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Abstract. In this paper, we investigate connections between structures present in every
generic extension of the universe V and computability theory. We introduce the notion of
generic Muchnik reducibility that can be used to to compare the complexity of uncountable
structures; we establish basic properties of this reducibility, and study it in the context of
generic presentability, the existence of a copy of the structure in every extension by a given
forcing. We show that every forcing notion making ω2 countable generically presents some
countable structure with no copy in the ground model; and that every structure generically
presentable by a forcing notion that does not make ω2 countable has a copy in the ground
model. We also show that any countable structure A that is generically presentable by a
forcing notion not collapsing ω1 has a countable copy in V , as does any structure B generically
Muchnik reducible to a structure A of cardinality ℵ1. The former positive result yields a new
proof of Harrington’s result that counterexamples to Vaught’s conjecture have models of
power ℵ1 with Scott rank arbitrarily high below ω2. Finally, we show that a rigid structure
with copies in all generic extensions by a given forcing has a copy already in the ground
model.

1. Introduction

In computable structure theory, one studies the complexity of structures using techniques
from computability theory. Almost all of this work concerns countable structures; much less is
known about the complexity of uncountable structures. However, the computability theory of
uncountable structures has received more attention in the last few years. (See for instance the
proceedings volume of the conference Effective Mathematics of the Uncountable [GHHM13].)
One idea for studying the complexity of an uncountable structure that seems new is to consider
what happens to the structure when its domain is made countable.

Before making this idea more concrete, we recall the notion of Muchnik reducibility between
countable structures. This is the standard way in computable structure theory to say that
one structure is more complicated than another, in the sense that it harder to compute.

Definition 1.1. Given countable structures A and B we say that A is Muchnik reducible to
B, and we write A ≤w B, if, from any copy of B, we can compute a copy of A.

On its face, this notion is limited to countable structures. However, by examining generic
extensions of the set-theoretic universe, V , we can extend it further:

Definition 1.2 (Schweber). For a pair of structures A and B, not necessarily countable in
V , we say that A is generically Muchnik reducible to B, and we and write A ≤∗w B, if for any
generic extension V [G] of the set theoretic universe V in which both structures are countable,
we have

V [G] |= A ≤w B.
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In Section 2.1, we will prove the basic properties of this reducibility. We will show that it
coincides with Muchnik reducibility on countable structures; i.e., if A and B are countable,
then A ≤w B if and only if A ≤∗w B (Corollary 2.4). Another important fact is that we do
not need to consider all the generic extensions that make A and B countable. We will prove
that for any two such generic extensions if A ≤w B holds in one, then it holds in the other
(Lemma 2.3). This shows that generic Muchnik reducibility is a very absolute, and hence,
natural, notion of computability-theoretic complexity.

We will also show that the equivalence ≡∗w, induced from the reducibility ≤∗w, respects L∞ω-
elementary equivalence. In Section 2.3, we will also exhibit some examples of this reducibility.
For instance, we show that the countable structures generically Muchnik reducible to the
linear order ω1 are precisely those Muchnik reducible to some countable well-ordering, and
that there are two natural structures, with every countable structure generically reducible to
each, one of which is strictly below the other under ≤∗w.

Closely related to generic reducibility is generic presentability.

Definition 1.3. Let P be a poset in V and let A be a structure that lives and is countable
in a model, W , of ZFC extending V . The structure A is generically presented by P if for any
G that is P-generic over V , there is a copy B of A in V [G] with domain ω. (Here, B is a
copy of A in the sense that there is an isomorphism between them in W [G].) A structure is
generically presented if it is generically presented by some poset P ∈ V .

Remark 1.4. Throughout this paper we will be considering structures like A above that do
not necessarily live in V , but in some extension of W . This is, of course, the point of generic
presentability: to study structures which do not live in V , but which V can nonetheless talk
about to a high level of precision. Once we know that A is generically presentable, we can
replace it by its copy inside one of the generic extensions V [G], and, hence, we could have
assumed W was V [G] to begin with. In the definition above, we only require the isomorphism
between A and B to be in W [G]; this is because it only makes sense to talk about isomorphisms
between copies that live in the same model, and we have A ∈W and B ∈ V [G]. We will assume
this whenever we use the word “copy” in the rest of the paper.

A different point of view some readers might prefer is to consider countable models M of
ZFC and define what it means for a countable structure A ∈ V to be generically presented
by P over M . In this case, since M is countable, it is enough to consider generic extensions
M [G] that are still included in V , and when we refer to isomorphisms between structures, we
just mean isomorphism in V .

For clarity, we will use the term ω-copy to mean a copy B of a structure A ∈ V with domain
ω which may live in a larger set-theoretic universe. So, for example, the field of real numbers
has an ω-copy living in any generic extension where (2ℵ0)V is countable.

It is well-known that if a set S is in V [G] for every P-generic G, then S must belong to V
already (Solovay [Sol70]). However, the situation for isomorphic copies of a given structure is
more complicated. There are cases in which the analogous fact is true, and there are cases
in which it is not. This paper is devoted to analyzing this situation, and its connection to
uncountable computability. In particular, if A ≤∗w B, then B contains all the information
necessary to build A— up to a certain amount of genericity. To what extent is this genericity
actually necessary? Ted Slaman formulated this question as follows:

Main Question (Slaman). Let A and B be structures, and suppose B is in Gödel’s L. Does
A ≤∗w B imply that there is a copy of A in L?

(Note that the isomorphism between A and its hypothetical copy is not required to live
in L.)
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We begin by studying the role of forcing-theoretic properties in generic presentability. We
prove:

Theorem 1.5. Let A be a structure that that lives and is countable in an extension W of V .
If A is generically presentable by a forcing notion that does not make ω2 countable, then A
has a copy in V .

(Note again that, even if the theorem claims the existence of B ∈ V isomorphic to A, the
isomorphism between A and B is only required to belong to W , which is where A lives. The
copy B given by the theorem might not be countable in V , but it will be countable in W . See
Remark 1.4.)

This theorem yields as a corollary a partial positive answer to Slaman’s question.

Corollary 1.6. Suppose B ∈ V and A belongs to, and is countable in, an extension W of V .
If A ≤∗w B for some B ∈ V with |B| = ℵ1, then V contains a copy of A.

We can apply the corollary above to L and get that if B lives in L and, within L, has size
ℵL1 , then A has a copy in L.

We also give a new proof of the following result of Harrington.

Theorem 1.7 (Harrington). If T is a counter-example to Vaught’s conjecture, then it has
models of arbitrarily high Scott rank below ω2.

On the other hand, making ω2 countable always introduces structures with universe ω that
do not have copies in V . This provides an exact dichotomy among structures generically
presentable, and a negative answer to Slaman’s question in general.

Theorem 1.8. There is a structure M in an extension of V such that M is generically
presentable by any notion of forcing that makes ω2 countable, but M has no copy in V .
Moreover, this M is generically Muchnik reducible to the ordering (ω2, <).

We close with a structural approach to the question: what properties ensure that generic
presentability implies existence in the ground model? We show that this occurs at least when
the structures involved are as “set-like” as possible. In Section 4, we show the following.

Theorem 1.9. Suppose A is rigid and is generically presentable. Then there is an isomorphic
copy of A already in V .

2. Generic reducibility

2.1. Basic properties. The key result for analyzing generic presentability and generic re-
ducibility is the Shoenfield Absoluteness Theorem (see [Jec03]). The version we state below
is slightly weaker than the actual theorem, but it is all we will need here:

Theorem 2.1 (Shoenfield). Suppose ϕ is a Π1
2 sentence, with real parameters. Then, for

every forcing extension W of V , V |= ϕ ⇐⇒ W |= ϕ.

An easy fact about (countable) Muchnik reducibility of structures is the following.

Observation 2.2. Basic facts about ≤w are invariant under forcing. Specifically, we have the
following.

(1) The relation “≤w” is Π1
2.

(2) For countable A, the predicate “≥w A” is ∆1
1 in a Scott sentence of A.

Together with Theorem 2.1, this implies that much of the theory of ≤∗w is absolute. In
particular, we have the next lemma.
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Lemma 2.3. Fix arbitrary structuresM,N in V . If there is some generic extension in which
M and N are countable and M≤w N , then M≤∗w N .

Proof. Suppose otherwise. Then there must exist posets P0 and P1 in V such that forcing
with either collapses both M and N ,

P0 M≤w N and P1 M 6≤w N .
Let G = H0 × H1 be P0 × P1-generic over V . Let M0 and N0 be reals in V [H0] coding
copies of M and N with domain ω, and let M1 and N1 be reals in V [H1] coding copies of
M and N with domain ω. Then, in V [H0], M0 ≤w N0, while in V [H1], M1 6≤w N1. By
Shoenfield’s absoluteness, this is still true in V [H0][H1]. This gives us a contradiction because,
in V [H0][H1], M0 is isomorphic to M1 and N0 to N1. �

As an immediate corollary of Lemma 2.3, we get the following.

Corollary 2.4. For structures A,B countable in V , we have A ≤w B if and only if A ≤∗w B.

2.2. Potential isomorphism. Generic Muchnik reducibility also has strong connections with
infinitary logic.

Definition 2.5. Let L be a language; that is, a set of relation and operation symbols.

• L∞ω is the collection of formulas obtained from the atomic L-formulas by closing under
arbitrary set-sized Boolean combinations and single instances of quantification. See
[Kei71] for a treatment of the basic properties of L∞ω.
• For structuresA,B of arbitrary cardinality, we say thatA is L∞ω-elementary equivalent

to B, and we write A ≡∞ω B, if the structures satisfy the same L∞ω sentences.

There is a structural characterization of ≡∞ω, due to Carol Karp:

Definition 2.6. Suppose I is a set of partial maps. We say that I has the back-and-forth
property if 〈∅, ∅〉 ∈ I and for every 〈ā, b̄〉 ∈ I,

(1) ā and b̄ satisfy the same atomic formulas,
(2) for every c ∈ A, there is d ∈ B such that (āc, b̄d) ∈ I, and
(3) for every d ∈ B, there is c ∈ A such that (āc, b̄d) ∈ I.

An I with the back-and-forth property is called a back-and-forth system between A and B.

Theorem 2.7 ([Kar65]). A ≡∞ω B iff there is a back-and-forth system between A and B.

It is then not hard to see that for A and B countable, we have that A ≡∞ω B if and
only if A ∼= B. Since Karp’s characterization shows that ≡∞ω is absolute, we get that, for
uncountable structures, A ≡∞ω B iff they are isomorphic when they are made countable:

Lemma 2.8 (Essentially Barwise [Bar73]). The following are equivalent:

(1) A ≡∞ω B,
(2) on every generic extension where A and B are countable, A ∼= B,
(3) on some generic extension where A and B are countable, A ∼= B.

As an immediate corollary, we have the following.

Corollary 2.9. A ≡∞ω B implies A ≡∗w B.

This lets us connect ≡∞ω-equivalence and generic Muchnik reducibility in a strong way:

Lemma 2.10. Let A be a structure. The following are equivalent:

(1) A ≤∗w B for some countable structure B.
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(2) A ≡∗w B for some countable structure B.
(3) A ≡∞ω B for some countable structure B.

Proof. Clearly (3) implies (2) and (2) implies (1). To see that (1) implies (3), suppose A ≤∗w B
for B countable, let B be a copy of B in V , and let V [G] be a generic extension in which A
is countable. Then in V [G], there is some index e such that, for the eth Turing machine Φe,
ΦB
e
∼= A. This means that in V , ΦB

e must be total, and so ΦB
e is a copy of A which lives in

V . �

2.3. Examples. We present below some examples of uncountable structures whose complex-
ity in terms of ≤∗w we have been able to analyze.

Example 2.11. Let U be the structure with domain ω t P(ω), with signature consisting of
only the ∈-relation on ω × P(ω).

Proposition 2.12. U ≡∗w 0, where 0 is the empty structure.

Proof. We will show there is a computable structure S that is ≡∞ω-equivalent to U . By the
absoluteness of ≡∞ω, we will then have that in any generic extension that makes U countable,
S and U are still ≡∞ω-equivalent, and, hence, isomorphic.

We note that the orbit in U of a tuple of sets X̄ is determined by the cardinalities of the
Boolean combinations of the sets Xi. To guarantee that we have a back-and-forth family of
finite partial isomorphisms, we let S consist of ω together with a family of sets P having the
following properties:

• P is an algebra of sets; i.e., it is closed under union, intersection, and complement,
• P includes all finite sets,
• if X ∈ P is infinite, then there are disjoint Y, Z ∈ P , both infinite, such that Y ∪Z = X.

We can easily find such an S which is computable. We could, for example, take the family
of primitive recursive sets. �

Similarly, the field of complex numbers is essentially computable.

Example 2.13. Let C = (C; +,×). This is ≡∞ω-equivalent to the algebraically closed field
of countably infinite transcendence degree and characteristic zero. By a well-known result of
Rabin [Rab60], this has a computable copy. Then C has minimal complexity; that is, C has a
computable copy in every generic extension in which it is countable.

If we consider a variant of U in which the elements of ω have names, we reach the opposite
end of the complexity spectrum:

Example 2.14. Let W be the expansion of U including the successor relation on ω. Then
any ω-copy (1.4) of W computes every real in the ground model V , so given any countable
A ∈ V we have A ≤∗w W.

The situation is the same with respect to the real numbers.

Example 2.15. The field of real numbers R = (R; +,×) is, like W, maximally complicated
with respect to countable structures: for every countable structure A, we have A ≤∗w R. To
see this, suppose V [G] is a generic extension in which R has an ω-copy, R. First, note that
the standard ordering <R is both Σ1 and Π1 over R, and so the corresponding relation on R

is computable relative to R.1

Now fix a real in the ground model b ∈ R and let b̂ ∈ R be the corresponding element of the
ω-copy. Since <R is computable from the atomic diagram of R, so is the cut corresponding to

1That is, <R is a relatively intrinsically computable relation.
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b, so every real in the ground model is computable from the atomic diagram of R. Since R was
an arbitrary ω-copy of R in an arbitrary generic extension, it follows that R ≥∗w A for every
countable A ∈ V .

We would now like to compare the structures R and W under ≤∗w. It is east to show the
following.

Proposition 2.16. R ≥∗w W

Proof. We can use the elements of R in the interval [0, 1) to enumerate the subsets of ω in
V . To each real r in the interval, we associate the set Ar consisting of those n such that the
nth term in the binary expansion of r is 1. Minimal care has to be taken for double binary
representations: if we assume no binary expansion ends up in an infinite string of 1s, we then
need to add those sets. �

Question 1. Do we have W ≥∗w R?

For an elementary extensionM ofR that is ω-saturated, we haveW ≥∗wM. More generally,
we have the following.

Proposition 2.17. Let M be an ω-saturated model of a decidable complete elementary first
order theory T . Then W ≥∗wM.

Proof. Macintyre and Marker [MM84] showed that for an enumeration E of a Scott set S, and
an elementary first order theory T in S, E computes the complete diagram of a recursively
saturated model of T realizing exactly the types in S that are consistent with T . After we
collapse the cardinal so that W becomes computable, it computes an enumeration E of the
Scott set S consisting of the subsets of ω in W. Now, the theory of M is in S, and the types
realized inM are exactly those in S that are consistent with T . Then the result of Macintyre
and Marker yields a recursively saturated model realizing exactly these types. This model is
isomorphic to the collapse of M. �

Finally, uncountable well-orderings live strictly between the two extremes.

Example 2.18. The linear order ω1 = (ω1, <) computes precisely those countable structures
which are Muchnik reducible to some countable well-ordering. One direction is obvious; in the
other direction, suppose A ≤∗w ω1 is countable, and let V [G] be a forcing extension in which
ω1 is countable. Then V [G] satisfies “A is weakly reducible to a countable well-ordering,”
which is Σ1

2 via 2.2, and so already true in V by Shoenfield absoluteness.

Proposition 2.19. R >∗w ω1 strictly.

Proof. To see that R 6≤∗w ω1, fix some non-computable real r ∈ R. Then the cut corresponding
to r, and hence r itself, is computable in any ω-copy R of R in any generic extension since the
ordering relation is both Σ1 and Π1. On the other hand, by a result of Richter [Ric81], the
only sets computable in all copies of a countable linear ordering are the computable sets, so
in any generic extension in which ω1 is countable there will be ω-copies of ω1 whose atomic
diagrams do not compute r.

To see that ω1 ≤∗w R, suppose V [G] is a generic extension in which R is countable, and let
R ∈ V [G] be a copy of R with domain ω. Now R computes an enumeration of the sets coded
by the cuts in R—the reals in V . Some of the reals code linear orderings. For an ordering
r coded in R, if r is not a well ordering, this is witnessed by a decreasing sequence d, also
coded in R. A countable well ordering in V is isomorphic to a countable ordinal, so it stays
well ordered in V [G]. Using R′′, we get an ω-sequence of well-orderings: For a ∈ R, we take
the ordering coded by a, if this is a well ordering, and otherwise, we have a finite ordering.
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The result is an ordering of type ωV1 . Now, we apply in V [G] the theorem saying that, for any
set X and any linear order L, if X ′′ computes a copy of L then X computes a copy of ω · L
([AK00], Theorem 9.11). Since ωV1

∼= ω · ωV1 , our R computes a copy of ωV1 . �

By a similar argument, we also have W >∗w ω1.

2.4. Generic presentability. We end this section with some basic results about generic
presentability, which will be used in the remaining sections. First, we recall Solovay’s proof
that every generically presentable set is already present in the ground model.

Theorem 2.20 (Solovay [Sol70]). Suppose S is a set present in every generic extension of V
by P. Then S ∈ V .

Proof. Let us start by proving that there is a single name ν such that ν[G] = S for every
P-generic G. Fix a generic H so that we can talk about S within V [H]. If there is no single
name ν such that ν[G] = S for every P-generic G, then for every name ν ∈ V P there is some
generic G over V [H] with ν[G] 6= S. Then, for each ν ∈ V P, the set {p ∈ P : p  ν 6= S} is
dense and is in V [H] since S ∈ V [H]. But then, if G is P-generic over V [H], S 6∈ V [G], so S
is not generically presentable.

Let us now go back to the proof of the theorem. Suppose S 6∈ V . Let S be a counterexample
of minimal rank α. Then each element of S is in V , and in particular in the set Vα. Let

Ŝ = {x ∈ Vα : ∃p ∈ P(p  x ∈ ν)}.

Then clearly Ŝ = S, and so S ∈ V . �

The goal of this paper is to investigate the extent to which Solovay’s theorem holds for
structures, and, in particular, to understand how it interacts with computability in generic
extensions. As we will see in Section 3.3, the proof of Solovay’s theorem cannot be naively
extended to structures. However, one key step still holds, and this greatly simplifies arguments
involving generic presentability.

Lemma 2.21. Suppose N is generically presentable by P. Then there is some name ν ∈ V P

such that ν[G] ∼= N for every P-generic G.

If P,N , and ν are as above, we say that N is generically presentable by P via ν.

Proof. This is a generalization of the first paragraph of the proof of Solovay’s Theorem (The-
orem 2.20). Fix H0 P-generic over V . Since N is generically presentable, there is a name µ
such that µ[H0] ∼= N . Looking at the product forcing P2, there exist a condition p ∈ H0 and
a name ν such that

(p, 1) P2 µ[ġ0] ∼= ν[ġ1].

We claim that ν names a copy of N in all generic extensions. To see this, fix a P-generic
filter G1. We can find G0, H1 such that

• p ⊆ G0 and G0 is P-generic over V [G1],
• H1 is P-generic over V [H0], and
• G0 ×H1 is P2-generic over V .

Then we have
ν[G1] ∼= µ[G0] ∼= ν[H1] ∼= µ[H0] ∼= N . �

Finally, although it is not directly useful to the results of this paper, we note that being
“generically generically presentable” is the same as being generically presentable.

Proposition 2.22. If A is generically presentable over V [G] for every P-generic filter G, then
A is generically presentable over V .
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Proof. The proof is identical to the proof of Lemma 2.21 above, except that instead of a name
ν for A, we work with a name ν̂ for a pair 〈Q, µ〉 where Q is a poset and µ is a Q-name; this
is just the “two-step iteration” version of Lemma 2.21. �

3. Generic presentability and ω2

In this section and the next, we address the question “when do generically presentable
structures have copies in V ?” This section focuses on a forcing-theoretic aspect of the question.
For which forcing notions P do we have copies in V for all structures generically presentable
by P with universe ω? Surprisingly, this is entirely determined by how P affects cardinals: ω2

remains uncountable after forcing with P if and only if every structure generically presentable
by P on ω has a copy in V .

As a consequence of proving the left-to-right direction of this result, we also give a new proof
of the result due to Harrington that counterexamples to Vaught’s conjecture must have models
of arbitrarily high Scott rank in ω2. The right-to-left direction follows from a construction of
Laskowski and Shelah [LS93].

3.1. Scott Analysis. We begin by reviewing the Scott analysis of a structure. Scott [Sco65]
proved that for every countable structure A, there is an infinitary sentence σ of Lω1ω such
that the countable models of σ are exactly the isomorphic copies of A. Such a sentence is
called a Scott sentence.

There are several definitions of Scott rank in the literature (see, in particular, [Bar75],
[AK00], [MS08], [CKM06], and [Mon]). The definitions give slightly different values. However,
all of the definitions assign countable Scott ranks to countable structures. In general, the
complexity of the Scott sentence is only a little greater than the Scott rank of the structure. If
one definition assigns a computable ordinal Scott rank, then the other definitions do as well,
and then there is a Scott sentence that is Σα, for some computable ordinal α. The definition
that we give below is the one used by Sacks [Sac07]. We begin by defining a family of definable
expansions of A.

Definition 3.1. We first have to review the Scott analysis of a structure. (See [Sac07].) For
each α, we define a fragment LAα of L∞,ω as follows:

• Let LA0 consists of the first order formulas.
• Given LAα , for each complete non-principal type Φ(x) ⊆ LAα realized in A, add the

formula
∧

Φ(x) to LAα+1, and close under first order connectives and quantifiers.
• At limit levels, take unions.

For each α there is a natural way to expand A to a LAα -structure Aα; we will abuse notation
by omitting the subscript, since no confusion will arise.

At some step α, A becomes LAα -atomic, in the sense that all LAα -types are principal.

Definition 3.2. The Scott rank of A, sr(A), is the least ordinal α such that A is an LAα -atomic
structure.

Lemma 3.3. If A is generically presentable, then, for every ordinal β, LAβ ∈ V .

Proof. First, let us remark that we can code the formulas in LAβ by sets: for instance, we code
an infinitary conjunction of formulas ψi by a pair, the first element being a code that means
“conjunction” and the second element being the set of codes for the formulas ψi — say, by
defining code(

∧
i∈I ψi(x)) = 〈17, {code(ψi(x)) : i ∈ I}〉. This is quite standard, so we let the

reader fill in the details.
The one important detail is that we are not coding infinitary conjunctions using sequences

of formulas, but using sets where the order of the formulas does not matter. The key point is
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that if we have different presentations of a structure A, the types realized in each presentation
are the same as sets. We can then prove by induction on β, that LAβ is a set that is independent
of the presentation of A. Since A is generically presentable, say by a forcing notion P, the
language LAβ belongs to all P-forcing extensions of V , and so by Solovay’s Theorem 2.20, we

get that LAβ belongs to V . �

Definition 3.4. Given a structure A, let L̂ be the language containing a relation symbol for
each formula in LAsr(A) (the Morleyization of LAsr(A)), and let Â be the natural expansion of A
to the language L̂. Note that if A is generically presentable, then L̂ ∈ V since LAsr(A) ∈ V .

Notice that Â is atomic in a very strong way: each L̂-type is generated by a quantifier-free
L̂-formula.

Remark 3.5. Throughout this section we will tacitly assume that L (and hence L̂ as well) is
no larger than A; that is, that the statement “|L| ≤ |A|” is true in every forcing extension
by P (where P is a forcing generically presenting A). This assumption is used, for example,
in 3.7 below, and is necessary for straightforwardly applying the facts about amalgamation
we will prove in section 3.2. Note that this assumption holds for the vast majority of natural
structures.

Lemma 3.6. If A is generically presentable, then so is Â.

Proof. We already showed that LAsr(A) ∈ V , so L̂ ∈ V . There is only one way to expand A to

the L̂-structure Â. So, Â has a presentation with domain ω in every generic extension of V
where A does. �

Proposition 3.7. Suppose A is generically presentable by a forcing notion that does not
collapse ω1. Then A has a copy in V with domain ω.

Proof. Let P be a forcing notion that does not collapse ω1, and for which A is generically
presentable. Since Â is generically presentable, and L̂ ∈ V , we have that ThL̂(Â), the L̂-theory

of Â, is a set of L̂ sentences that belongs to all P-generic exensions. Thus, ThL̂(Â) ∈ V .

In all of these extensions, L̂ is countable (becauseA is), and, hence, L̂ cannot be uncountable

in V . Otherwise, there would be an injection from ω1 into L̂, and since P does not collapse
ω1, L̂ would stay uncountable in V [G].

Now, in each of these generic extensions, Â is the unique countable atomic model of ThL̂(Â).

The existence of such a model is a Σ1
1 statement with ThL̂(Â) as parameter. By absoluteness,

this must be true in V too, and by the uniqueness of Â in V [G], this model must be isomorphic

to Â. �

3.2. Keeping ω2 uncountable. We now turn to the Fräıssé limit construction, first used in
[Fra00]:

Definition 3.8. Fix a relational language L. For an L-structure B, we denote by KB the set
of finite substructures of B, and we call KB the age of B. For K a set of finite structures and
A a structure, we say that A is the Fräıssé limit of K if KA = K and the set of isomorphisms
between finite substructures of A has the back-and-forth property.

It is clear from the definition that if A and B are countable Fräıssé limits for the same age K,
then A ∼= B. A given age may have non-isomorphic uncountable Fräıssé limits. For example, if
K is the set of finite linear orderings, the Fräıssé limits are the dense linear orderings without
endpoints, and there are many — in fact, 2ℵ1 many, the most possible — non-isomorphic ones
of cardinality ℵ1.
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Lemma 3.9. If A is generically presentable, then KA ∈ V .

Proof. This follows from Solovay’s Theorem 2.20: KA is a set of finite structures that is
independent of the presentation of A. �

Using the same argument as in Proposition 3.7, we get a bound on the size of L̂ and KÂ:

Corollary 3.10. If A is generically presentable by a forcing not making ω2 countable, then
L̂ and KÂ have size ≤ ℵ1 in V .

Fräıssé [Fra00] proved that if K is a countable set of finite structures satisfying the Heredi-
tary Property (HP ), the Joint Embedding Property (JEP ) and the Amalgamation Property
(AP ), then it has a Fräıssé limit (see 6.1 of [Hod97] for definitions). The next lemma says
that this is still the case when K has size ℵ1. The earliest reference we know is Delhomme,
Pouzet, Sagi, and Sauer [DPSS09, Corollary 2, p. 1378]. We give the proof because we want to
make clear that the result does not automatically generalize to ages of size > ℵ1; and indeed,
we will see in the next subsection that there is an age of size ℵ2 with no limit (3.18).

Lemma 3.11. Let K be a family of ℵ1 finite structures on a relational language L of size
≤ ℵ1. If K has HP, JEP, and AP, then there is a Fräıssé limit A with age K.

Proof. The key is the following:

Claim: Suppose we have embeddings A → B and A → C where A,B ∈ K and
C is countable and its age is a subset of K. Then there is a countable structure
D, whose age is a subset of K, and which amalgamates these embeddings.

To prove the claim, write C as the union of an increasing sequence {Cn : n ∈ ω} where each
Cn ∈ K, and with C0 = A. Let D0 = B, and note that we have an embedding from C0 to
D0. Given Dn, by induction we will have an embedding from Cn into Dn, and Dn will be an
element of K; and by definition we have an embedding from Cn into Cn+1. We then form Dn+1

by amalgamating the embeddings Cn → Cn+1 and Cn → Dn within K. The direct limit D of
the Di is the desired amalgamation.

Now we prove the lemma. Suppose K is such a family of finite structures. There is a
sequence (Aξ)ξ∈ω1 of structures such that:

• ξ0 < ξ1 ⇒ Aξ0 ⊆ Aξ1 ;
• each Aξ is countable and its age is a subset of K; and
• for every ξ ∈ ω1 and B, C ∈ K and every pair of embeddings B → C and B → Aξ, there

is γ > ξ and an embedding C → Aγ compatible with the inclusion Aξ → Aγ .

The union A of the Aξ clearly has age K. It is clear from the construction that the set of
finite partial isomorphisms has the back-and-forth property. �

Note that the limit A constructed above need not be ℵ1-homogeneous or unique.

Corollary 3.12. Let B be an L-structure that lives in an extension of the universe and is
ω-homogeneous in the sense that the family of isomorphisms between finite substructures has
the back-and-forth property. Suppose B is generically presentable, and |KB|, |L| ≤ ℵ1 in V .
Then in V there is a structure ∞ω-equivalent to B.

Proof. Since B is generically presentable, we have that KB ∈ V by Lemma 3.9. Since B is
ω-homogeneous, KB has HP , JEP and AP in any model where B lives; in particular, KB
has these properties in V . Since |KB| ≤ ℵ1 and |L| ≤ ℵ1 in V , by Lemma 3.11 we have that
KB has a Fräıssé limit F in V . In a generic extension presenting B, the age KB—and, hence,
the Fräıssé limit F—will be countable. Then F ∼= B, by the uniqueness of countable Fräıssé
limits, so F is the required structure ∞ω-equivalent to B which lives in V . �
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We are now ready to prove the main positive result of this section.

Theorem 3.13. Let A be a structure in an extension W of V , and assume A is countable in
W . Suppose A is generically presentable by a forcing notion that does not make ω2 countable.
Then there is a copy of A in V , with cardinality at most ℵ1 in V .

(Recall that the conclusion of the theorem should be read as: there is a structure B ∈ V of
cardinality at most ℵ1 in V , which is isomorphic to A in W . See Remark 1.4.)

Proof. Let L be the language of A. Since A is generically presentable, by Lemma 3.3, we know
that L̂ is in V and Â is generically presentable. Consider some generic extension V [G] by a
forcing which generically presents A and which does not make ω2 countable. Using in V [G]
the fact that Scott ranks of countable structures are countable, since ωV2 is still uncountable

in V [G] the language L̂ has size ≤ ℵ1 in V . This implies that KÂ is in V by Lemmas 3.6 and

3.9 and has size ≤ ℵ1 in V by 3.10. Now, we can apply Corollary 3.12 to get a copy of Â
which lives in V (of course, Â need not be countable in V ). Intuitively, we now want to take

the reduct of this copy to L, but L̂ need not include L (for instance, if two L-symbols have

the same interpretation); instead, from Â we can now “decode” the correct interpretations of
each of the symbols in L, and thus produce a copy of A itself. �

Note that Theorem 3.13 does not directly imply Remark 3.7, since the latter concludes that
the generically presentable structure in question has a countable copy in V .

We may apply Theorem 3.13 to prove the following.

Theorem 3.14 (Harrington, unpublished). If T is a counterexample to Vaught’s Conjecture,
then for each α < ω2, T has a model of size ℵ1 with Scott rank ≥ α.

Proof. Recall that if T is a counterexample to Vaught’s conjecture it has countable models
of arbitrary Scott rank below ω1. Being a counterexample to Vaught’s conjecture is a Π1

2

property ([Mor70]; see also [Sac07], Proposition 5.1) and hence absolute.
Let P = ω<ω1 be the usual Levy collapse of ω1 and let G be P-generic. Since T is a

counterexample to Vaught’s conjecture, in V [G] we have a countable model B of Scott rank
≥ α. We claim that B is generically presentable over V by P. This would give us the claimed
result: since P does not collapse ω2, by Theorem 3.13, we would have a copy of B of size ℵ1

in V , and since Scott rank is absolute, this copy is as wanted.
Let us now prove that B is indeed generically presentable over V by P. Fix a P-generic G,

and a name ν ∈ V for B in V [G]. The idea is to show that whenever we have two mutually
generics, ν gives us non-isomorphic models of T , and hence if we add continuum many mutually
generics, we get continuum many different countable models of T . It is enough to show that
for every H which is P-generic over V [G], there is a structure in V [H] that is isomorphic within
V [G][H] to ν[G]. Suppose this is not the case. Then, there is some P condition q forcing, in
V [G], that there is no copy of B in V [H] for every extension H of q. Since this sentence is
invariant under finite changes in H, we can assume q is the empty condition. Now, since G
is generic over V , there is a p ⊂ G which forces this. Assume that p also forces that ν[G] is
a model of T . So, we get that, the P × P-condition (p, p) forces that ν[G] and ν[H] are not
isomorphic in V [G][H], and are both countable models of T .

Now, consider a forcing notion Q that adds perfectly many P-generics. (This is quite
standard: for instance let Q be the set of finite partial maps from 2<ω to ω<ω1 and then
obtain the P generics by concatenating the ω<ω1 -strings along each path in 2ω.) In this generic
extension of V , we get continuum many countable models of T . Since being a counterexample
to Vaught’s conjecture is absolute, this is a contradiction. �
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Remark 3.15. Recently, Baldwin, S.-D. Friedman, Koerwien, and Laskowski [BFKL] have
given a new proof of Harrington’s result using similar genericity arguments; their proof uses
a generic version of the Morley tree, which they show is invariant across forcing extensions.

Finally, we can use Theorem 3.13 to give a partial positive answer to Slaman’s question:

Corollary 3.16. Suppose A lives in an extension of the universe and A ≤∗w B for some B ∈ V
with cardinality ≤ ℵ1. Then A has a copy in V .

Proof. Let P be a forcing notion that collapses ω1 while keeping ω2 uncountable, such as
P = ω<ω1 . Let V [G] be a generic extension by P. Then B is countable in V [G], and, a
fortiori, there is a copy of A in V [G]. It follows that A is P-generically presentable. Then by
Theorem 3.13, there is a copy of A in V . �

3.3. Collapsing ω2 to ω. We close this section by presenting a strong negative result, coming
from a construction due to Shelah and Laskowski [LS93]. Throughout the rest of this section,
we abbreviate the linear order (ω2, <) by “ω2.”

Theorem 3.17. There is a structure A, generically presentable by any forcing making ω2

countable, but with no copy in V .

Proof. Laskowski and Shelah [LS93] gave an example of an elementary first order theory T ,
in a countable language, such that:

(1) The language has a sort V such that, for every modelM of T and every subset A ⊆ VM,
T (A) has an atomic model if and only if |A| ≤ ℵ1.

(2) T has a countable model M0 such that VM0 is totally indiscernible in the sense that
any permutation of VM0 extends to an automorphism of M0. Furthermore, M0 is
atomic over VM0 .

For C a countable structure, letMC be the two-sorted structure with one sort corresponding
to a copy of C, one sort corresponding to a copy ofM0, and with a function symbol f providing
a bijection between C and VM0 . Since the elements of VM0 are totally indiscernible, any two
choices of f yield isomorphic structures, so MC is well-defined.

Now consider the “structure”Mω2 which lives in any extension of the universe where ω2 is
countable. Thus, Mω2 is generically presentable by Col(ω2, ω). However, there is no copy of
Mω2 in V : Since if the first sort is really ω2, of size ℵ2, then in the second sort, the predicate
V has size ℵ2. But, by the assumption on M0, MC is always atomic over C (a fact that is
absolute), and by the assumption on T , T (VMω2 ) has no atomic models. �

The structure of Laskowski and Shelah also provides a counterexample to a natural extension
of Lemma 3.11.

Corollary 3.18. There is an age S of size ℵ2 with the Hereditary, Joint Embedding, and
Amalgamation properties but for which there is no Fräıssé limit.

Proof. Consider the theory T (A) = Th(M0, aa∈A), where A = AM has size ℵ2. The principal
types are dense, but T (A) has no atomic model. We add predicate symbols for the principal
types. For B ⊆ A of size up to ℵ1, there is an atomic model of the corresponding theory
T (B) = Th(M0, aa∈B). Let K consist of the finite substructures of the atomic models of
the theories T (B). In total, what we have is appropriate to be the age for an atomic model
of T (A). That is, we have the Hereditary, Joint Embedding, and Amalgamation properties
(essentially [LS93], pg. 3). However, any Fräıssé limit of S would yield an atomic model of
T (A), so the Fräıssé limit cannot exist. �
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4. Generically presentable rigid structures

In the previous section, we gave a complete characterization of those posets P with the
property that every structure generically presentable by P has a copy already in the ground
model. In this section, we examine the dual question: what properties of structures ensure
that generic presentability implies the existence of a copy in the ground model? Specifically,
we extend Solovay’s Theorem 2.20 to structures that are sufficiently “set-like:”

Theorem 4.1. Suppose N is a rigid structure with language L, generically presentable by P.
Then there is a copy of N in V .

Proof. We assume L is relational; note that since N is generically presentable, and L is a set,
we have L ∈ V . By Lemma 2.21, there is a single name ν which names a copy of N in any
generic extension by P. Without loss of generality, we may assume that  dom(ν) = ω. On
ω × P, we then define the relation ≡ as follows:

(a, p) ≡ (b, q) ⇐⇒ (p, q) P2 “{(a, b)} extends to an isomorphism ν[ġ0] ∼= ν[ġ1].”

If (a, p) ≡ (a, p), we say a is stable in p, and we write M for the set {(a, p) : a is stable in p}.

Lemma 4.2. The relation ≡ is an equivalence relation on M.

Proof. Symmetry is clear, and reflexivity is immediate from the definition of M. For transitiv-
ity, suppose (a, p) ≡ (b, q) ≡ (c, r), and let G0 ×G1 be P2-generic over V with p ∈ G0, r ∈ G1;
and let H be P-generic over V [G0 ×G1]-generic, with q ∈ H. Then clearly in V [G0 ×G1][H],
there is an isomorphism between ν[G0] and ν[G1] taking a to c; but this is a Σ1

1 property, and
so already true in V [G0 ×G1]. Thus, (a, p) ≡ (c, r). �

Now let M be the set of ≡-classes of elements of M. The basic properties of M , which
parallel the properties of ages needed for Fräıssé constructions, are:

Lemma 4.3. For p ∈ P, a ∈ ω,

(1) (Extension) if a is stable in p and q ≤ p, then a is stable in q and (a, p) ≡ (a, q);
(2) (Genericity) there is some q ≤ p with a stable in q; and
(3) (Amalgamation) for (a1, p1), ..., (an, pn) ∈ M , and s ∈ P, there is some condition

r ∈ P with r ≤ s and c1, ...cn ∈ X such that (c1, r), ..., (cn, r) ∈ M and (c1, r) ≡
(a1, p1), ..., (cn, r) ≡ (an, pn).

Proof. (1): That a is stable in q is immediate from the definition of stability. To see that
(a, p) ≡ (a, q), note that any pair of generics H0, H1 witnessing the failure of (a, p) ≡ (a, q)
would also witness the instability of (a, p).

(2): Consider the condition (p, p) ∈ P2. By our assumption on ν, there must be some
condition (q, q′) ≤ (p, p) and a′ ∈ X such that

(q, q′) P2 {(a, a′)} extends to an isomorphism ν[ġ0] ∼= ν[ġ1].

It now follows that a is stable in q: given G0×G1 P2-generic over V extending (q, q), fix some
H which is P-generic over V [G0×G1] with q′ ∈ H. Thenm, clearly, in V [G0×G1][H] there is
an isomorphism between ν[G0] and ν[G1] extending {(a, a)}; but this is a Σ1

1 fact, so already
true in V [G0 ×G1].

(3): For simplicity, assume s = ∅ and n = 2. Working in P3, by our assumption on ν we
can find conditions p′1, p

′
2, r
′ ∈ P and c1, c2 ∈ X with p′1 ≤ p1, p

′
2 ≤ p2, and

(p′1, p
′
2, r
′) P3 {(a1, c1)} and {(a2, c2)} extend to ν[G0] ∼= ν[G2] and ν[G1] ∼= ν[G2],

respectively. Applying Lemma 4.3(2) twice to r′ then yields an r ≤ r′ with c1, c2 stable in r, so
that (c1, r), (c2, r) ∈M , and it is easily checked that (c1, r) ≡ (a1, p1) and (c2, r) ≡ (a2, p2). �
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Finally, the following result is where rigidity is used. Intuitively, rigidity plays the role in
our proof that ω-homogeneity plays in standard Fräıssé limit constructions.

Lemma 4.4. (Simultaneity) Suppose p, q ∈ P and i1, ..., in : ⊆ ω → ω are partial maps
in V with disjoint domains which are each forced by (p, q) in P2 to extend to isomorphisms
j1, ..., jn : ν[G0] ∼= ν[G1]. Then

(p, q) P2

⋃
1≤j≤n

ij extends to an isomorphism ν[G0] ∼= ν[G1].

Note that this result immediately implies the seemingly stronger result in which disjointness
of domains is not assumed.

Proof. We will prove the lemma in the case where n = 2, p = q, i1 = {(a, a)} and i2 = {(b, b)}
for some distinct a, b ∈ ω; the general result is no different. Note that the assumption on ij
in this case means just that a and b are stable in p.

Let G0 ×G1 be P2-generic extending (p, p). Then, forced by (p, p), there are isomorphisms
j1, j2 : ν[G0] ∼= ν[G1] with j1(a) = a and j2(b) = b. Consider the map j = j1 ◦ j−1

2 . This
is an automorphism of ν[G1], and hence by rigidity must be the identity; so j1(b) = b, since
j−1
2 (b) = b by assumption on j2. But then j1 is an isomorphism extending {(a, a), (b, b)}, so

(p, p) forces that there is an isomorphism between ν[G0] and ν[G1] extending {(a, a), (b, b)}. �

Now we come to the body of the proof of Theorem 4.1. We can turn M into an L-structure,
M, as follows: writing (a,p) for the equivalence class of (a, p) ∈ M, for each n-ary relation
symbol R ∈ L we let RM be the set of tuples ((a1,p1), . . . , (an,pn)) such that

∃q ∈ P, c1, ..., cn stable in q (∀i ≤ n[(ai,pi)= (ci,q)] ∧ q  “ν |= R(c1, ..., cn)”).

Informally, this definition ensures that each relation R holds whenever it ought to hold; we
will also need the converse result, that each R fails whenever it ought to fail, and this is where
Simultaneity will come in.

Lemma 4.5. Let G be P-generic over V . Then V [G] |= ν[G] ∼=M.

Proof. For a ∈ ν[G], let StabGa = {p ∈ G : (a, p) ∈ M}. Then for every p, q ∈ StabGa , we must
have (a, p) ≡ (a, q): since p, q ∈ G, there must be a common strengthening r ≤ p, q; by 4.3(1),
we have (a, p) ≡ (a, r) and (a, q) ≡ (a, r), and hence (a, p) ≡ (a, q) by transitivity. So the set
{(a, p) : p ∈ StabGa } is contained in a single ≡-class, and hence corresponds to a single element
of M.

Consider the map i : ν[G] → M : a 7→ {(a, p) : p ∈ StabGa }; We claim that i is an isomor-
phism. Surjectivity is an immediate consequence of Genericity 4.3(2), and injectivity follows
from the rigidity of ν[G].

Finally, we must show that i is a homomorphism. For R a relation symbol in L and a ∈ ν[G],
by 4.3(3) we have

(ν[G] |= R(a))⇒ (M |= R(i(a))).

Conversely, suppose M |= R(i(a)) and fix p ∈
⋂
a∈a Stab

G
a . Then we must have some c,

q, b, and r such that (ci, qi) ≡ (ai, p), (ci, qi) ≡ (bi, r), and r  “ν |= R(b).” But then by
Simultaneity 4.4, since (ai, p) ≡ (bi, r), we must have p  R(a), and hence ν[G] |= R(a). �

This finishes the proof of Theorem 4.1. �
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[Fra00] Roland Fräıssé. Theory of relations, volume 145 of Studies in Logic and the Foundations of Math-

ematics. North-Holland Publishing Co., Amsterdam, revised edition, 2000. With an appendix by
Norbert Sauer.

[GHHM13] Noam Greenberg, Joel David Hamkins, Denis Hirschfeldt, and Russell Miller. Effective Mathematics
of the Uncountable. Lecture Notes in Logic. Cambridge Univ, 2013.

[Hod97] Wilfred Hodges. A shorter model theory. Cambridge University Press, 1997.
[Jec03] Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The

third millennium edition, revised and expanded.
[Kar65] Carol Karp. Finite-quantifier equivalence. In Theory of Models (Proc. 1963 Internat. Sympos. Berke-

ley), pages 407–412. North-Holland, Amsterdam, 1965.
[Kei71] H. Jerome Keisler. Model theory for infinitary logic. Logic with countable conjunctions and finite

quantifiers. North-Holland Publishing Co., Amsterdam-London, 1971. Studies in Logic and the
Foundations of Mathematics, Vol. 62.

[LS93] M. Chris Laskowski and Saharon Shelah. On the existence of atomic models. J. Symbolic Logic,
58(4):1189–1194, 1993.

[MM84] Angus Macintyre and David Marker. Degrees of recursively saturated models. Trans. Amer. Math.
Soc., 282(2):539–554, 1984.

[Mon] Antonio Montalbán. A robuster Scott rank. submitted for publication.
[Mor70] Michael Morley. The number of countable models. J. Symbolic Logic, 35:14–18, 1970.
[MS08] Jessica Millar and Gerald Sacks. Atomic models higher up. Ann. Pure Appl. Logic, 155(3):225–241,

2008.
[Rab60] Michael Rabin. Computable algebra, general theory and theory of computable fields. Trans. Amer.

Math. Soc., 95:341–360, 1960.
[Ric81] Linda Richter. Degrees of structures. J. Symbolic Logic, 46(4):723–731, 1981.
[Sac07] Gerald Sacks. Bounds on weak scattering. Notre Dame J. Formal Logic, 48(1):5–31, 2007.
[Sco65] Dana Scott. Logic with denumerably long formulas and finite strings of quantifiers. In Theory of

Models (Proc. 1963 Internat. Sympos. Berkeley), pages 329–341. North-Holland, Amsterdam, 1965.
[Sol70] Robert Solovay. A model of set-theory in which every set of reals is Lebesgue measurable. Ann. of

Math. (2), 92:1–56, 1970.

Department of Mathematics, University of Notre Dame, USA
E-mail address: Julia.F.Knight.1@nd.edu

URL: http://math.nd.edu/people/faculty/julia-f-knight/

Department of Mathematics, University of California, Berkeley, USA
E-mail address: antonio@math.berkeley.edu

URL: www.math.berkeley.edu/∼antonio

Department of Mathematics, University of California, Berkeley, USA
E-mail address: schweber@math.berkeley.edu

URL: http://www.math.berkeley.edu/∼schweber

http://math.nd.edu/people/faculty/julia-f-knight/
http://www.math.berkeley.edu/~antonio/index.html
http://www.math.berkeley.edu/~schweber

	1. Introduction
	2. Generic reducibility
	2.1. Basic properties
	2.2. Potential isomorphism
	2.3. Examples
	2.4. Generic presentability

	3. Generic presentability and 2
	3.1. Scott Analysis.
	3.2. Keeping 2 uncountable.
	3.3. Collapsing 2 to .

	4. Generically presentable rigid structures
	References

