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Abstract. We construct a minimal pair of K-degrees. We do this by show-

ing the existence of an unbounded nondecreasing function f which forces
K-triviality in the sense that γ ∈ 2ω is K-trivial if and only if for all n,

K(γ � n) ≤ K(n) + f(n) +O(1).

1. Introduction and Notation

K-reducibility is defined with the intention of measuring the relative randomness
of infinite binary strings, which we refer to as reals. This reducibility was defined
using a function, K, that assigns to each finite binary string the length of its shortest
description, in a sense we will specify. The idea being that if a string is random,
there should not be any short way of describing it. The precise definition of K is
given below, though the proofs presented in this paper use only the two properties
of K listed at the end of this section.

The prefix-free Kolomogorov complexity of a string σ ∈ 2<ω is defined to be the
length of the shortest program p ∈ 2<ω such that U(p) = σ, where U is a universal
prefix-free Turing machine. That is, U is universal for machines V with the property
that if V (τ) ↓, then V (τ ′) ↑ for all τ ′ ⊃ τ . We denote the Kolmogorov complexity
of σ by K(σ). This definition is independent of the choice of universal machine
U , up to additive constant. The advantage of restricting to prefix-free machines is
that otherwise the Kolmogorov complexity would contain extra information about
the length of the string. For more background on Kolmogorov complexity, see Li
and Vitányi [LV97], and Downey and Hirschfeldt [DH].

Prefix-free Kolmogorov complexity is used to define a notion of randomness for
real numbers. A real γ ∈ 2ω is K-random (or Levin-Gaćs-Chaitin random) if for
all n, K(γ � n) ≥ n−O(1). This notion has been extensively studied and coincides
with other notions of randomness based on measure theory or unpredictability [DH],
[DHNT]. We can also use K to define what it means for a real to be far from being
random. We say a real is K-trivial if for all n, K(γ � n) ≤ K(n) + O(1); that is,
every initial segment is as simple as possible. But what of relative randomness of
reals? K-reducibility was introduced to study notions of relative randomness. For
two reals α and β in 2ω we let

α ≤K β ⇐⇒ (∀n) K(α � n) ≤ K(β � n) +O(1),
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i.e., if there exists a constant C such that (∀n) K(α � n) ≤ K(β � n) + C. The
K-degrees are defined as equivalence classes under this quasiordering.

As is usual when considering a reducibility, we want to understand the structure
of the K-degrees. We know that the K-degrees have a bottom element that corre-
sponds to the K-degree of the K-trivial reals. Yu, Ding, and Downey showed that
there are uncountably many K-degrees, indeed 2ℵ0 many among the K-random
reals ([YDD04], see [DHNT]). When restricting attention to c.e. reals (reals with
nice approximations), Downey, Hirschfeldt, and LaForte have shown density and
existence of join [DHL04]. A result of Solovay is that K-reducibility does not imply
Turing reducibility (see [DH]).

A natural question to ask when studying a reducibility is if there exists a minimal
pair. Rod Downey and Denis Hirschfeldt asked this question for the K-degrees.
That is, they asked whether there exist non-K-trivial reals α and β in 2ω such
that whenever γ ∈ 2ω is such that γ ≤K α and γ ≤K β then γ is K-trivial. Here
we answer this question affirmatively with a simple and elegant construction of a
minimal pair. We do it by first constructing a unbounded nondecreasing function
f which forces K-triviality in the sense that a real γ is K-trivial if and only if
(∀n) K(γ � n) ≤ K(n)+ f(n)+O(1). This function will likely be useful in showing
other results about K-reducibility.

If a real is K-trivial, then there is some constant which witnesses its K-triviality.
We say a real γ is K-trivial(C) if for all n, K(γ � n) ≤ K(n) + C, where K(n) =
K(0n). Then, we have that γ is K-trivial if and only if it is K-trivial(C) for
some C. We say that γ appears to be K-trivial(C) at n if for all m ≤ n, K(γ �
m) ≤ K(m) + C. We say that γ stops appearing K-trivial(C) at n if it appears
K-trivial(C) at n− 1 but not at n. Throughout the paper, γ will always denote a
real, i.e. γ ∈ 2ω.

The properties of K that we will use are.

Property 1 (Zambella—see [DHNS03]). For every C, there are only finitely many
reals that are K-trivial(C).

Property 2. For any σ ∈ 2<ω, σ ̂ 0ω is K-trivial, and hence K-trivial(C) for
some C.

2. Construction of a minimal pair

Theorem 1. There exists a minimal pair of K-degrees.

To prove our theorem, we will use the following lemma, which is interesting in
itself, and may have other applications.

Lemma 1. There exists a unbounded nondecreasing function f such that for all
reals γ ∈ 2ω, the following are equivalent.

(1) γ is K-trivial.
(2) For almost every n, K(γ � n) ≤ K(n) + f(n).
(3) (∀n) K(γ � n) ≤ K(n) + f(n) +O(1).

Before proving Lemma 1, we show how Theorem 1 follows from it.

Proof of Theorem 1. Let f be as in Lemma 1. We will construct two non-K-trivial
reals α and β such that min{K(α � n),K(β � n)} ≤ K(n)+f(n). This will give us a
minimal pair because if γ ≤K α and γ ≤K β, then K(γ � n) ≤ K(n)+f(n)+O(1),
and hence γ is K-trivial.
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We construct α and β as the limits of two sequences of finite strings, {αs}s∈ω

and {βs}s∈ω, which satisfy that, for every s, αs ⊂ αs+1, βs ⊂ βs+1 and |αs| = |βs|.
We denote |αs| by ns. To get min{K(α � n),K(β � n)} ≤ K(n) + f(n), we
ensure that if ns ≤ n < ns+1, then K(α � n) ≤ K(n) + f(n) if s is odd, and
K(β � n) ≤ K(n)+f(n) if s is even. To make α and β non-K-trivial, we ensure that
for every s there is some n, ns ≤ n < ns+1, such that either K(α � n) > K(n) + s,
or K(β � n) > K(n) + s depending or whether s is even or odd.

Construction. Stage 0: Let α0 = β0 = ∅. Stage s + 1: Suppose first that
s is even. Let α′s+1 ⊃ αs be such that K(α′s+1) ≥ K(|α′s+1|) + s. Such an α′s+1

must exist because not every extension of αs is K-trivial(s− 1). Let Cs+1 be such
that α′s+1̂ 0ω is K-trivial(Cs+1). Choose ns+1 > |α′s+1| such that f(ns+1) ≥ Cs+1.
Finally, let αs+1 = α′s+1̂ 0ω � ns+1 and βs+1 = βŝ 0ω � ns+1. If s is odd do the
same as above but with roles of α and β reversed.

It is clear from the construction that for s even there is some n, ns ≤ n < ns+1,
such that K(α � n) > K(n)+s, namely |α′s+1|. Also, for every n, ns+1 ≤ n < ns+2,

K(α � n) = K(αs+2 � n) = K(αs+1̂ 0ω � n) = K(α′s+1̂ 0ω � n)

≤ K(n) + Cs+1 ≤ K(n) + f(ns+1) ≤ K(n) + f(n).

Analogously for s odd. �

Proof of Lemma 1. Clearly (1) ⇒ (2) and (2) ⇒ (3) for any unbounded nonde-
creasing function. We now show that (3) ⇒ (1). That is, we construct an un-
bounded nondecreasing function f such that, for any real γ, if (∀n) K(γ � n) ≤
K(n) + f(n) +O(1), then γ is K-trivial.

We first define an unbounded nondecreasing function f0 such that (∀n) K(γ �
n) ≤ K(n) + f0(n) implies that γ is K-trivial(0). We do it by defining a sequence
n0 < n1 < n2 < · · · , and letting f0(n) = k for every n such that nk−1 < n ≤ nk

(where n−1 = −1).
As there are only finitely many reals that are K-trivial(2), we can choose n0

such that any γ that is K-trivial(2), but not K-trivial(0), has stopped appearing
K-trivial(0) by n0. Suppose now that we have already defined nk. Let nk+1 be such
that any γ that is K-trivial(k + 3), but not K-trivial(0), has stopped appearing
K-trivial(0) by nk+1. We can do this because there are only finitely many reals
that are K-trivial(k + 3). Except when k = 0, we also require nk+1 to be such that
any γ which stopped appearing K-trivial(0) at some m, nk−1 < m ≤ nk, does not
appear to be K-trivial(k + 1) by nk+1. Note that such nk+1 has to exist. Indeed,
by definition of nk−1, γ � m can have no K-trivial(k + 1) real extending it. So by
König’s Lemma, the tree of apparently K-trivial(k + 1) extensions of γ � m must
be finite.

We claim that f0 is as wanted. Suppose that γ is a real such that (∀n) K(γ �
n) ≤ K(n) + f0(n); we want to show that actually (∀n) K(γ � n) ≤ K(n). Clearly
γ appears to be K-trivial(0) up to length n0. Assume for a contradiction that γ
is not K-trivial(0). Let k > 0 be least such that γ stops appearing K-trivial(0)
at some m, nk−1 < m ≤ nk. Then by definition of nk+1, γ stops appearing
K-trivial(k + 1) by nk+1. That means that there is some m ≤ nk+1 such that
K(γ � m) ≥ K(m) + k + 2 > K(m) + f0(m), a contradiction.

There is nothing special about 0 in this proof. In the same way we can construct,
for each i, a function fi such that fi(0) = i and (∀n) K(γ � n) ≤ K(n) + fi(n)
implies that γ is K-trivial(i). Just choose n0 such that any γ that is K-trivial(i+2),
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but not K-trivial(i), has stopped appearing K-trivial(i) by n0. Then given nk, let
nk+1 be such that any γ that is K-trivial(i + k + 3), but not K-trivial(i), has
stopped appearing K-trivial(i) by nk+1. For k 6= 0, also require nk+1 to be such
that any γ which stopped appearing K-trivial(i) at some m, nk−1 < m ≤ nk, does
not appear to be K-trivial(i + k + 1) by nk+1. Let fi(n) = i + k for every n such
that nk−1 < n ≤ nk.

For each n ∈ ω, let f(n) = min{f2i(n) − i : i ∈ ω}, which exists because
(∀i, n)f2i(n)− i ≥ i. Note that f is a nondecreasing function. It is also unbounded
because for each j, if we let n be such that (∀i < j)f2i(n) > 2j, then j ≤ f(n).
Now, suppose that γ is a real such that (∀n) K(γ � n) ≤ K(n) + f(n) + i for some
i. Then (∀n) K(γ � n) ≤ K(n) + f2i(n), and hence γ is K-trivial(2i). So every γ
such that K(γ � n) ≤ K(n) + f(n) +O(1) is K-trivial. �
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