γ ∈ α, then there is a δ ∈ β and ξ ∈ α so that so that γ ≤n δ ≤n ξ. Thus,
γ = ξ = δ by the maximality of γ, and so α ⊆ β. Similarly, β ⊆ α.

As in the definitions above, in the next few lemmas, it could be useful for the reader
to keep in mind the Stone space Ult(A) of the Boolean algebra being considered. For
example, if U ∈ Ult(A) and a, b ∈ A, one could read a ∈ U as U ∈ Oa, and a ≤ b as
Oa ⊆ Ob.

3.2. Proof of compactness. This subsection and the next are dedicated to showing
that ≤n, tn(·), (·)n−1, and n-indecomposables have the properties claimed. The proofs
are mostly combinatorial and not very hard. We recommend the reader to read the
statements and comments, and skip the proofs in a first read of the paper.

Lemma 3.8. Let n ≥ 0 and α, β ∈ ABFn+1.

(a) α ≤n+1 β if and only if α ≤w
n+1 β and (α)n ≡n (β)n.

(b) α ≤w
n+1 β implies (α)n ≤w

n (β)n.
(c) α ≡n+1 β if and only if α ≤w

n+1 β and β ≤w
n+1 α.

(d) α ≤n+1 β if and only if (α)n ≥w
n (β)n and α ≤w

n+1 β.

It follows from (c) that every α ⊆ ABFn is ≡n+1-equivalent to the antichain of its
≤n-maximal elements.

Proof. (a). This follows from the definition of ≤n+1.
(b). Pick δ ∈ (β)n and let δ′ ∈ β be such that (δ′)n−1 = δ. By hypothesis there is

a γ ∈ α with δ′ ≤n γ. So, δ = (δ′)n−1 ≡n−1 (γ)n−1 ∈w (α)n. Since δ was arbitrary,
(α)n ≤w

n (β)n.
(c). The direction (⇒) follows from (a). We now show (⇐). Assume for α, β ⊆ ABFn

that β ≤w
n+1 α and α ≤w

n+1 β. By (b) we have that (α)n = (β)n. Then, by (a), we have
that β ≤n+1 α and α ≤n+1 β as wanted.

(d). The direction (⇒) follows from (a). For the other direction, by (b), (α)n ≤w
n (β)n

and then by (c) and hypothesis, (α)n ≡n (β)n. Then, use (a) again. �

The following facts are easily verified, and will be appealed to without comment:

• a ≤ b implies tn(b) ≤w
n tn(a).

• a = a0 ∨ . . . ∨ ak implies tn(a) ≡n max∪itn(ai).

The assignments tn respect the operation (·)n−1.

Lemma 3.9. Let A be any Boolean algebra.

(1) tn(U) ≡n
(
tn+1(U)

)
n
, for every U ∈ Ult A.

(2) tn(a) ≡n
(
tn+1(a)

)
n
, for every a ∈ A.

Proof. (1): The proof is by induction, where the basis case n = 0 is trivial. Assume it
is true for n− 1. We show (i) tn(U) ≤w

n

(
tn+1(U)

)
n

and (ii)
(
tn+1(U)

)
n
≤w
n tn(U). The

conclusion follows by Lemma 3.8.c.
For (i), suppose that α ∈ tn+1(U) with

(
α
)
n−1
∈
(
tn+1(U)

)
n
. Then for any a ∈

U there is an ultrafilter V 3 a distinct from U with tn(V ) = α. By the inductive
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hypothesis, tn−1(V ) ≡n−1

(
tn(V )

)
n−1

= (α)n−1, and hence (α)n−1 ∈ t̂n(U). So, by

the definition of tn(U), there is a γ ∈ tn(U) with (α)n−1 ≤n−1 γ. We conclude that
tn(U) ≤w

n

(
tn+1(U)

)
n
.

For (ii), we will prove the stronger condition that tn(U) ⊆
(
tn+1(U)

)
n
. Let α ∈ tn(U)

and suppose for reductio that there is no β ∈ tn+1(U) with (β)n−1 ≡n−1 α; that is, for
each β ∈ ABFn with (β)n−1 ≡n−1 α, there is aβ ∈ U such that no V 3 aβ distinct from
U satisfies tn(V ) = β. Since ABFn is finite, list the n-bf-types with (β)n−1 ≡n−1 α
as {β0, . . . , β`}, and choose witnesses {aβ0 , . . . , aβ`} as by the reductio supposition. Let
a =

∧
i≤` aβi , so that a ∈ U , and let V 3 a distinct from U with tn−1(V ) = α. Then by

the inductive hypothesis,
(
tn(V )

)
n−1

= α, so that tn(V ) = βi (for some i ≤ `). But then

aβi ∈ V contradicting the choice of aβi . Thus, for some β ∈ ABFn with (β)n−1 ≡n−1 α
we have β ∈ tn+1(U).

(2): We will show (i) tn(a) ≤w
n

(
tn+1(a)

)
n

and (ii)
(
tn+1(a)

)
n
≤w
n tn(a). The conclusion

follows by Lemma 3.8.c.
For (i), suppose α ∈ tn+1(a) with (α)n−1 ∈

(
tn+1(a)

)
n
. Then there are infinitely many

ultrafilters V 3 a with tn(V ) = α. By (1), for each such V , tn−1(V ) ≡n−1

(
tn(V )

)
n−1

,

so that for some γ ∈ tn(a), (α)n−1 ≤n−1 γ.
For (ii), suppose α ∈ tn(a). Since ABFn is finite, there is a β ∈ ABFn with

infinitely many ultrafilters V 3 a satisfying tn(V ) = β and (β)n−1 ≡n−1 α. So, there is
a γ ∈ tn+1(a) with β ≤n γ, and thus (γ)n−1 ≡n−1 (β)n−1 ≡n−1 α. �

The next three lemmas are dedicated to proving that for every ultrafilter U of A and
for every n, there exists a ∈ U such that a is n-indecomposable for U (Lemma 3.12.1).

Lemma 3.10. Let n > 0. Then for every ultrafilter U and every a ∈ U , tn(a) ≤w
n tn(U).

In particular, if A is n-indecomposable for ultrafilter U and V ∈ Ult(A) is distinct from
U , then tn−1(V ) ∈w tn(A) and tn(A) ≤w

n tn(V ).

Note that a ∈ U does not imply that tn(a) = tn(U).

Proof. Fix a, an ultrafilter U 3 a, and let α ∈ tn(U). We argue by induction that for
each k ∈ ω there are at least k ultrafilters containing a whose (n− 1)-bf-type is α and
are each distinct from U . Given k such ultrafilters V0, . . . , Vk−1, there is a b < a with
b ∈ U − Vi for all i < k. By the definition of tn(U), there is an ultrafilter Vk distinct
from U with b ∈ Vk and tn−1(Vk) = α. Thus, we have a ∈ Vk, and Vk is distinct from U
and each Vi (i < k). This completes the induction. From the definition of tn(a), there
is a γ ∈ tn(a) such that α ≤n−1 γ.

For the second part of the lemma, note that tn−1(V ) ∈w tn(A) by Definition 3.5 and
tn(A) ≤w

n tn(V ) by the first part of the lemma, since 1A ∈ V . �

Lemma 3.11. For every ultrafilter U , there is an a ∈ U such that tn(U) = tn(a).

Proof. Let U be an ultrafilter for the Boolean algebra A. We show that if a ∈ U and
tn(a) <w

n tn(U), then there is a b ∈ U with b < a and tn(a) <w
n tn(b) ≤w

n tn(U). The
lemma follows as tn(1A) ≤w

n tn(U) (by Lemma 3.10) and tn(1A) is a finite set.
Suppose a ∈ U and tn(a) <w

n tn(U); let α ∈ tn(a) but no γ ∈ tn(U) satisfies α ≤n−1 γ.
For each γ ≥n−1 α there is a cγ ∈ U for which there is no ultrafilter V 3 cγ distinct
from U with tn−1(V ) = γ. Let I = {γ : γ ≥n−1 α} and b = a ∧

∧
γ∈I cγ. So, b ∈ U and

for no γ ≥n−1 α is it the case that γ ∈ tn(b). Thus, tn(a) <w
n tn(b) ≤w

n tn(U). �
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Lemma 3.12.

(1) For every ultrafilter U , there is an a ∈ U which is n-indecomposable for U .
(2) If a is n-indecomposable for an ultrafilter U , then every b ∈ U � a is also n-

indecomposable for U .

Proof. (1): Let U be an ultrafilter. By Lemma 3.11 there exists b ∈ U with tn(b) =
tn(U). For each α ∈ ABFn−1, let kα be the number of ultrafilters (possibly infinite)
V 6= U with b ∈ V and α = tn−1(V ). Since tn(b) = tn(U), for every α 6∈w tn(U),
kα is finite. Let U = {V ∈ Ult(A) : b ∈ V & V 6= U & tn−1(V ) 6∈w tn(U)}. The
set U is finite. So, there exists a ≤ b with a ∈ U but a 6∈ V for any V ∈ U . Since
tn(b) ≤w

n tn(a) ≤w
n tn(U) = tn(b), we have that tn(a) = tn(U). Also, for any V with

a ∈ V , since V 6∈ U , tn−1(V ) ∈w tn(U). It follows that a is n-indecomposable for U .
(2): Let a be n-indecomposable for ultrafilter U and b ∈ U � a. We show that b

satisfies conditions (i) and (ii) of Definition 3.5 for U . Since b ≤ a, tn(U) = tn(a) ≤w
n

tn(b) ≤w
n tn(U), so tn(U) = tn(b), and (i) holds. Since (ii) holds of a, b ≤ a and

tn(a) = tn(b), (ii) holds of b. �

From now on we will only apply the map tn to n-indecomposable algebras.

The following compactness theorem follows from the compactness of Ult(A), and
plays a key role in the development that follows.

Theorem 3.13. For every n ∈ ω and every Boolean algebra A, there is a partition
(ai)i≤k of A where each ai is n-indecomposable.

Proof. For each ultrafilter U , fix aU ∈ U which is n-indecomposable for U . Since Ult(A)
is a compact topological space, the open covering {OaU : U ∈ Ult(A)} has a finite sub-
covering. We include a proof of this: Suppose, toward a contradiction, that for every
finite set {aU0 , . . . , aUk}, we have 1A 6= aU0 ∨ . . .∨aUk . So 0A 6= −aU0 ∧ . . .∧−aUk . Thus,
there is a (proper) ultrafilter V extending the set

{
− aU : U ∈ Ult A

}
(see [Mon89,

Proposition 2.16]). But, in this case, aV ,−aV ∈ V which contradicts V is proper.
Thus, there are n-indecomposable elements aU0 , . . . , aU` for filters U0,. . . ,U` such that

1A = aU0 ∨ . . . ∨ aU` . Using Lemma 3.12.2 we may refine (aUi)i≤` to a partition of A as
required. �

3.3. Proof of invariance. Our goal now is to show that for n-indecomposable Boolean
algebras A and B, A ≤n B if and only if tn(A) ≤n tn(B).

The following lemma refines the definition of the n-back-and-forth relations.

Lemma 3.14. For all Boolean algebras A and B and for every n ∈ ω, A ≤n+1 B if
and only if for every partition (bi)i≤k of B into n-indecomposables, there is a partition
(ai)i≤k of A such that (bi)i≤k ≤n (ai)i≤k.

Note that there is no claim that the partition of A given by the theorem is into
n-indecomposables. Indeed, this may not be possible (see example 7.21).

Proof. (⇒) follows from Definition 2.1. For (⇐): given any partition (bi)i≤k, we can
refine this partition into a partition of n-indecomposables using Theorem 3.13 on B � bi;
then, apply Lemma 2.2 to the matching partition from A. �
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Lemma 3.15. Let a be (n+ 1)-indecomposable for ultrafilter U and α ∈ ABFn.

(1) If α ∈w tn+1(a), then for any k ∈ ω there is a partition (ai)i≤k of a with a0 ∈ U
and α ≤n tn(ai) (for 1 ≤ i ≤ k), where each ai is n-indecomposable for some
ultrafilter.

(2) If (ai)i≤k is a partition of a with a0 ∈ U and each ai (1 ≤ i ≤ k) is n-
indecomposable for some ultrafilter, then tn(ai) ∈w tn+1(a) for each 1 ≤ i ≤ k.

Proof. (1). Suppose that α ∈w tn+1(a), so that for some γ ∈ ABFn, α ≤n γ ∈ tn+1(a).
Then there are distinct ultrafilters V1, . . . , Vk, all distinct from U , with a ∈ Vi and
γ = tn(ai) for i ≤ k (see proof of 3.10). Fix a1, . . . , ak < a such ai is n-indecomposable
for Vi but ai 6∈ U, Vj for any j 6= i. Moreover, choose the ai to be pairwise disjoint. Let
a0 = a− (a1 ∨ . . . ∨ ak), then a0 ∈ U .

(2). Let a = a0 ∨̇ . . . ∨̇ ak where a0 ∈ U and each ai (1 ≤ i ≤ k) is n-indecomposable
for some ultrafilter Vi . Then Vi 6= U and a ∈ Vi, so that tn(Vi) ∈w tn+1(a) by condition
(ii) of Definition 3.5. Thus, tn(ai) ∈w tn+1(a), for i ≥ 1. �

The following gives one-half of a back-and-forth characterization of when n-indecomposable
algebras have the same n-bf-type (the converse follows by Theorem 3.17 and Lemma
4.3).

Lemma 3.16. Let n > 0 and A and B be n-indecomposable for ultrafilters U and
V , respectively. If tn(B) ≤n tn(A) then for every partition (ai)i≤k of A into (n − 1)-
indecomposable elements, there is a partition (bi)i≤k of B into (n − 1)-indecomposable
elements with tn−1(ai) ≤n−1 tn−1(bi) for each i ≤ k.

Proof. Suppose that tn(B) ≤n tn(A). Note that tn(V ) ≤n tn(U) and tn(1B) ≤n tn(1A).
The proof is by induction on the length of the partition k, where k = 0 holds by
supposition. Suppose for induction that

for any partition (ci)i≤k−1 ofA where c0 ∈ U and each ci is (n−1)-indecomposable,
there is a partition (di)i≤k−1 of B where d0 ∈ V , each di is (n−1)-indecomposable,
and such that tn−1(ci) ≤n−1 tn−1(di) for each i < k.

Consider any partition (ai)i≤k ofA, where a0 ∈ U and each ai is (n−1)-indecomposable.
Then, a0 ∨ ak ∈ U and is n-indecomposable for U (since 1A is n-indecomposable for
U by Lemma 3.12.2). By the inductive hypothesis there is a matching partition of B,
(bi)i≤k−1, where b0 ∈ V (so n-indecomposable by Lemma 3.12.2), each bi is (n − 1)-
indecomposable, and such that tn−1(ai) ≤n−1 tn−1(bi) for all i < k. Since b0 ∈ V and
(a0 ∨ ak) ∈ U and both are n-indecomposable, it follows that tn(b0) ≤n tn(a0 ∨ ak).

As ak is (n−1)-indecomposable, let Uk be an ultrafilter for which for which it is (n−1)-
indecomposable; and let α = tn−1(ak) = tn−1(Uk). Since a0 ∨ ak is n-indecomposable,
there exists some γ ∈ tn(a0 ∨ ak) with α ≤n−1 γ. But then there is a δ ∈ tn(b0) with
γ ≤n−1 δ, so that there is an ultrafilter Vk 3 b0 distinct from V with tn−1(Vk) = δ.
Partition b0 as b′0 ∨̇ bk where bk is (n− 1)-indecomposable for Vk and b′0 ∈ V . Thus, we
have tn−1(ak) ≤n−1 tn−1(bk) and tn−1(a0) ≡n−1 tn−1(b

′
0). �

We arrive at the main result of this section.
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Theorem 3.17. Let A and B be n-indecomposable Boolean algebras. Then

A ≤n B ⇐⇒ tn(A) ≤n tn(B).

Proof. The proof is by induction on n. We will simultaneously prove the following result,
which will be of independent interest.

Lemma 3.18. Let a ∈ A be n-indecomposable and d0, . . . , dk ∈ B satisfy a ≤n
∨
i≤k di.

Then a ≤n di for some i ≤ k.

When n = 0 the lemma and the theorem hold trivially. We assume the theorem holds
for n − 1, and will later show that this implies that the lemma holds for n. First, we
use that the lemma holds for n to prove the theorem for n.

(⇐). Suppose tn(A) ≤n tn(B). To prove A ≤n B, consider any partition of B,
(bi)i≤k, into (n − 1)-indecomposables. (This is sufficient by Lemma 3.14.) By Lemma
3.16 there is a matching partition of A, (ai)i≤k, into (n− 1)-indecomposables such that
tn−1(bi) ≤n−1 tn−1(ai) (for each i ≤ k). By the inductive hypothesis, (bi)i≤k ≤n−1

(ai)i≤k.
(⇒). Suppose A ≤n B, where A is n-indecomposable for ultrafilter U and B is n-

indecomposable for ultrafilter V . Then, A ≡n−1 B, so by the inductive hypothesis,
tn−1(A) ≡n−1 tn−1(B); and thus,

(
tn(A)

)
n−1
≡n−1

(
tn(B)

)
n−1

by Lemma 3.9.2. To

conclude tn(A) ≤n tn(B), it remains to show tn(A) ≤w
n tn(B). Let β ∈ tn(B). There is a

partition (b0, b1, b2) of B into (n− 1)-indecomposables with b0 ∈ V and tn−1(bi) ≥n−1 β
(for i ∈ {1, 2}) by Lemma 3.15.1. Since β ∈ tn(B) we must actually have tn−1(bi) = β
(for i ∈ {1, 2}). There is a matching partition (a0, a1, a2) of A with bi ≤n−1 ai for
i ∈ {0, 1, 2}. Since A is n-indecomposable for U , there is some i ≤ 2 such that ai is
n-indecomposable for U ; for this i, a0 ∨ ai ∈ U , so that a0 ∨ ai ≡n ai ≡n 1A. We also
have b0 ∨ bi ∈ V , so that b0 ∨ bi ≡n b0 ≡n 1B. Thus, b0 ∨ bi ≡n−1 a0 ∨ ai. In what follows
we will consider a partition (b0, b1) of B with b0 ∈ V and tn−1(b1) = β, and a partition
(a0, a1) of A with a0 ∈ U and bi ≤n−1 ai for i ∈ {0, 1}.

We complete the proof assuming Lemma 3.18 holds for n − 1. Partition a1 further
into (n − 1)-indecomposables, (a′j)j≤m, so that a1 =

∨
j≤m a

′
j. Since b1 is (n − 1)-

indecomposable for some ultrafilter and b1 ≤n−1

∨
j≤m a

′
j, it follows by Lemma 3.18

that b1 ≤n−1 a
′
j (for some j ≤ m), and thus by the inductive hypothesis, tn−1(b1) ≤n−1

tn−1(a
′
j). Since β = tn−1(b1) ≤n−1 tn−1(a

′
j) and a′j is (n− 1)-indecomposable, it follows

by Lemma 3.15.2 that β ≤n−1 γ for some γ ∈ tn(A). Since β ∈ tn(B) was arbitrary, it
follows that tn(A) ≤w

n tn(B).

Proof of Lemma 3.18. We assume Theorem 3.17 holds for n − 1 and show the Lemma
for n.

We prove the following special case: For any a ∈ A which is n-indecomposable (for
ultrafilter U) and partition (b0, b1) of B, if a ≤n b0 ∨ b1 then a ≤n b0 or a ≤n b1. The
lemma then follows by induction using this special case.

Suppose a 6≤n b0 and let (di)i≤k be a partition of b0 with no matching partition (ai)i≤k
of a with (ai)i≤k ≥n−1 (di)i≤k. To show that a ≤n b1, consider any partition (ej)j≤` of
b1, so that by hypothesis there is a partition (ai)i≤k+` such that (di)i≤k ≤n−1 (ai)i≤k
and (ei)i≤` ≤n−1 (ak+i)i≤`. Since a is n-indecomposable for ultrafilter U , there is some
i ≤ k + ` with ai ∈ U and n-indecomposable for U . We will show that i > k. Suppose
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that i ≤ k, say a0 ∈ U . Then let d = a0 ∨̇ ak+1 ∨̇ . . . ∨̇ ak+` ∈ U which is n-
indecomposable for U . Thus, tn−1(a0) = tn−1(U) = tn−1(d), so that a0 ≡n−1 d by the
inductive hypothesis for Theorem 3.17, and (d, a1, . . . , ak) is a partition of a satisfying
(d, a1 . . . , ak) ≥n−1 (di)i≤k, contradicting our assumption about the partition (di)i≤k of
b0; so, we may assume ak+1 is n-indecomposable for U . Let e = ak+1 ∨̇ a0 ∨̇ . . . ∨̇ ak,
so e is n-indecomposable for U and ak+1 ≡n−1 e. Thus, (e, ak+2, . . . , ak+`) is a partition
of a with (ej)j≤` ≤n−1 (e, ak+2, . . . , ak+`). Since the partition (ej)j≤` of b1 was arbitrary,
it follows that a ≤n b1. �

This completes the proof of Theorem 3.17. �

4. An alternative characterization of n-indecomposable

We provide an equivalence between our heuristic definition of n-indecomposable types
(Definition 3.1) and our definition in terms of accumulation points in the Stone space
(Definition 3.5). Along the way we prove some useful properties of n-indecomposables.
Our main result here is:

Theorem 4.1. For any Boolean algebra A the following are equivalent:

(1) A is n-indecomposable for an ultrafilter U (as in Definition 3.5).
(2) There is an ultrafilter U such that A ≡n A � a for all a ∈ U .
(3) For every partition (ai)i≤k of A, there is some i ≤ k with A ≡n A � ai (as in

Definition 3.1).

We first prove (1)⇒ (2).

Lemma 4.2. For any Boolean algebra A, if A is n-indecomposable for an ultrafilter U ,
then A ≡n A � a for all a ∈ U .

Proof. If A is n-indecomposable for U , then for all a ∈ U , tn(A) ≡n tn(a) and a is
also n-indecomposable for U by Lemma 3.12.2. By Theorem 3.17, A ≡n A � a for all
a ∈ U . �

Lemma 4.3. For all Boolean algebras A and B and for every n ∈ ω, if A is (n + 1)-
indecomposable for ultrafilter U , then A ≤n+1 B if and only if for every partition (bi)i≤k
of B into n-indecomposables, there is a partition of (ai)i≤k of A into n-indecomposables
satisfying (bi)i≤k ≤n (ai)i≤k.

Note that we impose no condition on B as we did in Lemma 3.16.

Proof. (⇐). This follows by Lemma 3.14.
(⇒). Suppose A is (n + 1)-indecomposable for ultrafilter U and A ≤n+1 B. Let

(bi)i≤k be a partition of B into n-indecomposables. Since A is (n+ 1)-indecomposable,
by Lemma 3.18 we may assume that A ≤n+1 B � b0, which implies A ≡n B � b0.

By hypothesis, there is a partition (ai)i≤k of A satisfying (bi)i≤k ≤n (ai)i≤k, where the
ai may not be n-indecomposable. Partition each ai into n-indecomposables, (ai,j)j≤mi
(by Theorem 3.13). We will also assume bi ≤n ai,0 (for each i ≤ k) by Lemma 3.18. Since
A is (n+1)-indecomposable, by Lemma 4.2 there is some ai,j ∈ U so that A ≡n A � ai,j.
If j = 0 then let a′i,0 = ai,0 ∨

∨
`≤k
∨

1≤j≤m` a`,j, so that a′i,0 ∈ U and bi ≤n ai,0 ≡n a′i,0.
Otherwise, let a′0,0 = a0,0 ∨

∨
`≤k
∨

1≤j≤m` a`,j, so that a′0,0 ∈ U and b0 ≡n a′0,0. In
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either case, a′i,0 together with a`,0 (for ` 6= i) provide a matching partition of A into
n-indecomposables. �

Now we prove (2)⇒ (1) of Theorem 4.1.

Lemma 4.4. For any Boolean algebra A, if there is an ultrafilter U such that A ≡n
A � a for all a ∈ U , then A is n-indecomposable for U .

Proof. Let U be an ultrafilter such that A ≡n A � a for all a ∈ U . Let a ∈ U be
n-indecomposable for U (by Lemma 3.12.1). Then A ≡n A � a. Since a ≤ 1A, it follows
that tn(A) ≤w

n tn(a).
We will show the following:

(∗) For any V 6= U , tn−1(V ) ∈w tn(a).

Let V 6= U and choose pairwise disjoint (n − 1)-indecomposable elements b0 ∈ U and
b1 ∈ V ; then set b2 = 1A − (b0 ∨̇ b1). Since A � a ≤n A and a is n-indecomposable for
U , by Lemma 4.3 there is a partition of a, (a0, a1, a2), into (n− 1)-indecomposables for
some ultrafilter such that (b0, b1, b2) ≤n−1 (a0, a1, a2). By Theorem 3.17, we then have
tn−1(U) ≤n−1 tn−1(a0) and tn−1(V ) ≤n−1 tn−1(a1). First, suppose that a1 ∈ U . We have
that tn−1(a0) ∈w tn(a) by condition (ii) of Definition 3.5, as a0 is (n−1)-indecomposable
for some ultrafilter W 6= U . Thus, tn−1(U) ∈w tn(a). Since a1 ≤ a, by Lemma 3.12.2 a1

is n-indecomposable for U , and so

tn−1(V ) ≤n−1 tn−1(a1) ≡n−1 tn−1(U) ∈w tn(a).

Now, suppose that a1 6∈ U . Then it follows that tn−1(V ) ≤n−1 tn−1(a1) ∈w tn−1(a)
by condition (ii) of Definition 3.5, as a1 is (n − 1)-indecomposable for some ultrafilter
W 6= U . Thus, (∗) holds.

It follows from (∗) that tn(a) ≤w
n tn(A), and since tn(A) ≤w

n tn(a), from Lemma
3.8.c it follows that tn(A) ≡n tn(a) ≡n tn(U), and thus condition (i) of Definition 3.5
holds. Condition (ii) of Definition 3.5 follows straightforwardly from (∗) and tn(A) ≡n
tn(a). �

Since (2) =⇒ (3) follows from the property Uf.a of ultrafilters, there only remains
showing (3) =⇒ (2) to complete Theorem 4.1. Let A satisfy the conditions in (3),
so that for every partition (ai)i≤k of A, there is some i ≤ k with A ≡n A � ai. Say
a ∈ A is strongly n-equivalent to A if A � a ≡n A and for any partition (ci)i≤k of a,
there is some i with A ≡n A � ci. Note that (3) says that 1A is strongly n-equivalent to
A. We will show that for every a ∈ A which is strongly n-equivalent to A, there is an
ultrafilter U 3 a all of whose members are strongly n-equivalent to A. This ultrafilter
will also be sufficient for (2). The proof is by induction on n, where the basis case n = 0
is trivial, since every nonzero element of A is strongly 0-equivalent to A. Assume that
if a is strongly (n − 1)-equivalent to A, then there is an ultrafilter V 3 a all of whose
members are strongly (n− 1)-equivalent to A.

Claim 1. If a ∈ A is strongly n-equivalent to A, then for every partition (ai)i≤k of a,
there is an i with ai strongly n-equivalent to A.

Proof. Suppose a ∈ A is strongly n-equivalent to A and (ai)i≤k is a counterexample
to the claim. Then for each i, there is a partition (bi,j)j≤mi of ai for which there is no
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j ≤ mi with A ≡n A � bi,j. Now, (bi,j)i≤k,j≤mi is a partition of a with no i ≤ k, j ≤ mi

satisfying A ≡n A � bi,j, contradicting our assumption about a. �

Claim 2. If a is strongly n-equivalent to A and a ≤ b, then A ≡n A � b.

Proof. Since a is strongly n-equivalent to A, it is also strongly (n− 1)-equivalent to A,
so by the induction hypothesis there is an ultrafilter V 3 a all of whose members are
strongly (n− 1)-equivalent to A. It follows that a is (n− 1)-indecomposable for V .

We first show that A ≤n A � b. Let (bi)i≤k be a partition of b; so, (a ∧ bi)i≤k is a
partition of a. Thus, for some i ≤ k, a ∧ bi ∈ V , and in particular, A � a ∧ bi ≡n−1 A �
a ≡n−1 A. We may suppose i = 0; then let cj = bj and c0 = 1A − (b1 ∨ . . . ∨ bk). Thus,
(ci)i≤k is a partition of A and ci ≡n−1 bi for i > 0, and for i = 0 we have c0 ∈ V since
a∧b0 ∈ V and V is an ultrafilter. So, (ci)i≤k is a partition of A with (ci)i≤k ≥n−1 (bi)i≤k.
Thus, A ≤n A � b.

We now show that A � b ≤n A. Now, let (ci)i≤k be a partition of 1A. Since A �
a ≤n A, there is a partition (ai)i≤k of a with A � ci ≤n A � ai. We may also suppose
that a0 ∈ V since a ∈ V and V is an ultrafilter. Let bi = ai for i > 0 and b0 =
b− (a0 ∨ . . . ∨ ak), so that (bi)i≤k is a partition of b. We still have ci ≤n−1 bi for i > 0.
But, A � a0 ≡n−1 A � b0 since a0 ∈ V and a0 ≤ b0 implies b0 ∈ V . Thus, (bi)i≤k is a
partition of b with (ci)i≤k ≤n−1 (bi)i≤k, so that A � b ≤n A. �

Claim 3. If a is strongly n-equivalent to A and b ≥ a, then b is strongly n-equivalent
to A.

Proof. Let a be strongly n-equivalent to A and b ≥ a. Consider a partition (ci)i<` of
b. Then (ci ∧ a)i<` is a partition of a, and hence some ci ∧ a is strongly n-equivalent to
A by the first claim. But then, by the second claim, A � ci ≡n A. Since the partition
(ci)i<` of b was arbitrary, it follows that b is strongly n-equivalent to A. �

Let a be strongly n-equivalent to A and suppose that for every ultrafilter U 3 a,
there is an element bU ∈ U which is not strongly n-equivalent to A. Since Ult(A) is
compact, so is the clopen set Oa =

{
U ∈ Ult(A) : U 3 a

}
, and so there is a finite

set {bU0 , . . . , bU`} such that bU0 ∨ . . . ∨ bU` = a. (This argument is as given in the proof
of Theorem 3.13.) Then there is a partition (bi,j)i≤`,j≤mi of a with bUi =

∨
j≤mi bi,j.

Since none of the bUi are strongly n-equivalent to A, by the third claim none of the
bi,j can be strongly n-equivalent to A, contradicting the hypothesis that a is strongly
n-equivalent to A. Therefore, there is an ultrafilter U 3 a all of whose members are
strongly n-equivalent to A.

5. Realizable n-bf-indecomposable types.

In this section we characterize the ≤n-antichains of ABFn which are realized in some
(n+ 1)-indecomposable Boolean algebra.

Definition 5.1. We say that α ⊆ ABFn is realizable if there exists an (n + 1)-
indecomposable Boolean algebra A such that tn+1(A) = α. We use BFn to denote
the set of realizable antichains of ABFn−1.

Theorem 5.3 below gives a simple combinatorial property that characterizes the re-
alizable n-bf-types. Moreover, for every realizable n-bf-type, the proof explicitly builds
a (computable) Boolean algebra of that type.
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One reason why an antichain α ⊆ ABFn might not be realizable is the following.
Suppose δ ∈ γ ∈ α and tn+1(A) = α. Then A has infinitely many ultrafilters of n-
bf-type γ (see the proof of Lemma 3.10). Each of these ultrafilters is surrounded by
ultrafilters of (n−1)-bf-type δ. So A has infinitely many ultrafilters of (n−1)-bf-type δ.
Thus, there has to be some β ∈ BFn with (β)n−1 = δ such that A has infinitely many
ultrafilters of n-bf-type β. Note that β ∈wα and γ ≤w

n β by Lemma 3.10. Therefore, a
necessary condition for α to be realizable is that for every δ ∈ γ ∈ α there exists β ∈wα
with (β)n−1 = δ and γ ≤w

n β. This is the gist of Theorem 5.3.
We define another binary relation on ABFn.

Definition 5.2. For γ, δ ∈ ABFn, let γ /n δ if

(δ)n−1 ∈w γ & γ ≤w
n δ.

The reason why this relation is interesting comes from Lemma 3.10. If A is n-
indecomposable for U and V ∈ Ult(A), V 6= U , then tn(A) /n tn(V ). It is not hard to
show that /n is a transitive relation on ABFn. However, /n is not an ordering relation,
because for some γ ∈ ABFn we have γ /n γ, and for other γ ∈ ABFn, we have γ 6/n γ.
An example of this will be given later in Section 6, Example 6.3.

Theorem 5.3. An antichain α ⊆ ABFn is realizable if and only if every γ ∈ α is
realizable and

∀δ ∈ γ ∃β ∈ α (γ ≤wn β & (β)n−1 = δ).

Proof. For the “only if” part, suppose A is (n+ 1)-indecomposable for U , tn+1(A) = α,
and δ ∈ γ ∈ α. Then there are infinitely many ultrafilters V ∈ Ult(A) with tn(V ) = γ.
For each of these V , let aV ∈ A be n-indecomposable for V and let WV ∈ Ult(A � aV ) be
such that tn−1(WV ) = δ. So γ = tn(aV )/n tn(WV ) by Lemma 3.10. There is some β ∈ α
with tn(WV ) ≤n β for infinitely many WV ; and for any such WV , (β)n−1 = tn−1(WV ) ∈ γ
and γ ≤w

n tn(WV ) ≤w
n β. Therefore, for every δ ∈ γ ∈ α, there exists β ∈ α such that

(β)n−1 = δ and γ ≤w
n β.

For the “if” part, suppose α satisfies the condition of the theorem; we will construct
an (n + 1)-indecomposable Boolean algebra A with tn+1(A) = α. The construction of
A is essentially from [FZ80].

Note that for each γ ∈ α, the witness β in the condition of the theorem satisfies
γ /n β; moreover, the condition of the theorem implies that,

γ ≡n {(β)n−1 : β ∈ α, γ /n β}.
Let α′ = (α)n and α∞ = α∪{α′}. Then α′/nγ for each γ ∈ α, since the conditions of the
theorem imply γ ⊆ α′. So α = {β : β ∈ α, α′ /n β} and α′ ≡n {(β)n−1 : β ∈ α, α′ /n β}.
We note that /n is transitive and antisymmetric. However, there are some χ ∈ BFn for
which χ /n χ and others for which χ 6/n χ.

We will require two operations on Boolean algebras. The free product of ω copies
of A, denoted by

⊕
ωA, is the Boolean algebra whose domain consists of the infinite

sequences (ai : i ∈ ω) with ai ∈ A and such that either ai = 1A for cofinitely many
i ∈ ω, or ai = 0A for cofinitely many i ∈ ω. The Boolean algebra operations are defined
componentwise. (See [Mon89, Chapter 4, Section 11] for an equivalent definition and
some background.) The shuffle-product of a Boolean algebra A, denoted by

⊕
ηA, is
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the Boolean algebra whose domain consists of sequences (aσ : σ ∈ 2<ω) with aσ ∈ A
and such that for some j ∈ ω and for each τ ∈ 2j, either aσ = 1A for every σ ⊇ τ , or
aσ = 0A for every σ ⊇ τ . The Boolean algebra operations are defined componentwise.

For χ ∈ α∞, we define Aαχ as follows. Let Pα
χ = {ζ ∈ α : χ/n ζ, χ 6= ζ}. The definition

will be by recursion on the size of the set Pα
χ , since if ζ ∈ Pα

χ , then Pα
ζ ( Pα

χ .

(1) If Pα
χ = ∅ and χ 6/nχ, then let Aαχ be the two element Boolean algebra. If Pα

χ = ∅
and χ /n χ, then let Aαχ be the atomless Boolean algebra.

(2) If χ 6/n χ, or χ = α′ and α′ 6∈ α, then let

Aαχ =
⊕
ω

(
⊕
ζ∈Pαχ

Aαζ ).

(3) If χ /n χ and χ ∈ α, then let

Aαχ =
⊕
η

(
⊕
ζ∈Pαχ

Aαζ ).

Finally, let Aα = Aαα′ .
There are two key facts about Aαχ. The first fact is that every relative algebra Aαχ � a

of Aαχ is isomorphic to a finite sum of Boolean algebras isomorphic to either Aαζ for
χ /n ζ or to Aαχ; and, in case (2) of the definition above, Aαχ can appear at most once
in the sum. Here is a sketch of a proof. The proof is by induction on χ as ordered
by the relation /n. Let A =

⊕
ζ∈Pαχ

Aαζ ; so, by the induction hypothesis every relative

algebra of A is isomorphic to a finite sum of Boolean algebras isomorphic to Aαζ for
ζ ∈ Pα

χ . Suppose first that Aαχ was defined by case (2), i.e., that Aαχ =
⊕

ωA. Consider
a = (a0, a1, . . .) ∈ Aαχ, where ai ∈ A. If for some i0 ∈ ω, ∀i ≥ i0 (ai = 0A), then Aαχ � a

can be viewed as a relative algebra of
⊕i0

i=0A, and hence by the inductive hypothesis,
Aαχ � a is isomorphic to a finite sum of Boolean algebras isomorphic to Aαζ for χ /n ζ.
Otherwise, for some i0, ∀i ≥ i0 (ai = 1A). In this case we can view Aαχ � a as a relative

algebra of
⊕i0

i=1A plus a copy of Aαχ. Hence, by inductive hypothesis, Aαχ is isomorphic
to a finite sum of Boolean algebras isomorphic to either Aαζ for χ /n ζ or to Aαχ and Aαχ
appears once in the sum. Suppose now that Aαχ was defined by case (3), so Aαχ =

⊕
ηA.

Consider a = (aσ : σ ∈ 2<ω) ∈ Aαχ, where aσ ∈ A. So, there exists i0, such that for every

τ ∈ 2i0 , either aσ = 1A for every σ ⊇ τ , or aσ = 0A for every σ ⊇ τ . For τ ∈ 2i0 , define
eτ = (eτσ : σ ∈ 2<ω) ∈ Aαχ to be such that eτσ = 1A for σ ⊇ τ , and eτσ = 0A for σ 6⊇ τ .

Note that Aαχ � eτ ∼= Aαχ. There exists a finite set F ⊆ 2i0 such that a = b ∨̇
∨
τ∈F e

τ ,
where b = (bσ : σ ∈ 2<ω) and bσ = 0 for each σ ∈ 2<ω with |σ| ≥ i0. By the inductive
hypothesis, Aαχ � b is isomorphic to a finite sum of Boolean algebras isomorphic to Aαζ
for ζ ∈ Pα

χ . So, Aαχ is isomorphic to a finite sum of Boolean algebras isomorphic to
either Aαζ for ζ ∈ Pα

χ or Aαχ. This first fact implies that Aαχ is m-indecomposable for
every m. (Moreover, A is pseudo-indecomposable in the sense of [Pie89, §3] or [Hei92].)

The second fact is that for every ζ ∈ α, if χ /n ζ, then there are infinitely many
disjoint relative algebras of Aαχ isomorphic to Aαζ . From the first fact, only for ζ ∈ α
satisfying χ/n ζ will there be infinitely many disjoint relative algebras of Aαχ isomorphic
to Aαζ .
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It follows from these two facts that for every m ≤ n,

tm(Aαχ) ≡m {tm−1(Aαζ ) : ζ ∈ α, χ /n ζ}.

As we noted earlier for each χ ∈ α∞, χ ≡n {(ζ)n−1 : ζ ∈ α, χ /n ζ}; so, (χ)m ≡m
{(ζ)m−1 : ζ ∈ α, χ /n ζ} for each m ≤ n. It follows by induction on m ≤ n that
tm(Aαχ) = (χ)m for every χ ∈ α∞. Since α = {ζ : ζ ∈ α, α′ /n ζ}, it follows that Aα′ has
(n+ 1)-bf-type α as required. �

We remark that the construction of Aα in the proof from the “if” direction is com-
putable uniformly in α.

Corollary 5.4. There is a uniformly computable procedure taking realizable α ∈ BFn

to an n-indecomposable Boolean algebra Aα with tn(Aα) = α.

5.1. Interval algebras. It is easier to describe the examples from the construction in
Theorem 5.3 using interval algebras. Let L be a linear order with a smallest element.
We write Int

(
L
)
, the interval algebra of L, for the Boolean algebra generated from the

sets [x, y) where x ∈ L and y ∈ L∪ {+∞}. The elements of Int
(
L
)

are finite unions of
half-open intervals [x, y). Every countable Boolean algebra is isomorphic to an interval
algebra generated from some countable linear order. See [Mon89, Chapter 6, Section
15] for more information on interval algebras.

The operations we have been using on Boolean algebras correspond to operations on
linear orderings. For example, for linear orderings L0 and L1,

Int
(
L0

)
⊕ Int

(
L1

)
= Int

(
L0 + L1

)
.

It is also not hard to show that for every linear ordering L,⊕
ω

Int
(
L
)

= Int
(
L · ω

)
.

and ⊕
η

Int
(
L
)

= Int
(
(L+ 1) · η̆

)
,

where η is the order type of the rational numbers, and η̆ = (1 + η) is the order type of
the rationals in the interval [0, 1).

Now, given χ ∈ α∞, we define a linear ordering Iαχ as follows:

(1) If Pα
χ = ∅ and χ 6 /nχ, Iαχ = 1, the linear ordering with one element. If Pα

χ = ∅
and χ /n χ, then let Iαχ = η̆, the order type of the rationals in the interval [0, 1).

(2) If χ 6/n χ, or χ = α′ and α′ 6∈ α, then

Iαχ =
( ∑
ζ∈Pαχ

Iαζ
)
· ω.

(3) If χ /n χ and χ ∈ α, then

Iαχ =
( ∑
ζ∈Pαχ

Iαζ + 1
)
· η̆.



ON THE n-BACK-AND-FORTH TYPES OF BOOLEAN ALGEBRAS 21

Finally, let Iα = Iαα′ .
It is not hard to prove by induction on χ that Aαχ = Int

(
Iαχ
)

and Aα = Int
(
Iα
)
.

We will use this method to build examples of all bf-types through level five in Section
6. In some cases we can simplify the description of the linear ordering. The next lemma,
stated without proof, presents a couple of simplifications we will make.

Lemma 5.5. (a) η̆ · ω ∼= η̆ · η̆ ∼= η̆.
(b) Int

(
(L+ η̆) · ω

) ∼= Int
(
L · ω + η

)
.

6. Examples of Indecomposables

This section lists the realizable n-bf-types through level five and their relations. We
have used a computer program to generate the n-bf-types through level six, where there
are 1578 realizable 6-bf-types. The computer program and the list of 6-bf-types is
currently available online at the authors’ web pages.

The naming convention used provides a name for each bf-type of the form `i, where `
is a letter and i is a number. The letter signifies the level, where a is used for level 0 to
f for level 5 and g for level 6. The numbers distinguish types at a given level, and they
have been assigned by our computer program. Two particular kinds of back-and-forth
types are worth delineating.

Definition 6.1. We say α ∈ BFn is an isomorphism type if all Boolean algebras with
bf-type α are isomorphic.

We say α ∈ BFn is an exclusive type if for any n-indecomposable Boolean algebra
A with tn(A) = α and any partition (a0, . . . , ak) into (n− 1)-indecomposables, there is
exactly one i ≤ k with A � ai ≡n−1 A.

Several names (each at a different level) may denote the same isomorphism type. For
example, b0, c0, d0, e0, f0 and g0 all name the isomorphism type atom; the isomorphism
type atomless is denoted by c2, d4, e8, f26 and g1577. A necessary condition for an n-bf-
type to be an isomorphism type is that there is exactly one descendant at every level
m > n. (β ∈ BFm is a descendant of α ∈ BFn if m ≥ n and (β)n = α.) We conjecture
that a sufficient condition for an n-bf-type to be an isomorphism type is that it has
exactly one descendant at level n+1. We corroborate this conjecture for n ∈ {1, 2, 3, 4}
in the tables below.

On the other hand, a necessary and sufficient condition for a bf-type α ∈ BFn to be
an exclusive type is that (α)n−1 6∈wα. The simplest example of an exclusive type is b0,
the isomorphism type of an atom. The other exclusive types through level 4 are also
isomorphism types: d1 (the type of the algebra Int

(
ω
)
, or 1-atom) and e7 (the type of

the algebra Int
(
ω + η

)
).

In the tables of the bf-types through level 5 that follow, we label the exclusive types
by X and the isomorphism types by I in the column I/X. In the diagrams of the bf-
types through level 5 that follow, we identify the exclusive and isomorphism types by
using an enclosure as summarized in the following table.
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isomorphism type non-isomorphism type

exclusive type IX X

not exclusive ?> =<89 :;76 5401 23I

The interval algebras we provide in the tables for isomorphism types were obtained
by linearizing the construction from Theorem 5.3 , as explained in Subsection 5.1.

Up to level four, we describe the predicates Rα (see discussion in Introduction and
Definition 8.3) in terms of the Boolean algebra predicates used in [KS00]. The following
are the predicates used in [KS00].

• 1-predicates
– atom(x) ↔ Rb0 ↔ x is an atom,

• 2-predicates
– atomless(x) ↔ Rc2 ↔ there are no atoms below x,
– infinite(x) ↔ Rc1 ↔ x is not a join of finitely many atoms,

• 3-predicates
– atomic(x) ↔ Rd2 ∨ ¬Rc1 ↔ x has no atomless elements below,
– 1-atom(x) ↔ Rd1 ↔ whenever x = y ∨ z, exactly one of y and z is a finite

join of atoms,
– atominf(x) ↔ Rd3 ↔ there are infinitely many atoms below x,

• 4-predicates
– ∼-inf(x)↔ Rc1 & (¬Rd2∨Re2)↔ there are infinitely many ∼-nonequivalent

elements below x, where a ∼ b if the symmetric difference a4b = (a− b) ∨
(b− a) is finite.

– Int
(
ω+ η

)
(x)↔ Re7 ↔ atominf(x) and whenever x = y∨ z, there are only

finitely many atoms below either y or z.
– infatomicless(x) ↔ Re4 ∨ Re8 ∨ ¬Rc1 ↔ there is no infinite atomic element

below x,
– 1-atomless(x) ↔ Re5 ∨ Re3 ∨ Re8 ∨ ¬Rc1 ↔ there are no 1-atoms below x,
– nomaxatomless(x)↔ Re6 ↔ x is not a join of atomless and atomic elements

We note that them-predicates listed above are Boolean combinations of the predicates
Rα for α ∈ BFn for n ≤ m, and each of the predicates Rα for α ∈ BFm is a Boolean
combination of the n-predicates above for n ≤ m.

In the diagrams below, an arrow `i → `j means that `i ≥n `j at the level n being
considered. The parent of an n-bf-type α is (α)n−1, and we say that α is a child of (α)n−1.

0-indecomposable bf-type
Name Members Parent Rα I/X
a0 a0 non-zero element

1-indecomposable bf-types
Name Members Parent Rα I/X Example
b0 a0 atom IX Int

(
2
)

b1 a0 a0 non-zero Int
(
η̆
)
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2-indecomposable bf-types
Name Members Parent Rα I/X Example
c0 b0 atom IX Int

(
2
)

c1 b0 b1 infinite Int
(
ω
)

c2 b1 b1 atomless I Int
(
η̆
)

bf-predicates for 1- and 2-indecomposable bf-types

parent a0 b0 b1

b0 = {}

��

c0 = {} GF ED@A BC?> =<89 :;c2 = {b1}

��
b1 = {a0} c1 = {b0}

3-indecomposable bf-types
Name Members Parent Rα I/X Example
d0 c0 atom IX Int

(
2
)

d1 c0 c1 1-atom IX Int
(
ω
)

d2 c0, c1 c1 atomic & infinite Int
(
2 · η̆

)
d3 c0, c2 c1 atominf Int

(
ω + η

)
d4 c2 c2 atomless I Int

(
η̆
)

bf-predicates for 3-indecomposable bf-types

parent c0 c1 c2

d0 = {} d1 = {c0}

��

GF ED@A BC?> =<89 :;d4 = {c2}

d2 = {c0, c1}

��
d3 = {c0, c2}
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4-indecomposable bf-types
Name Members Parent Rα I/X Example
e0 d0 atom IX Int

(
2
)

e1 d0 d1 1-atom IX Int
(
ω
)

e2 d0, d1 d2 atomic & ∼-inf Int
(
ω2
)

e3 d0, d2 d2 atomic & ∼-inf & 1-atomless I Int
(
2 · η̆

)
e4 d0, d3, d4 d3 nomaxatomless & infatomicless Int

(
(2 + η) · η̆

)
e5 d0, d2, d4 d3 nomaxatomless & 1-atomless Int

(
2 · η̆ + η

)
e6 d0, d1, d4 d3 nomaxatomless Int

(
ω2 + η

)
e7 d0, d4 d3 Int

(
ω + η

)
IX Int

(
ω + η

)
e8 d4 d4 atomless I Int

(
η̆
)

In the next diagram we will omit the character ‘d’ and for example write e5={0,2,4}
instead of e5 = {d0, d2, d4}.

bf-predicates for 4-indecomposable bf-types

parent d0 d1 d2 d3 d4

e0={} e1={0} ?> =<89 :;76 5401 23e3={0,2}

��

e7={0,4}

��

?> =<89 :;76 5401 23e8={4}

e2={0,1} e4={0,3,4}

��
e5={0,2,4}

��
e6={0,1,4}
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5-indecomposable bf-types
Name Members Parent I/X Example - Int

(
·
)

f0 e0 IX 1
f1 e0 e1 IX ω
f2 e0, e1 e2 IX ω2

f3 e0, e1, e2 e2 ω2 · η̆
f4 e0, e1, e3 e2 ω2 + 2 · η
f5 e0, e3 e3 I 2 · η̆
f6 e0, e7, e8 e4 (ω + η) · ω
f7 e0, e1, e7, e8 e6 (ω + (ω + η)) · ω
f8 e0, e1, e2, e7, e8 e6 (ω2 · η̆ + (ω + η)) · ω
f9 e0, e1, e3, e7, e8 e6 (ω + 2 · η̆ + (ω + η)) · ω
f10 e0, e3, e7, e8 e5 (ω + η) · ω + 2 · η
f11 e0, e1, e6, e8 e6 (ω + η̆) · η̆
f12 e0, e1, e2, e6, e8 e6 (ω2 · η̆ + η̆) · η̆
f13 e0, e1, e3, e6, e8 e6 (ω + 2 · η̆ + η̆) · η̆
f14 e0, e1, e3, e5, e8 e6 ω2 + (2 · η̆ + η̆) · η
f15 e0, e3, e5, e8 e5 (2 · η̆ + η̆) · η̆
f16 e0, e4, e8 e4 I (2 + η) · η̆
f17 e0, e1, e4, e8 e6 (ω + 2 + η) · η
f18 e0, e1, e2, e4, e8 e6 (ω2 · η̆ + (2 + η) · η)
f19 e0, e1, e3, e4, e8 e6 (ω + 2 · η̆) · ω + (2 + η) · η
f20 e0, e3, e4, e8 e5 2 · η̆ + (2 + η) · η
f21 e0, e3, e8 e5 IX 2 · η̆ + η
f22 e0, e1, e3, e8 e6 X (ω + 2 · η̆ + η̆) · ω
f23 e0, e1, e2, e8 e6 X ω2 · η̆ + η
f24 e0, e1, e8 e6 IX ω2 + η
f25 e0, e8 e7 IX ω + η
f26 e8 e8 I η̆

We are not aware in the literature of a complete set of predicates identifying the
twenty-seven 5-bf-types ([KS00] and [Ala04] are through level four). In the following
diagrams we will omit the character ‘e’ and write for example f11={0,1,6,8} instead of
f11 = {e0, e1, e6, e8}.
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bf-predicates for 5-indecomposable bf-types

parent e0 e1 e2 e3

f0={} f1={0} f2={0,1}

��

GF ED@A BC?> =<89 :;f5={0,3}

f3={0,1,2}

��
f4={0,1,3}

parent e4 e5 e7 e8

GF ED@A BC?> =<89 :;f16={0,4,8}

��

f21={0,3,8}

��

f25={0,8} GF ED@A BC?> =<89 :;f26={8}

f6={0,7,8} f15={0,3,5,8}

��
f20={0,3,4,8}

��
f10={0,3,7,8}

parent e6

f24={0,1,8}

yytttttt
%%JJJJJJ

f11={0,1,6,8}

%%KKK
KKK

K

yysssssssssssssssssss
f23={0,1,2,8}

$$JJJ
JJJ

yyssssss

f12={0,1,2,6,8}

yyssssssssssssssssssss
%%KKKKKK

f22={0,1,3,8}

yytttttt

f17={0,1,4,8}

zzvvv
vvv

%%KKKKKK
f13={0,1,3,6,8}

yyrrrrrr

f7={0,1,7,8}

$$III
III

f18={0,1,2,4,8}

%%LLLLLL

yyssssss
f14={0,1,3,5,8}

yyrrrrrr

f8={0,1,2,7,8}

%%KKKKKK
f19={0,1,3,4,8}

yyrrrrrr

f9={0,1,3,7,8}

All bf-types through level four which are exclusive are also isomorphism types. How-
ever, not all exclusive types at level five are isomorphism types. Example 6.2 below
establishes that f22 and f23 are exclusive but not isomorphism types. It seems to be
significant for current proofs that every lown Boolean algebra has a computable copy
(for n ∈ {1, 2, 3, 4}), that the exclusive types at level n are isomorphism types.
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Example 6.2. The exclusive type f23 has children g1573 and g1574 at level six (both are
exclusive types):

(1) g1573 has members {f0, f1, f3, f26}.
(2) g1574 has members {f0, f1, f2, f26}.

Examples of Boolean algebras with 6-bfthese types are Int
(
(ω2 · η̆+ η̆) ·ω

)
and Int

(
(ω2 +

η̆) · ω
)

respectively.
Note that g1574 <6 g1573.

The exclusive type f22 has children g1569, g1570, g1571, g1572 at level six (all are exclusive
types):

(1) g1569 has members {f0, f1, f5, f26}.
(2) g1570 has members {f0, f1, f2, f5, f26}.
(3) g1571 has members {f0, f1, f3, f5, f26}.
(4) g1572 has members {f0, f1, f4, f5, f26}.

Examples of Boolean algebras with these 6-bftypes are Int
(
(ω+ 2 · η̆+ η̆) ·ω

)
, Int

(
(ω2 +

2 · η̆ + η̆) · ω
)
, Int

(
(ω2 · η̆ + 2 · η̆ + η̆) · ω

)
and Int

(
(ω2 + 2 · η + η̆) · ω

)
respectively.

Note that g1570 <6 g1571 <6 g1572 <6 g1569.

Example 6.3. Here is an example of an antichain of ABF2 which is not realizable.
Consider {c1} ⊆ BF2. One can easily check that it does not satisfy the property of
Theorem 5.3, but here is a more intuitive reason. Suppose, toward a contradiction
that A is a Boolean algebra of 3-bftype {c1}. Then, first A is infinite. Second, since
c0 6∈w {c1}, A cannot contain infinitely many atoms, and hence it must contain some
atomless element. If it contains an atomless element, it must contain infinitely many of
them. But this contradicts that c2 6∈w {c1}.

7. General back-and-forth invariants

In this section we define n-back-and-forth invariants for all Boolean algebras. Our
approach is to consider how a Boolean algebra partitions into n-indecomposable ele-
ments. There are two complications here: first, there may be infinitely many ways a
given Boolean algebra can be partitioned into n-indecomposable elements, and second,
≡n-equivalent Boolean algebras may not be partitionable into the same sequence of
n-indecomposable elements.

We start with multisets of BFn elements, and denote the collection of these by INVn.
(A multiset is a collection where multiplicity is counted and order is ignored.)

Definition 7.1. Let (INVn,+, 0) be the free commutative monoid with generators
BFn. That is + : INVn×INVn → INVn and 0 ∈ INVn satisfy for all ρ, σ, τ ∈ INVn:

(a) Associativity: (ρ+ σ) + τ = ρ+ (σ + τ),
(b) Commutativity: ρ+ σ = σ + ρ,
(c) Identity: 0 is the unique element of INVn satisfying ρ+ 0 = ρ = 0 + ρ.

A typical element of INVn is of the form α0 + . . . + αk, where each αi ∈ BFn. (We
will write this sum as

∑
i≤k αi.) We will use π, ρ, σ, τ to denote elements of INVn and

α, β, γ, δ to denote elements of BFn.
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Definition 7.2. We define a map T n from Boolean algebras to the powerset of INVn

by letting T n(A) be the set of
∑

i≤k tn(ai) ∈ INVn where (ai)i≤k is a partition of A
into n-indecomposables.

For a ∈ A, we define T n(a) to be T n(A � a).

The problem with T n(A) is that there are ≡n-equivalent Boolean algebras with differ-
ent images under T n. We refine this definition by introducing a combinatorial relation
≤n on INVn, which will be based on how these elements can be partitioned into se-
quences of elements of INVn−1. The n-back-and-forth types are ≡n-equivalence classes
of INVn, and the collection of these equivalence classes is denoted by INVn. We then
define a map from Boolean algebras to these equivalence classes, and show this provides
an invariant for the n-back-and-forth types of Boolean algebras (Theorem 7.14). To get
to the proof of Theorem 7.14, we need a sequence of lemmas about the relation ≤n on
INVn.

We start the section defining the notion of a partition for elements of BFn and of
INVn; we use these partitions to define the relation ≤n on INVn. Then, we prove
that the addition operation on INVn is compatible with the equivalence relation ≡n,
allowing us to define addition on ≡n-equivalence classes for the quotient INVn. Second,
we show that the relation ≤n on INVn is consistent with the relation ≤n on BFn

defined in Section 3. Third, we show that the relation ≤n on INVn is consistent with
the relation ≤n on the class of Boolean algebras defined in the introduction. Finally, we
show that determining whether two elements of INVn are in the same equivalence class
is computable (Corollary 7.19). Again, we recommend the reader skip the combinatorial
proofs in a first read of the paper.

7.1. Partitions of n-bf-types.

Definition 7.3. Given α ∈ BFn+1, a partition of α is a tuple (γi)i≤k of n-bf-types such
that γi0 ≡n (α)n for some i0 ≤ k and γi ∈wα for each i 6= i0.

Let (αi)i≤k and (βi)i≤k be sequences of n-bf-types. We write (αi)i≤k ≤n (βi)i≤k if
αi ≤n βi for all i ≤ k.

The next lemma shows how these partitions relate to partitions of Boolean algebras.

Lemma 7.4. Let A be an (n+ 1)-indecomposable Boolean algebra for an ultrafilter U .

(1) If (ai)i≤k is a partition of A into n-indecomposables, then
(
tn(ai)

)
i≤k is a parti-

tion of tn+1(A).
(2) If (αi)i≤k is a partition of tn+1(A), then there is a partition (ai)i≤k of A into

n-indecomposables such that (αi)i≤k ≤n
(
tn(ai)

)
i≤k.

Proof. (1). Let (ai)i≤k be a partition of A into n-indecomposables and a0 ∈ U . Since
a0 ∈ U , tn+1(a0) ≡n+1 tn+1(A), and so tn(a0) ≡n

(
tn+1(A)

)
n

by Lemma 3.9.2. It follows

from Lemma 3.15.2 that tn(ai) ∈w tn+1(A); and thus
(
tn(ai)

)
i≤k is a partition of tn+1(A).

(2). We argue by induction on k. The case of k = 0 trivially holds. Suppose (αi)i≤k+1

is a partition of tn+1(A) with α0 = tn(A); then (αi)i≤k is also a partition of tn+1(A).
By the induction hypothesis there is a partition (ai)i≤k of A into n-indecomposables
with a0 ∈ U such that (αi)i≤k ≤n

(
tn(ai)

)
i≤k. But, tn+1(a0) = tn+1(A) and a0 is

(n + 1)-indecomposable, so by Lemma 3.15.1 there is a partition (a′0, ak+1) of a0 into
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n-indecomposables with a′0 ∈ U and αk+1 ≤n tn(ak+1). Then (a′0, a1, . . . , ak+1) is the
desired partition of tn+1(A). �

Lemma 7.5. Let α, β ∈ BFn. Then β ≤n α if and only if for every partition (γi)i≤k of
α there is a partition (δi)i≤k of β such that (γi)i≤k ≤n−1 (δi)i≤k.

Proof. (⇒). Suppose β ≤n α. Then (β)n−1 ≡n−1 (α)n−1 and β ≤w
n α. Let (γi)i≤k be

a partition of α with γ0 = (α)n−1. Define a partition (δi)i≤k of β as follows: let δ0 be
(β)n−1 and, for each 1 ≤ i ≤ k, let δi ∈ β satisfy γi ≤n−1 δi (using β ≤w

n α). Then
(γi)i≤k ≤n−1 (δi)i≤k.

(⇐). By Lemma 3.8.d, we need only show β ≤w
n α and that (α)n−1 ≤n−1 (β)n−1. For

β ≤w
n α, fix any γ ∈ α. It is suffices to show that there is a δ ∈ β with γ ≤n−1 δ. Consider

the partition ((α)n−1, γ, γ) of α. Then by hypothesis there is a partition (δ0, δ1, δ2) of β
where γ ≤n−1 δi for i ∈ {1, 2}; furthermore, δi ∈w β for some i ∈ {1, 2}. Thus, there is
a δ ∈ β with γ ≤n−1 δi ≤n−1 δ.

To show (α)n−1 ≤n−1 (β)n−1 consider the one element partition of α, namely
(
(α)n−1

)
.

Since
(
(β)n−1

)
is the only one element partition of β, by hypothesis, we have that

(α)n−1 ≤n−1 (β)n−1. �

7.2. The n-back-and-forth relation on INVn. We now define a relation ≤n on
INVn. We will show later in Lemma 7.11 that this definition is an extension of the
relation ≤n on BFn. Before that, we will treat these two relations as different.

Definition 7.6. A decomposition of
∑

i≤s αi ∈ INVn is an element
∑

j≤t γj ∈ INVn−1

such that there is a partition X0, . . . , Xs of the set {0, . . . , t} where for each i the
sequence (γj)j∈Xi is a partition of αi. A partition of σ =

∑
i≤s αi ∈ INVn is a sequence

(σk)k≤r of elements of INVn−1 such that there is a decomposition
∑

j≤t βj of σ and

partition Y0, . . . , Yr of the set {0, . . . , t} where σk =
∑

j∈Yk βj.

Note that the elements γj of a decomposition as above are in BFn−1, while the
elements σk of a partition as above are in INVn−1. Also, note that the word partition
is being used with four different meanings: there are partitions of a set, partitions of
an element of a Boolean algebra, partitions of an element of BFn, and partitions of
an element of INVn. In the figure below we have

∑
i≤s,j≤mi βi,j is a decomposition of

σ =
∑

i≤s αi ∈ INVn, as for each i ≤ s, (βi,j)j≤mi is a partition of αi ∈ BFn. We also

have that (σk)k≤r is a partition of σ, where σk =
∑

i≤s βi,k ∈ INVn−1.

β1,1 β1,2 . . . . . . β1,m1 α1

β2,1 β2,2 . . . . . . β2,m2 α2

BFn−1 3
...

...
. . . . . .

...
... ∈ BFn

βs,1 βs,2 ... ... βs,ms αs
INVn−1 3 σ1 σ2 ... ... σr σ ∈ INVn

Definition 7.7. We define a relation ≤n on INVn by induction on n. For n = 0 and
σ, τ ∈ INV0, we let σ ≤0 τ if σ = 0 or τ 6= 0. For σ, τ ∈ INVn we let σ ≤n τ if for
every partition (ρi)i≤k of τ there is a partition (πi)i≤k of σ such that ρi ≤n−1 πi for each
i ≤ k. We write (ρi)i≤k ≤n−1 (πi)i≤k when ρi ≤n−1 πi for each i ≤ k.
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It follows by induction on n that ≤n is a transitive relation on INVn, where ≤0 is
clearly transitive. Let INVn to be the quotient of INVn over the equivalence relation
≡n and denote its elements by [σ] where σ ∈ INVn.

The next lemma shows that the operation + can be extended to INVn as a coset
operation.

Lemma 7.8. Let σi, τi ∈ INVn (for i ≤ m) be such that (σi)i≤m ≤n (τi)i≤m. Then∑
i≤m σi ≤n

∑
i≤m τi.

Proof. The proof is by induction on n. Suppose (σi)i≤m ≤n (τi)i≤m for sequences of
elements from INVn. Let τi =

∑
j≤ti βi,j and σi =

∑
j≤si αi,j. Fix any partition (ρj)j≤`

of
∑

i≤k τi, and let
∑

k≤t δk be a decomposition of
∑

i≤k τi for which there is a partition
{Xi,j} of {0, . . . , t} where (δk)k∈Xi,j is a partition of βi,j, and a partition {Yj} of {0, . . . , t}
where ρj =

∑
k∈Yj δk. Let Xi = ∪j≤tiXi,j, so that

∑
k∈Xi δk is a decomposition of τi.

Since σi ≤n τi there is a partition (γk)k∈Xi of σi where (δk)k∈Xi ≤n−1 (γk)k∈Xi (for all i ≤
m). Let πj =

∑
k∈Yj γk, so that (ρj)j≤m ≤n−1 (πj)j≤m by the inductive hypothesis. Since

the partition (ρj)j≤` of
∑

i≤k τi was arbitrary, it follows that
∑

i≤m σi ≤n
∑

i≤m τi. �

Corollary 7.9. Let σ, τ ∈ INVn. Then σ ≤n τ if and only if for every decomposi-
tion

∑
j≤t γj of τ , there is a partition (σj)j≤t of elements of INVn−1 of σ, such that

(γj)j≤t ≤n−1 (σj)j≤t.

It also follows from the preceding lemma that:

Theorem 7.10. (INVn,+, 0,≤n) is a commutative ordered monoid.

7.3. Consistency between INVn and BFn. Next, we show that (BFn,≤n) is a sub-
ordering of (INVn,≤n). To avoid confusion in this subsection we will use ≤In to denote
the relation ≤n on INVn defined in Definition 7.7, and we will use ≤Bn to denote the
relation ≤n on BFn defined in Definition 3.6.

Lemma 7.11. Let α, β ∈ BFn. Then α ≤In β as elements in INVn if and only if
α ≤Bn β as elements of BFn.

This lemma follows from the case k = 0 in the equivalence between (1) and (2) of the
following lemma. Recall from Definition 5.2 that when α, β ∈ BFn, we defined α /n β
as the conjunction of α ≤w

n β and (β)n−1 ∈wα.

Lemma 7.12. Let α, β0, . . . , βk ∈ BFn. The following are equivalent:

(1) α ≤In
∑

i≤k βi;

(2) For some i0 ≤ k we have α ≤Bn βi0; and for every other i 6= i0 we have α /n βi.

Proof. The proof of the equivalence is by induction on n. We assume the equivalence
holds for n− 1, and note the following consequence of this assumption and (2):

(∗) For any δ, γ0, . . . , γm ∈ BFn−1, if δ ≤In−1

∑
j≤m γj, then δ ≤w

n−1 γj for each j.

We prove that (1) implies (2). Suppose α ≤In
∑

i≤k βi. We first show that α ≤w
n βi for

each i. Let δ ∈ βi and consider the decomposition of
∑

i≤k βi of length k + 3 given by∑
i≤k(βi)n−1 + δ+ δ. There is a partition (σj)j≤k+2 of α ∈ INVn such that σk+1 ≥In−1 δ
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and σk+2 ≥In−1 δ. Each σj is of the form
∑

i≤mj γj,i, and so by the induction hypothesis,

for each j ∈ {k + 1, k + 2} there exists ij such that δ ≤Bn−1 γj,ij . For at least one
j ∈ {k + 1, k + 2}, we have that γj,ij ∈wα, and thus δ ∈wα as required.

To finish the argument, consider the decomposition of
∑

i≤k βi given by
∑

i≤k(βi)n−1.

From (1), there is a partition (σi)i≤k of α ∈ INVn such that (σi)i≤k ≥In−1

(
(βi)n−1

)
i≤k.

Write σi as
∑

j≤mi γi,j and without loss of generality suppose that γ0,0 = (α)n−1. By

the induction hypothesis, for each i there exists ji such that (βi)n−1 ≤Bn−1 γi,ji . Thus,
when i > 0 we have (βi)n−1 ≤Bn−1 γi,ji ∈w α, which together with α ≤w

n βi, implies
α /n βi. When i = 0, since (β0)n−1 ≤In−1 σ0 =

∑
j≤m0

γ0,j, it follows from the induc-

tion hypothesis and (∗) that (β0)n−1 ≤w
n−1 γ0,0 = (α)n−1. Since both α ≤w

n β0 and
(β0)n−1 ≤w

n−1 (α)n−1, it follows that α ≤Bn βi0 by Lemma 3.8.d.

We prove that (2) implies (1). Suppose (2) holds and i0 = 0, so α ≤Bn β0. Let∑
i≤k,j≤mi γi,j ∈ INVn−1 be a decomposition of

∑
i≤k βi where, for each i, (γi,j)j≤mi is a

partition of βi, and γi,0 = (βi)n−1. We now build a partition (δi,j)i≤k,j≤mi ⊆ BFn−1 of α
such that (γi,j)i≤k,j≤mi ≤In−1 (δi,j)i≤k,j≤mi . By the inductive hypothesis of Lemma 7.11,
it is enough to have (γi,j)i≤k,j≤mi ≤Bn−1 (δi,j)i≤k,j≤mi . Let δ0,0 = (α)n−1 = (β0)n−1 = γ0,0.
For i > 0, let δi,0 = γi,0 = (βi)n−1 ∈w α. For j > 0, we have γi,j ∈w βi ≥w

n α, so there
exists δi,j ∈ α such that γi,j ≤Bn−1 δi,j. �

7.4. n-bf-invariants for Boolean algebras. Our goal is to assign an element of INVn

to each Boolean algebra and show that this element is an invariant for the relation ≤n.
We will define a map Tn from Boolean algebras to INVn such that for any Boolean
algebras A and B

A ≤n B ⇐⇒ Tn(A) ≤n Tn(B).

We must be sure that it is possible to define such a map, Tn, on Boolean algebras. To
this end it will be shown that if A ≤n B and (ai)i≤k and (bj)j≤l are partitions of A
and B into n-indecomposables, then

∑
i≤k tn(ai) ≤n

∑
j≤l tn(bj) as members of INVn.

In particular, it will follow that if (ai)i≤k and (bj)j≤l are different partitions of A into
n-indecomposables, then

∑
i≤k tn(ai) ≡n

∑
j≤l tn(bj).

Lemma 7.13. Let A be a Boolean algebra and σ ∈ T n(A).

(1) For every partition (ai)i≤k of A, there is a partition (σi)i≤k of σ with σi ∈
T n−1(ai).

(2) For every decomposition
∑

j≤t αj of σ, there is a partition (cj)j≤t of A into

(n− 1)-indecomposables such that (αj)j≤t ≤n−1

(
tn−1(cj)

)
j≤t.

(3) For every partition (σi)i≤k of σ, there is a partition (ai)i≤k of A and τi ∈ T n−1(ai)
(for each i ≤ k) such that (σi)i≤k ≤n−1 (τi)i≤k.

Proof. Let σ ∈ T n(A) and (bi)i≤s a partition of A into n-indecomposables such that
σ =

∑
i≤s tn(bi).

(1). Suppose (ai)i≤k is a partition of A and let (cj)j≤t be a common refinement of
(ai)i≤k and (bi)i≤s into (n − 1)-indecomposables. Thus, there is a partition X0, . . . , Xs

of {0, . . . , t} such that (cj)j∈Xi is a partition of bi (for each i ≤ s); and, a parti-
tion Y0, . . . , Yk of {0, . . . , t} such that (cj)j∈Yi is a partition of ai (for each i ≤ k).
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Then
(
tn−1(cj)

)
j∈Xi

is a partition of tn(bi) for each i ≤ s (by Lemma 7.4.1), and so∑
j≤t tn−1(cj) is a decomposition of σ. Let σi =

∑
j∈Yi tn−1(cj), so that σi ∈ T n−1(ai)

(for each i ≤ k) and (σi)i≤k is a partition of σ.
(2). Suppose

∑
j≤t αj is a decomposition of σ and let X0, . . . , Xs be a partition of

{0, . . . , t} so that (αj)j∈Xi partitions tn(bi) (for each i ≤ s). By Lemma 7.4.2 there exists
a partition (cj)j≤t of A into (n− 1)-indecomposables such that (cj)j∈Xi is a partition of
bi and (αj)j∈Xi ≤n−1

(
tn−1(cj)

)
j∈Xi

(for each i ≤ s). Thus, (αj)j≤t ≤n−1

(
tn−1(cj)

)
j≤t.

(3). Suppose (σi)i≤k is a partition of σ and let
∑

j≤t αj be a decomposition of σ, where

Y0, . . . , Yk is a partition of {0, . . . , t} with σi =
∑

j∈Yi αi (for each i ≤ k). Then, by part

(2), there is a partition (cj)j≤t of A into (n − 1)-indecomposables with (αj)j≤t ≤n−1(
tn−1(cj)

)
j≤t. Let τi =

∑
j∈Yi tn−1(cj) and ai =

∨
j∈Yi cj, so that τi ∈ T n−1(ai) for each

i ≤ k. By Lemma 7.8, we also have (σi)i≤k ≤n−1 (τi)i≤k. �

The following is critical for assigning n-back-and-forth invariants to Boolean algebras.

Theorem 7.14. Fix n ∈ ω. Let A and B be Boolean algebras with σ ∈ T n(A) and
τ ∈ T n(B). Then

A ≤n B ⇐⇒ σ ≤n τ.

Proof. The proof is by induction on n. The case n = 0 is trivial. Suppose the theorem
holds for n. Let σ =

∑
i≤k αi ∈ T n+1(A) and τ =

∑
j≤` βj ∈ T n+1(B).

(⇒). Suppose A ≤n+1 B. Let (τj)j≤t be any partition of τ . By Lemma 7.13.3, there
is a partition (bj)j≤t of B and ρj ∈ T n(bj) (for each j ≤ t) where (τj)j≤t ≤n (ρj)j≤t. By
hypothesis, there is a partition (aj)j≤t of A with (bj)j≤t ≤n (aj)j≤t. By Lemma 7.13.1,
there is a partition (σj)j≤t of σ where σj ∈ T n(aj) (for each j ≤ t). So, by the inductive
hypothesis, (ρj)j≤t ≤n (σj)j≤t. This establishes that σ ≤n+1 τ .

(⇐). Suppose σ ≤n+1 τ . Let (bj)j≤s be any partition of B. By Lemma 7.13.1,
there is a partition (ρj)j≤s of τ with ρj ∈ T n(bj)(for each j ≤ s). By hypothesis, there
is a partition (σj)j≤s of σ such that (ρj)j≤s ≤n (σj)j≤s. By Lemma 7.13.3, there is
a partition (aj)j≤s and sequence (γj)j≤s such that γj ∈ T n(aj) (for each j ≤ s) and
(σj)j≤s ≤n (γj)j≤s. Thus (ρj)j≤s ≤n (γj)j≤s, so by the inductive hypothesis, (bj)j≤s ≤n
(aj)j≤s. This establishes that A ≤n+1 B. �

It follows from Theorem 7.14 that T n(A) ⊆ [σ] for each σ ∈ T n(A), where [σ] is the
class of elements of ≡n-equivalent elements from INVn.

Definition 7.15. For each n ∈ ω, we define a map Tn from Boolean algebras into
INVn as follows. Let (ai)i≤k be any partition of A into n-indecomposables. Define
Tn(A) =

[∑
i≤k tn(ai)

]
∈ INVn.

It follows from Theorem 7.14 that Tn assigns invariants to Boolean algebras for the
relation ≤n.

Corollary 7.16. For every n ∈ ω and all Boolean algebras A and B,

A ≤n B ⇐⇒ Tn(A) ≤n Tn(B).
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7.5. Computability analysis of INVn. The goal now is to prove that the relation
≤n on INVn is computable. It is not necessary to consider all partitions of σ and τ
to determine whether σ ≤n τ for σ, τ ∈ INVn; instead, it is sufficient to consider only
simple partitions of σ and τ , which reduces the problem of determining whether σ ≤n τ
to checking a finite number of conditions.

Definition 7.17. A partition (σi)i≤` of σ =
∑

j≤s αj is a simple partition if there exists

a partition X0, . . . , X` of {0, . . . , s} such that for every i ≤ ` either

σi =
∑
j∈Xi

(αj)n−1 or σi = γi +
∑
j∈Xi

(αj)n−1,

for some γi ∈
⋃
j≤s αj (in the former case Xi must be nonempty, while in the latter case

Xi is allowed to be empty).

Theorem 7.18. Let σ =
∑

i≤s αi ∈ INVn and τ =
∑

j≤t βj ∈ INVn. The following
are equivalent.

(1) σ ≤n τ ;
(2) For every decomposition

∑
j≤r δj of τ , there exists a simple partition (σj)j≤r of

σ such that (δj)j≤r ≤n−1 (σj)j≤r;
(3) Both of the following hold:

(a) ∀δ ∈
⋃
j≤t βj ∃γ ∈

⋃
i≤s αi (γ ≥n−1 δ), (or in other words dc

⋃
j≤t βj ⊆

dc
⋃
i≤s αi) and

(b) there exists a simple partition (σj)j≤t of σ such that
(
(βj)n−1

)
j≤t ≤n−1

(σj)j≤t.

Corollary 7.19. The relation ≤n on INVn is computable. Hence, the structure 〈INVn,≤n,+, 0, (·)n〉
is computably presentable (and, in fact, uniformly in n).

The proof of the corollary is by induction on n using Theorem 7.18, condition (3).

Proof of Theorem 7.18. (1) =⇒ (2): Consider a decomposition
∑

j≤r δj of τ , so that

(δj)j≤r is a partition of τ into (n− 1)-bf-types. By (1) there exists a partition (σj)j≤r of
σ such that (σj)j≤r ≥n−1 (δj)j≤r for every j ≤ r, but it might not be simple. Each σj is
of the form

∑
k≤mj γj,k, where each γj,k is either one of the (n− 1)-bf-types (αi)n−1, or

γj,k ∈w αi for some i ≤ s. Let X ⊆ {〈j, k〉 : j ≤ r, k ≤ mj} be a set of size s such that
for each i there is a unique 〈j, k〉 ∈ S with γj,k = (αi)n−1. Then, for each 〈j, k〉 6∈ X,
γj,k ∈w αi for some i ≤ s. Since δj ≤n−1

∑
k≤mj γj,k, by Lemma 7.12, for each j ≤ r

there exists kj ≤ mj such that δj ≤n−1 γj,kj and δj /n−1 γj,k for every k 6= kj. Let
Xj = {kj} ∪ {k ≤ mj : 〈j, k〉 ∈ X} and let σ′j =

∑
k∈Xj γj,k, for each j. It follows from

Lemma 7.12 that δj ≤n−1 σ
′
j. Also note that (σ′j)j≤r is a simple partition of σ.

(2) =⇒ (1): Follows from Corollary 7.9.
(2) =⇒ (3): (a) Suppose δ ∈

⋃
j≤t βj and consider the partition of τ given by(

(β0)n−1, ..., (βt)n−1, δ, . . . , δ
)
, where δ appears s+ 2 times. Let (σj)j≤s+t+2 be a simple

partition of σ such that σj ≥n−1 (βj)n−1 (for j ≤ t) and σj ≥n−1 δ for t < j ≤ s+ t+ 2.
Since the partition is simple, for some j with t < j ≤ t + s + 2, we must have σj = γ
for some γ ∈

⋃
i≤k αi. It follows that ∀δ ∈

⋃
j≤t βj ∃γ ∈

⋃
i≤s αi (γ ≥n−1 δ).
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(b) Consider the partition
(
(βj)n−1

)
j≤t of τ . From (2) we get a simple partition

(σj)j≤t with (σj)j≤t ≥n−1

(
(βj)n−1

)
j≤t.

(3) =⇒ (2): Consider a decomposition
∑

j≤r δj of τ . By rearranging terms, we

may also assume that δj = (βj)n−1 for j ≤ t; and for j > t, there exists a k ≤ t
with δj ∈w βk. From condition (b), let (σj)j≤t be a simple partition of σ such that
(σj)j≤t ≥n−1

(
(βj)n−1

)
j≤t; and from condition (a), for j > t let σj ∈

⋃
i≤s αi be such

that σj ≥n−1 δj. Then (σj)j≤r is a simple partition and (σj)j≤r ≥n−1 (δj)j≤r. �

We apply finite sums to provide some counterexamples mentioned in earlier sections.

Example 7.20. There are Boolean algebras A and B where A ≡5 B and A is 5-
indecomposable, but B is not. For example, let A have the 5-indecomposable type
f19 and let B have the 5-bf-type f5 + f17. Then f19 ≡5 f5 + f17, but f5 + f17 is not
5-indecomposable.

Example 7.21. This example gives a counterexample noted in the comment following
Lemma 3.14. There is a Boolean algebra A, a 6-indecomposable Boolean algebra B with
A ≤6 B, and a partition of B into 5-indecomposables with no matching partition of A
into 5-indecomposables. (It follows by Lemma 3.14 thatA cannot be 6-indecomposable.)
We will use the following 6-indecomposable types:

• g9 has members {f0, f5} and its parent is f5.
• g1186 has members {f0, f1, f16, f24, f26} and its parent is f17.
• g1498 has members {f0, f1, f5, f16, f26} and its parent is f19.

Let B be 6-indecomposable with bf-type g1498 and A have the 6 bf-type g9 +g1186. Then,
A <6 B and the partition of B into (f0, f19) can only be matched by a partition of A
into (f0, f5 + f17), but f5 + f17 is not 5-indecomposable.

7.6. Finitary Isomorphism Types. As mentioned is Section 3, a Boolean algebra
A is pseudo-indecomposable if for every a ∈ A either A ∼= A � a or A ∼= A �−a. A
Boolean algebra A is primitive if every element a ∈ A can be partitioned as a =
a0 ∨̇ . . . ∨̇ an where each subalgebra A � ai is pseudo-indecomposable. Among the
pseudo-indecomposable and primitive algebras, the class of finitary Boolean algebras
have been singled-out in several very different ways. The name ‘finitary’ is from the
description of these algebras as those in which the set of pseudo-indecomposable iso-
morphism types of relative subalgebras is finite. However, the description most relevant
here is due to Palyutin in [Pal71]. Let S be the smallest subset of Boolean algebras
which contains the trivial algebra Int

(
0
)
, the two-element algebra Int

(
1
)
, and the alge-

bra corresponding to the order-type of the rationals Int
(
η̆
)
, and which is closed under

the shuffle-product and free ω-product of finite disjoint sums A = A0 ⊕ . . . ⊕ An, as
described in Section 5. Then S is the set of pseudo-indecomposable and finitary Boolean
algebras; and the set of all finite disjoints sums of elements of S is the set of finitary
Boolean algebras. (See [Hei92] and [Pie89, Section 3.13] for more details.)

It is not hard to see that each of the algebras constructed in Section 5, Aα for bf-type
α, is a finitary pseudo-indecomposable Boolean algebra. The converse is also true, that
every finitary pseudo-indecomposable Boolean algebra is n-indecomposable for every n
and has an isomorphic bf-type for sufficiently large n. We extend the isomorphism types
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to
⋃
n INVn as the types σ for which Tn(A) = σ = Tn(B) =⇒ A ∼= B. Then the

Boolean algebras whose n-bf-invariant is an isomorphism type for some n are the finitary
Boolean algebras. The details of this are straightforward and laid-out in [HMfin].

8. Complexity Analysis

In this section we study the complexity of the predicates Rσ, and prove the quantifier
elimination result for Σc

n formulas mentioned in the introduction (Theorem 8.12).
We begin with a couple conventions to simplify our discussion.

Convention 8.1. By Corollary 7.19, the relation ≤n on INVn is computable uniformly
in n; so, we will fix representatives σ for each of the equivalence classes so that the
n-indecomposables are among the representatives chosen. We will write σ for [σ], where
σ was the chosen representative of this equivalence class. For each σ ∈ INVn there
is a computable Boolean algebra Aσ with Tn(Aσ) = σ. For example, if σ =

∑
i≤k αi

where αi ∈ BFn, let Aαi be the computable Boolean algebra produced in Section 5 with
tn(Aαi) = αi; then, Aσ =

⊕
i≤kAαi satisfies Tn(Aσ) = σ and is computable. Note that

this assignment of Boolean algebras to the elements σ is effective.

Convention 8.2. For a Boolean algebra B and σ ∈ INVn, we write B ≤n σ when
Tn(B) ≤n σ. Similarly, we write σ ≤n B when σ ≤n Tn(B).

Definition 8.3. For each σ ∈ INVn and Boolean algebra B, the relation Rσ(x) is
defined by {

b ∈ B : B � b ≥n σ
}
.

These relations are definable in Lω1ω (see [AK00, Lemma 6.6]); but we will show they
are also definable in Lcω1ω

and will study their complexity.

The relations Rσ for σ ∈ INVn can be expressed using the relations Rα for α ∈ BFn.

Lemma 8.4. Let σ ∈ INVn and
〈
(αi,0, . . . , αi,mi) : i ∈ ω

〉
be a computable listing of

tuples from BFn such that σ ≤n
∑

j≤mi αi,j for all i ∈ ω. Then

Rσ(x) ⇐⇒
∨
i∈ω

(
∃yi,0 ∨̇ . . . ∨̇ yi,mi = x

) [ ∧
j≤mi

Rαi,j(yi,j)
]
.

Proof. Let B be a Boolean algebra and x ∈ B. Suppose B |= Rσ(x). Let y0, . . . , ym be a
partition of x into n-indecomposables and let αj = tn(yj). Then,

∑
j≤m αj ∈ T n(B �x),

so that
∑

j≤m αj ≡n Tn(x) ≥n σ. Hence, for some i in the listing
〈
(αi,0, . . . , αi,mi) :

i ∈ ω
〉

we have m = mi, αi,j = αj and Rαi,j(yj) (for each j ≤ m). It follows that the
right-hand-side of the lemma holds.

Suppose now that for some i ∈ ω, B |=
(
∃yi,0 ∨̇ . . . ∨̇ yi,mi = x

) [∧
j≤m Rαi,j(yi,j)

]
.

Then, by Theorem 2.3,

B �x ∼=
⊕
j≤mi

B � yj ≥n
∑
j≤mj

αi,j ≥n σ.

That the list
〈
(αi,0, . . . , αi,mi) : i ∈ ω

〉
is computable follows from Corollary 7.19. �
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8.1. Formula satisfaction. The following fact about expressions in the language of
Boolean algebras will be used in Definition 8.5 below. For any Σn formula ϕ(x0, . . . , xk),
there is formula ψ(z0, . . . , zm) in Σn such that (i) ψ implies z0 ∨̇ . . . ∨̇ zm = 1 and (ii)
there are subsets X0, . . . , Xk of {0, . . . ,m} such that ∃z0, . . . , zm

(
ψ(z0, . . . , zm) & x0 =∨

i∈X0
zi & . . .& xk =

∨
i∈Xk zi

)
is equivalent to ϕ(x0, . . . , xk). Furthermore, if ϕ(x0, . . . , xk)

is in Σc
n, then ψ(z0, . . . , zm) can be found effectively in Σc

n. Here is the explicit defi-
nition of ψ: Let m = 2k+1 − 1, and let Xi be the set of j ≤ m whose ith digit in its
binary representation is 1. Then, let ψ(z0, . . . , zm) be the formula z0 ∨̇ . . . ∨̇ zm =
1 & ϕ

(∨
i∈X0

zi, . . . ,
∨
i∈Xk zi

)
.

It follows from Corollary 5.4 and Corollary 7.19 that there is a uniformly computable
procedure for taking an invariant σ ∈ INVn to a Boolean algebra Aσ, where Tn(Aσ) =
σ.

Definition 8.5. For any sentence ϕ ∈ Σn and invariant σ ∈ INVn, we write

σ |= ϕ

if Aσ |= ϕ. It follows from Theorem 2.3 and Corollary 7.16, that whenever Tn(B) = σ,
Aσ |= ϕ ⇐⇒ B |= ϕ for every Σn sentence ϕ.

Let ϕ(x0, . . . , xk) ∈ Σn, let (σ0, . . . , σk) be a sequence from INVn, and let σ =
σ0 + . . .+σk. As we noted at the beginning of this subsection, we may assume, without
loss of generality, that ϕ(x0, . . . , xk) implies x0 ∨̇ . . . ∨̇ xk = 1. We define

(σ0, . . . , σk) |= ϕ(x0, . . . , xk)

if in Aσ =
⊕

i=0,...,kAσi , we have Aσ |= ϕ(e0, . . . , ek), where ei ∈ Aσ is

(0Aσ0 , . . . , 0Aσi−1
, 1Aσi , 0Aσi+1

, . . . , 0Aσk ).

Lemma 8.6. Let ϕ(x0, . . . , xk) be a Σc
n formula. Then the set of (σ0, . . . , σk) such that

(σ0, . . . , σk) |= ϕ(x0, . . . , xk)

is Σ0
n.

Proof. For any computable Boolean algebraA and partition (ai)i≤k, the question whether
A |= ϕ(a0, . . . , ak) is Σ0

n by [AK00, Theorem 8.6]. �

Σc
n formulas can be put into a special form:

Theorem 8.7. For every Σc
n+1 formula ϕ(x), there are 0(n)-computable enumerations

of tuples
〈
(αi,0, . . . , αi,mi) : i ∈ ω

〉
and

〈
(βi,0, . . . , βi,mi) : i ∈ ω

〉
from BFn such that

ϕ(x) is equivalent to

(1)
∨
i∈ω

(
∃yi,0 ∨̇ ... ∨̇ yi,mi = x

) (
∃zi,0 ∨̇ ... ∨̇ zi,mi = −x

)
[ mi∧
j=0

Rαi,j(yi,j) &

mi∧
j=0

Rβi,j(zi,j)
]
.

Proof. The existence of the 0(n)-computable enumeration of tuples will be shown uni-
formly in ϕ, so it is sufficient to show the theorem for the special case when ϕ is of the
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form ∃x0, . . . , xkψ(x, x0, . . . , xk), with ψ being Πc
n; then, we dovetail the computations

for arbitrary computable disjunctions. Furthermore, we can assume ϕ is of the form(
∃y0 ∨̇ . . . ∨̇ yk = x

) (
∃z0 ∨̇ . . . ∨̇ zk = −x

)
ψ(y0, . . . , yk, z0, . . . , zk),

by setting yj = xj ∧ x and zj = xj ∧ −x.
The set of tuples from INVn such that (σ0, . . . , σk, τ0 . . . , τk) |= ψ(y0, . . . , yk, z0, . . . , zk)

is Π0
n and so computable from 0(n). Let 〈(σi,0, . . . , σi,k, τi,0 . . . , τi,k) : i ∈ ω〉 list these

tuples. We will first show that for any Boolean algebra A, A |= ϕ if and only if

(2) A |=
∨
i∈ω

(
∃y0 ∨̇ . . . ∨̇ yk = x

) (
∃z0 ∨̇ . . . ∨̇ zk = −x

)
[ ∧
j≤k

Rσi,j(yj) &
∧
j≤k

Rτi,j(zj)
]
.

Suppose first that A |= ϕ. Thus, there exists a partition (a0, . . . , ak) of x and a
partition (b0, . . . , bk) of −x such that A |= ψ(a0, . . . , ak, b0, . . . , bk). Let Tn(aj) = σi,j
and Tn(bj) = τi,j where (σi,0, . . . , σi,k, τi,0 . . . , τi,k) is in the enumeration. So (2) holds.

Suppose now that (2) holds as witnessed by i and elements a0, . . . , ak, b0, . . . , bk. Then
Tn(aj) ≥n σi,j and Tn(bj) ≥n τi,j for each j ≤ k. It follows from Theorem 2.3 that,
since ϕ is Π0

n and (σi,0, . . . , σi,k, τi,0 . . . , τi,k) |= ψ(y0, . . . , ykz0, . . . , zk), we have that
A |= ψ(a0, . . . , ak, b0, . . . , bk).

By Lemma 8.4, each Rσ is equivalent to a formula of the form

Rσ(y) ⇐⇒
∨
i∈ω

(
∃yi,0 ∨̇ . . . ∨̇ yi,mi = y

) [ ∧
j≤m

Rαi,j(yi,j)
]

for some computable sequence
〈
(αi,0, . . . , αi,mi) : i ∈ ω

〉
from BFn. Use this equivalence

to replace each occurrence of Rσi,j and Rτi,j in (2); then, rewrite the formula as a
disjunction of existential formulas. Note that we get a formula the form we wanted for
the theorem. �

The theorem above can be easily extended to formulas with more than one variable
ϕ(x0, . . . , xk) as in the corollaries below. When restricted to sentences, the theorem is
as follows:

Corollary 8.8. For every Σc
n+1 sentence ϕ, there is a 0(n)-computable enumeration of

tuples
〈
(αi,0, . . . , αi,mi) : i ∈ ω

〉
from BFn such that

ϕ ⇐⇒
∨
i∈ω

(
∃yi,0 ∨̇ . . . ∨̇ yi,mi = 1

) [ mi∧
j=0

Rαi,j(yi,j)
]
.

Proof. The proof is essentially the same proof as the one of the theorem above but
without considering x. �

Corollary 8.9. For every Σc
n+1 formula ϕ(x0, . . . , xk) which implies x0 ∨̇ · · · ∨̇ xk = 1,

there are 0(n)-computable enumerations of tuples
〈
(α`,i,0, . . . , α`,i,m`,i) : i ∈ ω

〉
from BFn,
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one for each ` ≤ k, such that

(3) ϕ(x0, . . . , xk) ⇐⇒ x0 ∨̇ · · · ∨̇ xk = 1 &

k∧
`=0

∨
i∈ω

(
∃yi,0 ∨̇ ... ∨̇ yi,m`,i = x`

) [m`,i∧
j=0

Rα`,i,j(yi,j)
]
.

Proof. The proof is essentially the same proof as the one of the theorem above but using
x0, ..., xk instead of x and −x. �

Let B be a Boolean algebra and σ ∈ INVn. We now turn to the study of the
complexity of the following relations on B:

{x ∈ B : B �x ≥n σ} and {x ∈ B : B �x ≤n σ}.

Lemma 8.10. Let σ ∈ INVn. Then there is a Πc
n formula ϕσ such that for any Boolean

algebra B,

B �x ≥n σ ⇐⇒ B |= ϕσ(x).

In particular, the relations Rα(x) are Πc
n-definable for each α ∈ BFn.

Proof. The proof is by induction on n, where the case of n = 0 is trivial. So, assume
the predicates Rτ (x) are Πc

n−1 whenever τ ∈ INVn−1.
By Theorem 7.18, B � b ≥n σ if and only if for every partition b = b0 ∨̇ . . . ∨̇ bk with

Tn−1(bi) = βi, there exists a simple partition (ρi)i≤k of σ such that βi ≤n−1 ρi for every
i. Equivalently, B � b ≥n σ if and only if for every partition b = b0 ∨̇ . . . ∨̇ bk and for
every sequence (βi)i≤k ⊆ BFn−1 such that B � bi ≥n−1 βi, there exists a simple partition
(ρi)i≤k of σ such that for every i, βi ≤n−1 ρi. (This equivalence uses the ideas in the
proof of Theorem 7.18.)

Let Iσ be the set of sequences (βi)i≤k ⊆ BFn−1 for which there is no simple partition
(ρi)i≤k of σ with (βi)i≤k ≤n−1 (ρi)i≤k. The set Iσ is computable by Corollary 7.19 and
the fact that there are only finitely many simple partitions of σ of length k. The sentence
ϕσ will say that for any (βi)i≤k ∈ Iσ there is no partition (bi)i≤k of b with B � bi ≥n−1 βi
for each i ≤ k; that is,

ϕσ(x) ≡
∧

(βi)i≤k∈Iσ

¬
(
∃x0 ∨̇ . . . ∨̇ xk = x

) [∧
i≤k

Rβi(xi)
]
.

ϕσ is Πc
n from the inductive hypothesis, and equivalent to Rσ(x). �

Lemma 8.11. Let σ ∈ INVn. Then there exists a Πc
n+1 formula ψσ such that for any

Boolean algebra B
B �x ≤n σ ⇐⇒ B |= ψσ(x).

Proof. Let Jσ be the set of τ ∈ INVn with τ 6≤n σ. This set is computable by Corollary
7.19. Then, B � b ≤n σ if and only if for no τ ∈ Jσ is it the case that τ ≤n B � b. Let ψσ
express this, that is, ∧

τ∈Jσ

¬Rτ (x).

By Lemma 8.10 ψσ is Πc
n+1. �
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Theorem 8.12. Let B be a Boolean algebra, R ⊆ B and n ∈ ω. The following are
equivalent.

(1) R is relatively intrinsically Σn+1. That is, if A ∼= B and (A, Q) ∼= (B, R), then
Q is a Σ0

n+1(A) subset of A.
(2) R is explicitly Σn+1. That is, R can be defined in B by a computable infinitary

Σc
n+1 formula.

(3) There is a 0(n)-computable sequence {ϕi : i ∈ ω} of finitary Σ1 formulas that use
the predicates Rα, for α ∈ BFn, such that

x ∈ R ⇐⇒
∨
i∈ω

ϕi(x).

Proof. For (1)⇔ (2) see [AK00, Theorem 10.1].
(2)⇒ (3). This is essentially Lemma 8.7.
(3)⇒ (2). By Lemma 8.10, each Rα is given by a Πc

n formula uniformly in α ∈ BFn.
So, from the hypothesis, there is a 0(n)-computable set of Σc

n+1 formulas, {ψi : i ∈ ω},
such that

x ∈ R ⇐⇒
∨
i∈ω

ψi(x)

It follows from [AK00, Proposition 7.14] that there is a Σc
n+1 formula χ(x) equivalent

to
∨
i∈ω ψi(x). �

Recall that a presentation of a Boolean algebra B is n-approximable if its Σc
n+1-

diagram is Σ0
n+1; or in other words, if the set of Σc

n+1-formulas with parameters true in

B is a set c.e. in 0(n).

Theorem 8.13. Let B be a presentation of a Boolean algebra. The following are equiv-
alent.

(1) The Σc
n+1-diagram of B is Σ0

n+1;

(2) The relations Rα(B) are computable in 0(n) for each α ∈ BFn.

Proof. (1) =⇒ (2): The relations {x ∈ B : B �x ≥n α} are Πc
n definable in B. So, in

particular, they are Σc
n+1 and Πc

n+1. Then, by (1), these relations are ∆0
n+1 as wanted.

(2) =⇒ (1): By Corollary 8.8, every Σc
n+1-sentence ϕ is equivalent to one of the form∨

i∈ω

(
∃x0 ∨̇ . . . ∨̇ xmi = 1

) [ mi∧
j=0

Rαi,j(xj)
]
,

where αi,j ∈ BFn and the sequence of formulas in the disjunction is computable in 0(n)

uniformly in ϕ . So, if B |= ϕ, 0(n) will eventually find a witnesses i, and a partition
a0 ∨̇ . . . ∨̇ ami = 1 such that

∧mi
j=0 Rαi,j(aj). Thus, whether B |= ϕ is Σ0

n+1. To decide

Σc
n+1-formulas ϕ(b) with b ∈ B, we need to use Theorem 8.7. For formulas with more

variables we need Corollary 8.9. �
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