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Abstract

We study the classes of Büchi and Rabin automatic struc-
tures. For Büchi (Rabin) automatic structures their domains
consist of infinite strings (trees), and the basic relations, in-
cluding the equality relation, and graphs of operations are
recognized by Büchi (Rabin) automata. A Büchi (Rabin)
automatic structure is injective if different infinite strings
(trees) represent different elements of the structure. The first
part of the paper is devoted to understanding the automata-
theoretic content of the well-known Löwenheim-Skolem the-
orem in model theory. We provide automata-theoretic ver-
sions of Löwenheim-Skolem theorem for Rabin and Büchi
automatic structures. In the second part, we address the fol-
lowing two well-known open problems in the theory of au-
tomatic structures: Does every Büchi automatic structure
have an injective Büchi presentation? Does every Rabin
automatic structure have an injective Rabin presentation?
We provide examples of Büchi structures without injective
Büchi and Rabin presentations. To answer these questions
we introduce Borel structures and use some of the basic
properties of Borel sets and isomorphisms. Finally, in the
last part of the paper we study the isomorphism problem for
Büchi automatic structures.
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1. Introduction

We study the classes of structures that can be recognized
by Büchi and Rabin automata and compare them with other
classes of structures. By a structure we mean a set that has
finitely many relations and operations defined on it like, for
example, a ring, an ordered group, or a Boolean algebra,
etc. Structures presented by finite word and tree automata
have been studied extensively over the last several years
(e.g. [4, 13, 15]), and we refer to these structures as word
automatic and tree automatic structures. However, there
has been very little work on structures presented by Büchi
and Rabin automata. Therefore, several foundational ques-
tions that have relatively simple solutions for word and tree
automatic structures are still outstanding for the classes of



Büchi and Rabin automatic structures. We address some of
these questions in this paper. We mention that Blumensath
and Grädel studied Büchi automatic structures in [4]. They
proved that the class of Büchi automatic structures has a
complete structure, that is a Büchi automatic structure in
which every Büchi automatic structure is interpretable [4].
Also, Kuske and Lohrey in [16] studied the model checking
problem for Büchi automatic structures in some extensions
of the first order logic. We also refer to [3] for some results
on Rabin automatic structures.

For Büchi and Rabin automatic structures their domains
consist of infinite strings or infinite trees, and the basic re-
lations, including the equality relation, and graphs of op-
erations are recognized by Büchi and Rabin automata. All
these structures, as shown in [4, 13, 15, 16], have strong
closure and decidability properties. For example, the first
order theory of these structures are decidable. Moreover,
these classes of structures are closed under first order inter-
pretations.

The paper consists of three parts. The first part is devoted
to understanding the automata-theoretic content of the well-
known Löwenheim-Skolem theorem in model theory. The
theorem states that every uncountable structure on a count-
able language has a countable elementary substructure (see
for example [17]). In order to investigate an automatic ver-
sion of the Löwenheim-Skolem theorem, we study Büchi
and Rabin automatic structures from a finitistic view point.
We define a new notion of finite automata, that we call loop-
automata (see Section 3). These automata run on a certain
type of finite strings that have loop shape in a sense we
specify later. The idea is that these loops represent infi-
nite eventually periodic strings. We then look at the class
of structures that can be recognized by these automata. We
call them loop-automatic structures. This class of countable
structures has strong closure and decidability property like
the automatic structures, but it is a larger class. Every auto-
matic structure is loop-automatic. But, we will see that, for
instance, the atomless Boolean algebra is loop-automatic
and we know it is not automatic (as shown by Khoussainov,
Rubin, and Stephan [15]). Also, the ordered group of the ra-
tional numbers (Q,+,≤) is loop-automatic but not known
to be automatic. The loop automatic structures provide an
automata-theoretic content to the Löwenheim-Skolem the-
orem. Namely, in Theorem 4.2, we show that every Büchi
structure has an elementary loop-automatic substructure.
We also define a new notion of finite tree automata that we
call looped tree automata. For looped tree-automatic struc-
tures we also get strong closure and decidability properties
as we get for automatic structures. This also gives us a ver-
sion of Löwenheim-Skolem for Rabin structures (Theorem
4.2).

In the second part of the paper we address two well-
known open problems in the theory of automatic structures:

1. Does every Büchi automatic structure have an injective
Büchi presentation?

2. Does every Rabin automatic structure have an injec-
tive Rabin presentation?

An injective Büchi presentation of a structure is one where
different infinite strings represent different elements of the
structure, while in a Büchi (and Rabin) presentation we only
require the equality relation to be a Büchi (Rabin) equiva-
lence relation on the set of infinite strings (trees) (see Defi-
nition 2.5 for details). We call these two problems the injec-
tivity problems for Büchi and Rabin automatic structures.

In order to investigate the questions above, we compare
the classes of Büchi and Rabin automatic structures with the
class of Borel structures. Borel structures are uncountable
structures whose domains are subsets of the set of infinite
strings. For Borel structures we require the domain, the
equality relation and the graph of the operations and rela-
tions to be Borel sets (see Section 5). All Büchi automatic
structures are examples of Borel structures.

We answer both of the injectivity problems negatively in
Section 6, see Theorem 6.4 and Theorem 6.6 , by building
a Büchi structure that does not even have a Borel injective
presentation. Interestingly, the structure built is also an ex-
ample of a structure without injective Rabin presentation.
We point out that these results use notions from descrip-
tive set theory. It would be interesting to prove these theo-
rems using purely automata-theoretic methods. We should
mention that the corresponding counterparts for word and
tree automatic structures have positive solutions [13] [4]
[6]. In fact, for tree automatic structures the positive solu-
tion, given in [6], involves non-trivial technical details that
correct the proof from [3]. For countable Büchi automatic
structures the injectivity problem has a positive solution.
The solution uses an automata-theoretic analysis of the state
space of automata representing the equality relation [10]. In
addition, the paper [4] addresses the injectivity problem for
Büchi automatic structures and claims that Büchi automatic
structures have injective presentations (see Proposition 5.2
in [4]).

More generally, we prove that the inclusions between
classes of structures showed in the diagram below are the all
proper. Two of these inclusions solve the injectivity prob-
lems stated above. The diagram also depicts the fact, proved
in Theorem 6.3, that there is a Rabin injective structure that
does not have a Borel presentation. The coding of this struc-
ture is based on the well-known result of D. Niwinski (see
[18]) showing that there exists a Rabin recognizable lan-
guage that is not a Borel set. The readers can consult the
papers [19, 21, 18] on relationship between Rabin recog-
nizable languages and Borel hierarchy.
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Figure 1. Classes of structures

2. Background on Büchi and Rabin automatic
structures

In this section we review the basic facts and definitions
about Büchi and Rabin automatic structures. Büchi recog-
nizable languages were first introduced by Büchi in [5] with
the intention of proving that monadic second order of one
successor has a decidable theory. Rabin automata were used
to prove that the monadic second order theory of two suc-
cessor functions is decidable [20]. These have applications
in many other areas of computer science.

2.1. Büchi and Rabin automata

Let B? be the set of finite strings and Bω be all infinite
words over finite alphabet B. We denote these infinite words
by symbols α, β, . . ..

Definition 2.1. A Büchi automaton M is a quadruple
(S, ι,∆, F ), where

• S is a finite set of states,

• ι ∈ S is the initial state,

• ∆ ⊂ S × B× S is the transition table,

• and F ⊂ S is the set of accepting states.

A run of M on α = σ0σ1 . . . is a sequence of states r =
s0, s1, · · · ∈ Bω such that s0 = ι and (si, σi, si+1) ∈ ∆
for all i ∈ ω. The run is accepting if the set In(r) = {s :
∃∞i(qi = s)} has a state from F . The automaton accepts
the string α if it has an accepting run on it. The language
accepted by the automaton M, denoted L(M), is the set of
all infinite words accepted by M.

Büchi automata can also recognize n-tuples of infinite
strings. For this we need a simple definition. The con-
volution of a tuple (α1, · · · , αn) ∈ (Bω)n is the infi-
nite word c(α1, · · · , αn) ∈ (Bn)ω whose k’th symbol is

(α1(k), . . . , αn(k)) ∈ Bn. Note that the size of the alpha-
bet of the convoluted word has increased. The convolution
of a relation R ⊂ (Bω)n, denoted by c(R), is the language
formed as the set of convolutions of all the tuples in R. Say
that R is Büchi recognizable if c(R) is a Büchi recogniz-
able language. This definition can be generalized to tuples
of infinite strings over different alphabets in an obvious way.
Example 2.2. 1. The lexicographic relation {(α, β) |

α, β ∈ {0, 1}ω, α ≤lex β} is a binary Büchi recog-
nizable relation.

2. The equivalence relation =∗ on {0, 1}ω , defined by
α =∗ β if ∃n∀m ≥ n(α(m) = β(m)) is also Büchi
recognizable.

For a language S ⊆ Bω
1 × Bω

2 its projection (to the first
component) is the language {α ∈ Bω

1 : ∃β
(
(α, β) ∈ S

)
}.

Büchi proved the following:

Theorem 2.3. ([5]) The class of all Büchi recognizable
languages is closed under the operations of union, inter-
section, projection, and complementation. Moreover, there
is an algorithm that, given a Büchi automaton M, decides
whether L(M) is empty.

We now define Rabin automata. Let T be the binary
tree ({0, 1}?;L,R) called two successor structure where
L(x) = x0 and R(x) = x1 for all x ∈ {0, 1}?. Let
B be a finite alphabet. Let Tree(B) be all the B-labeled
trees (T , v), where v : T → B. A Rabin automaton M is
(S, ι,∆,F), where

• S is a set of states,

• ι ∈ S is the initial state,

• ∆ : S × B→ P (S × S) is the transition table, and

• F ⊂ P (S) is the set of designated subsets.

A run of M on (T , v) is a mapping r : T → S such
that such that r(root) = ι, and for each x ∈ T we have
(r(L(x)), r(R(x))) ∈ ∆(r(x), v(x)). The run is accept-
ing if for every path η in T the set {s | s appears on the run
r along η infinitely many times} belongs to F . The lan-
guage accepted by the automaton M, denoted L(M), is the
set of all trees (T , v) for which there is an accepting run of
M. We call these Rabin recognizable languages. In 1968,
Rabin extended Büchi’s theorem to tree languages.

Theorem 2.4. ([20] ) The class of all Rabin recognizable
tree languages is closed under the operations of union,
intersection, projection, and complementation. Moreover,
there is an algorithm that, given a Rabin automaton M, de-
cides whether the automaton accepts some B-tree or not.

One can extend (in a straightforward way) the definition
of Rabin recognizable language to Rabin recognizable rela-
tions on the set Tree(B) of all B-labeled trees.



2.2. Büchi and Rabin automatic structures

Now we use the automata defined above to represent
structures. We start with the definition of Büchi presenta-
tion:

Definition 2.5. We say the tuple S = (D;E,R1, . . . , Rn)
is a Büchi representation of a structure A if

1. All D, E, R1,. . . , Rn are Büchi recognizable (D is
called the domain of the representation).

2. All E, R1, . . ., Rn are relations on D.

3. E is an equivalence relation on the domain D such
that E is compatible with R1, . . ., Rn.

4. The quotient structure S/E is isomorphic to A.

In this case we say that A is a Büchi automatic structure.
In case when E is the equality relation on D, then S is an
injective presentation of A, and A is injective Büchi auto-
matic structure.

Example 2.6. 1. For X,Y ⊆ N, we write X =∗ Y if the
symmetric difference ofX and Y is finite andX ⊆∗ Y
if X − Y is finite. The partial order B∗ defined as
(P(N)/ =∗,⊆∗) is a Büchi automatic structure.

2. The ordered group (R,+,≤). This is also a Büchi au-
tomatic structure.

3. The linear ordered set (Bω,≤lex) is Büchi automatic.

To explain the first example, we represent sets in the
structure B? as infinite binary strings. The domain P (N),
the equivalence relation =?, and the relation ⊆∗ are all
Büchi recognizable. Hence B∗ is Büchi automatic. In the
second example we can represent reals in binary in a way
that the graph of the addition operation is Büchi recogniz-
able. The last example follows from Example 2.2 (1).

Definition 2.7. We say that a countable structure A =
(A,R1, . . . , Rn) is decidable if its domain is computable
and there is an algorithm that, given a tuple ā ∈ A and a
first order logic formula ϕ(x̄), decides whether A |= ϕ(ā).

Recall that the model checking problem for a structure
A is formulated as follows. Design an algorithm that given
a first order formula ϕ(x̄) and a tuple ā in A tells if A |=
ϕ(ā). Thus decidable models are the ones for which the
model checking problem has a positive solution. For ex-
ample, all word and tree automatic structures are decidable.
The notion of decidable structure does not make sense for
structures of size 2ℵ0 .

A structure A has a decidable theory if there is an algo-
rithm that, given a sentence ϕ, decides whether A |= ϕ.

One can naturally generalize the concept of Büchi auto-
matic structure to Rabin automatic structure. As in Defi-
nition 2.5 one defines the notion of Rabin automatic struc-
ture and Rabin presentation of structures. One just needs
to replace Büchi recognizable languages and relations with
Rabin recognizable languages and relations. Note that in
Büchi automatic structures elements of the structures are
represented as infinite strings over an alphabet B, while in
Rabin automatic structures elements are B-labeled trees.

Theorem 2.8. ([4] [3]) There exists an algorithm that given
a Büchi (Rabin) presentation of a structure and a first order
formula ϕ(x̄) computes a Büchi (Rabin) automaton Mϕ(x̄)

such that L(Mϕ(x̄)) consists of all tuples ᾱ at which ϕ(x̄)
is true in the structure. In particular, every Büchi (Rabin)
automatic structure has a decidable theory.

3. Loop-automata

An infinite eventually periodic word (or just a periodic
word) is a string of the form uvvv . . . ∈ Bω where u, v ∈
B?. Below we will code infinite periodic words in Bω by
finite objects that we call B-loops. Of course, one could
code the periodic word uvvvv . . . by the pair (u, v). How-
ever, we will see that using B-loops will make definitions
and proofs smother.

Definition 3.1. A B-loop is a tupleG = (V, v0, E, l), where
V is a finite set, v0 ∈ V is the initial vertex, E is the edge
function E : V → V , and l is the labeling function l : V →
B. Let Lo(B) be the set of B-loops.

v0 // v1 // v2 // v3

��
v7

//

v4

mmv6

OO

v5oo

The picture represents a B-loop where V = {v0, . . . , v7},
for i = 0, ...6, E(vi) = vi+1 and E(v7) = v2.

To each B-loop corresponds an infinite eventually peri-
odic word in Bω in a natural way as follows. Given a B-
loop G let vG : ω → V be defined by vG(0) = v0, and
vG(n+ 1) = E(vG(n)). Let

αG = l ◦ vG : ω → B.

Note that αG is a periodic word. Conversely, every periodic
word in Bω is of the form αG for some B-loop G. We say
that two B-loops G1 and G2 are equivalent if αG1 = αG2 .

Now we define how Büchi automata run on these B-
loops. The idea is that at each step in a run, we move to



the next vertex in the B-loop and to a next state given by
the transition table. At some stage we will be in a vertex
and a state that we have been before. At that point we halt
the computation. We accept the run if we went through an
accepting state in between the two stages when we had re-
peated vertex and state. Here is a more detailed definition.

Definition 3.2. Let M = (S, ι,∆, F ) be a Büchi automa-
ton. A run of M on a B-loop G is a sequence r =
v0, s0, v1, . . . , vk, sk such that vi ∈ V , si ∈ S, s0 = ι,
and for every i < k

vi+1 = E(vi) and (si, l(vi), si+1) ∈ ∆,

or, in other words, vi = vG(i) and (si, αG(i), si+1) ∈ ∆.
A run is simple if, for every i < j < k, (vi, si) 6= (vj , sj).
Say that a simple run is complete if there is a (necessarily
unique) t < k such that (vt, st) = (vk, sk). A complete run
is accepting if the set of states In(r) = {st, st+1, ..., sk}
has a state from F . The set of B-loops accepted by the
automaton M is denoted by LLo(M). A set S ⊆ Lo(B)
is loop automata-recognizable if S = LLo(M) for some
Büchi automaton M.

3.1. B-loops versus B-infinite strings

We study the relationship between loop automata-
recognizable and Büchi automata recognizable sets. Given
S ⊆ Bω , let lo(S) = {G ∈ Lo(B) : αG ∈ S}.

Lemma 3.3. Let M be a Büchi automaton andG a B-loop.
Then G ∈ LLo(M) ⇐⇒ αG ∈ L(M). Therefore,
LLo(M) = lo(L(M)).

Proof. The proof in the direction from left to right is clear.
For the reversal consider an accepting run r = s0, s1, . . . of
M on αG; we want to build a simple complete accepting
run on G. Apply the following stepwise process to r.

1. Let t be the least number such that there is a k > twith
vG(t) = vG(k) and st = sk. Let k be the least such.

2. If there exists an accepting state s ∈ F such that for
some i with t ≤ i < k we have si = s, then we
have that vG(0), s0, ..., v

G(k), sk is a complete accept-
ing run on G as wanted. In this case we are done.

3. Otherwise, r′ = s0, s1, ..., st−1, st, sk+1, sk+2... is an
accepting run on αG. Set r = r′, and go to step (1).

The process stops and builds an accepting run on G.

Corollary 3.4. If G1 and G2 are equivalent B-loops, then
M accepts G1 if and only if it accepts G2.

From Büchi’s theorem 2.3 and the lemma above we have:

Corollary 3.5. The class of loop-automaton recognizable
subsets of Lo(B) is closed under the Boolean operations.

The next corollary follows from the fact that every non-
empty Büchi language contains a periodic word.

Corollary 3.6. There is an algorithm that given M decides
whether LLo(M) ⊆ Lo(B) is empty or not.

Corollary 3.7. Let M1 and M2 be Büchi automata. Then

L(M1) = L(M2) ⇐⇒ LLo(M1) = LLo(M2)

Proof. The direction from left to right follows immediately
from the lemma above. For the other direction assume that
L(M1) 6⊆ L(M2), and henceL(M1)\L(M2) is not empty.
By Büchi’s theorem 2.3, there exists a Büchi automaton M
recognizing the language L(M1) \L(M2). Since L(M) 6=
∅, LLo(M) 6= ∅. Hence, there is some G ∈ Lo(B) such
that αG is accepted by M1 but not by M2. Thus, we have
LLo(M1) 6⊆ LLo(M2) which is a contradiction.

3.2. Products and projections

We want to consider sets of n-tuples of B-loops. The
convolution of loops is defined in a natural way by using
the Cartesian product operation.

Definition 3.8. Let B1 and B2 be finite alphabets. Define
the map c : Lo(B1)×Lo(B2)→ Lo(B1 × B2) as follows.
The convolution of a B1-loop G1 = (V1, v1,0, E1, l1) and
a B2-loop G2 = (V2, v2,0, E2, l2) is the (B1 × B2)-loop
c(G1, G2) = (V, v0, E, l) where

• V = V1 × V2 with v0 = (v1,0, v2,0),

• E(v, w) = (E1(v), E2(w)) and

• l(v, w) = (l1(v), l2(w)).

One similarly defines

c : Lo(B1)× . . .× Lo(B1)→ Lo(B1 × . . .× Bn),

and in particular c : (Lo(B))n → Lo(Bn). The convolution
of a relation R is c(R), the image of R under c. Say that R
is loop automata-recognizable if c(R) is.

Observation 3.9. Note that α(c(G1,G2)) = c(αG1 , αG2),
where the c in the right-hand-side refers to the convolution
function on infinite strings defined in Subsection 2.1.

Lemma 3.10. Let M be a Büchi automaton on B1 × B2

and G2 ∈ Lo(B2). There is a Büchi automaton MG2 on B1

such that L(MG2) =
{
β ∈ Bω

1 : c(β, αG2) ∈ L(M)
}

, and

LLo(MG2) =
{
G1 ∈ Lo(B1) : c(G1, G2) ∈ LLo(M)

}
.



Proof. Let M = (S, s0,∆,F) and G2 = (V2, v2,0, E2, l2).
The automaton MG2 = (S1, s1,0,∆1, F1) is defined essen-
tially as the cartesian product of M and G2. Formally,

• S1 = S × V2 with s1,0 = (s0, v2,0),

• ((s, v), σ, (s′, v′)) ∈ ∆1 ⇐⇒
v′ = E2(v) & (s, (σ, l2(v)), s′) ∈ ∆, and

• F1 = F × V2.

It is easy to show, using the lemma, its corollaries and the
observation above, that MG2 is a desired automaton.

Lemma 3.11. The class of loop automaton-recognizable
sets of B-loops is closed under projections.

Moreover, for every Büchi automaton M on B1 × B2,
there is a Büchi automaton M1 on B1 such that

L(M1) =
{
α ∈ Bω

1 : (∃β ∈ Bω
2 ) c(α, β) ∈ L(M)

}
, (1)

and G1 ∈ LLo(M1) if and only if

(∃G2 ∈ Lo(B2)) c(G1, G2) ∈ LLo(M).

Proof. By Büchi’s theorem 2.3 there is a Büchi automa-
ton M1 satisfying (1). We claim that M1 is as wanted.
Let G1 be a B1-loop. Suppose first that (∃G2 ∈
Lo(B2)) c(G1, G2) ∈ LLo(M). Then for αG2 we have
c(αG1 , αG2) ∈ L(M), and hence αG1 ∈ L(M1). Thus
G1 ∈ LLo(M1). Suppose now that G1 ∈ LLo(M1) and
hence that αG1 ∈ L(M1). Then, the set

{β ∈ Bω
2 : c(αG1 , β) ∈ L(M)}

is not empty. We proved in the previous lemma that this set
is recognized by the automaton MG1 . Then LLo(MG1) is
also non empty, and hence there exists G2 ∈ Lo(B2) such
that c(G1, G2) ∈ LLo(M).

3.3. Looped-tree automata

The notion of periodic infinite strings can be extended to
B-labeled trees as follows. Let x be a node in the binary
B tree (T , v). Consider the B-tree (T , vx), where vx(y) =
v(xy) for all y ∈ B?. We call this a subtree of (T , v). Say
that B-labeled tree (T , v) is regular if there are only finitely
many different B-labeled subtrees of (T , v).

Now we consider a notion of automata that is to Rabin
automata as loop-automata is for Büchi automata.

Definition 3.12. A B-looped tree is a tuple G =
(V, v0, EL, ER, l), where V is a finite set, v0 ∈ V is the ini-
tial vertex,EL andER are unary functions : V → V , called
edge functions, and l is the labeling function l : V → B. Let
LoT r(B) be the set of B-looped tree s.

Now we define how Rabin automata run on these objects.

Definition 3.13. Let M = (S, ι,∆,F) be a Rabin automa-
ton. A complete run of M on an B-looped tree G is a
(V × S)-looped tree

r = (W,w0, E
W
R , EW

L , lW )

such that lW (w0) = (v0, ι), and, for every w ∈ W , if
lW (w) = (v, s), there is a pair (sL, sR) ∈ ∆(s, l(v)) such
that

lW (EW
L (w)) = (EL(v), sL), lW (EW

R (w)) = (ER(v), sR).

Say that w1, ..., wk ∈ W is a loop of r if w1 = wk and for
every i = 1, .., k − 1, either wi+1 = EW

R (wi) or wi+1 =
EW

L (wi). Say that the complete run is accepting if for every
loop (v1, s1), ..., (vk, sk) of r, the set of states {s1, ..., sk}
is in F . The automaton accepts the graph G if there is an
accepting complete run on G. The set of B-looped tree s G
accepted by the automaton M is denoted by LLo(M).

Each B-looped tree codes a regular tree in a natural way
as follows. Given a B-looped tree G, there is a unique func-
tions vG : T → V such that vG(∅) = v0, and for every
σ ∈ T and D ∈ {L,R}, vG(D(σ)) = ED(vG(σ)). Let
TG = l ◦ vG : T → B. Clearly, TG is a regular tree and
every regular tree is of the form TG for some B-looped tree
G.

Lemma 3.14. Let M be a Rabin automaton and G a B-
looped tree. Then

G ∈ LLo(M) ⇐⇒ TG ∈ L(M).

All the results about loop-automata are also true about
looped tree -automata replacing Büchi by Rabin.

4. Löwenheim and Skolem go automatic

Loop-automatic and Looped tree automatic representa-
tions of structures are defined exactly as in Definition 2.5
changing condition (1) appropriately.

The well-known Löwenheim-Skolem theorem in model
theory states that for any infinite structure A contains a
countable elementary substructure. The goal of this section
is to investigate this theorem for Büchi and Rabin automatic
structures. Recall that a substructure B of A is an elemen-
tary substructure, written A � B, if for every tuple ā ∈ A
and a formula ϕ(x̄) of the first order language ofA, we have
that ϕ(ā) is true in A if and only if it is true in B.

The theorem below follows from Corollary 3.5 and
Lemma 3.11. For the theorem recall Definition 2.7:

Theorem 4.1. Every loop-automatic (looped tree-
automatic) structure is decidable.



The main result of this section is the following one. For
the proof of the theorem, recall that for a given S ⊆ Bω , the
notation lo(S) denotes the set {G ∈ Lo(B) : αG ∈ S}.

Theorem 4.2. 1. Every Büchi presentable structure has
a loop-automatic elementary substructure.

2. Every Rabin presentable structure has a looped tree-
automatic elementary substructure.

Proof. We sketch the proof of the first part. The proof for
Rabin automatic structures is similar.

Let S = (D;E,R1, ..., Rn) be a Büchi presenta-
tion of structure A. Set DLo = lo(D), ELo =
lo(E),RLo

1 = lo(R1), . . ., RLo
n = lo(Rn) and SLo =

(DLo;ELo, RLo
1 , . . . , RLo

n ). Let f : DLo → D be given
by f(G) = αG. The mapping f is an embedding of struc-
tures and the image of f is the restriction of D to the set of
infinite periodic words. We claim that f is an elementary
embedding.

By Theorem 2.8, for each formula ϕ(x1, ..., xk) in the
language of S, there is a Büchi automata Mϕ such

L(Mϕ) = {(α1, ..., αk) ∈ Dk : S |= ϕ(α1, ..., αk)}.

Using the ideas in the proofs of Corollary 3.5 and Lemma
3.11 one can show by induction on the size of ϕ that

LLo(Mϕ) = {G1, ..., Gk ∈ DLo : SLo |= ϕ(G1, ..., Gk)}.

Moreover, using the construction of Lemma 3.10, we get
that given H1, ...,Hh ∈ DLo with h < k, we get that

(αh+1, ..., αk) ∈ L(Mϕ,H1,...,Hh
) ⇐⇒

S |= ϕ(f(H1), ..., f(Hh), αh+1, ..., αk),

and that

(Gh+1, ..., Gk) ∈ LLo(Mϕ,H1,...,Hh
) ⇐⇒

SLo |= ϕ(H1, ...,Hh, Gh+1, ..., Gk),

By Corollary 3.7, using that L(Mϕ,H1,...,Hh
) is empty if

and only if LLo(Mϕ,H1,...,Hh
), one can show that f is an

elementary embedding.

The main algorithmic property of Büchi and Rabin auto-
matic structures is expressed in the following corollary. The
corollary is slightly more general than Theorem 2.8 ([4])
because of special parameters involved:

Corollary 4.3. There exists an algorithm that, given a
Büchi (Rabin) automatic structure A, a formula of first or-
der logic ϕ(x̄) and a tuple ~p of eventually periodic words
(regular trees) given as B-loops (B-looped trees), decides
whether A |= ϕ(~p).

The elementary substructures for Büchi automata built in
the theorem above are not necessarily finite word automatic.
This is explained by the following proposition.

Proposition 4.4. There exists a Büchi automatic structure
that does not have elementary word automatic substruc-
tures.

Proof. The Boolean algebra B = (P(N)/ =∗;∪,∩,¬),
from Example 2.6, is Büchi automatic. In [15] it is proved
that an infinite countable Boolean algebra is automatic if
and only if it is isomorphic to a finite Cartesian product
of Bω , where Bω is the Boolean algebra of all finite and
co-finite subsets of N. None of these automatic Boolean
algebras is elementary equivalent to (P (N)/ =∗;∪,∩,¬)
because they have atoms and (P (N)/ =∗;∪,∩,¬) is atom-
less. Hence, no countable elementary substructure of
(P (N)/ =∗;∪,∩,¬) is word automatic.

4.1. Two examples of loop automatic struc-
tures

The first example is not known to be word automatic.
The second one is a structure that has no word automatic
presentation. So, we get that the class of loop-automatic
structures is strictly larger than the well-studied class of
word automatic structures.

Example 4.5. The structure (Q,+,≤) is loop-automatic.
This structures is the one we get if we apply Theorem 4.2 to
(R,+,≤) (see Example 2.6), where we code the real num-
bers by their dyadic presentation. The reals with periodic
dyadic presentations are exactly the rational ones. It is still
an open question whether the group (Q,+) is automatic. It
is also not know if (Q,+) is tree automatic.

Example 4.6. The countable atomless Boolean algebra is
loop-automatic. Let the domain of this structure be D =
Lo({0, 1}). Let E be the equivalence relation such that
E(G1, G2) if and only if αG1 and αG2 are equal everywhere
except for finitely many places. The Boolean operations are
defined in the obvious way using the standard Boolean op-
erations in the set {0, 1}. This is the structures we get if we
apply the Löwenheim-Skolem theorem for Büchi structures
to the Büchi structure in Proposition 4.4. It is not hard to
see that it is isomorphic to the atomless Boolean algebra. It
was shown in [15] that the atomless Boolean algebra is not
automatic. One can show that the atomless Boolean algebra
is tree automatic.

If we let E be the identity on periodic words (i.e.
E(G1, G2) if and only if αG1 = αG2 , then we get the
atomic Boolean algebra that when quotiented by the ideal
generated by the atoms, one gets the atomless Boolean al-
gebra.



5. Borel structures

We now look at the class of Borel subsets of Bω . The
space Bω is usually called the Cantor space. This space
has the following natural metric d associated. If α 6= β
then distance(α, β) = 2−n, where n is the first position at
which α and β are distinguishable (that is α(n) 6= β(n));
if α = β, then distance(α, β) = 0. This defines a
topology on Bω generated by the family of basic open sets
{α ∈ Bω : τ is an initial segment of α}, where τ ∈ B?.
The class of Borel sets is the smallest σ-algebra containing
the basic open sets. In other words, the class of Borel sets
of Bω is the smallest class of subsets of Bω which contains
the basic open sets and is closed under countable unions
and complementation. A standard reference on Borel sets is
Kechris [11] that we will often use in this section.

A set A ⊆ Bω
1 is said to be Σ1

1 if there is a Borel set
B ⊆ (Bω

1 ) × (Bω
2 ) such that A = {α : ∃β : (α, β) ∈ B}.

Note that here we identify (Bω
1 ) × (Bω

2 ) with (B1 × B2)ω)
via the convolution map. Suslin proved the following result
that we state as a lemma; for the proof see [11].

Lemma 5.1. A set A ⊆ Bω is Borel if and only if both A
and its complement are Σ1

1.

We are interested in Borel structures and their basic prop-
erties because we will use them in the analysis of the injec-
tivity problems explained in the introduction. For complete-
ness’ sake we define Borel structures:

Definition 5.2. We say the tuple S = (D;E,R1, . . . , Rn)
is a Borel representation of a structure A if

1. All D, E, R1,. . . , Rn are Borel sets.

2. All E, R1, . . ., Rn are relations on D.

3. E is an equivalence relation on the domain D such
that E is compatible with R1, . . ., Rn.

4. The quotient structure S/E is isomorphic to A.

In this case we say that A is a Borel structure. In case
when E is the equality relation on D, then S is an injective
Borel presentation of A, and A is injective Borel structure.

Example 5.3. Here are some examples of Borel structures:

1. All Büchi automatic structures are Borel structures.
In fact, Büchi automatic structures are languages that
belong to a Boolean combination of Σ0

2-languages in
Borel hierarchy.

2. The fields (R,+,×) and (C,+,×) are Borel struc-
tures.

3. The Boolean algebra (P(N),⊆) is a Borel structure.

4. The structure (N,P(N), 0, 1,+,×) is also a Borel
structure.

The first example suggests that techniques of descriptive
set theory could be used in the study of Büchi automatic
structures. In the next section we will show that this is in-
deed the case in answering the injectivity problems. For
the second example, we comment that it is not known if
the fields (R,+,×) and (C,+,×) are Büchi or Rabin au-
tomatic structures. Borel structures do not need to have de-
cidable theories as Büchi automatic ones do. The third ex-
ample will be essentially used in the next section. The last
example is the second order arithmetic. It is an example of
a Borel structure whose first order theory is not decidable.

The following is an example of a structure which is not
Borel but that has decidable first order theory:

Proposition 5.4. The well ordered set (ω1,≤), where ω1

is the first uncountable ordinal, is not Borel. Hence, this
structure is not Büchi automatic either.

Proof. Suppose (ω1,≤) is a Borel structure. Let B be a
Borel presentation of (ω1,≤). Therefore, the class of linear
orderings of N which embed in B is Σ1

1. The boundedness
theorem for WF [11, Thm 31.2] implies that every Σ1

1 set of
well-orderings is bounded by some ordinal γ < ω1. Hence,
(ω1,≤) cant have a Borel presentation.

A stronger result of Harrington and Shelah [7] states that
no Borel presentable linear order has a subset of order type
ω1.

We need some basic notions about Borel sets and equiv-
alence relations. A function F : X → Y where X,Y are
standard Borel spaces is a Borel function if F−1(S) is Borel
for each open set S ⊆ Y . The next lemma is from [11, Thm
14.12]). We will also use this lemma in the next section:

Lemma 5.5. The mapping F : X → Y is Borel if and only
if the graph {(x, F (x)) : x ∈ X} is Borel as a subset of
X × Y .

Finally, we will use the following well-known theorem
in Descriptive Set Theory that will be key for our proofs.
See Example 1.6 in [8].

Theorem 5.6. There is no Borel function F : P(N) → Bω

such that X =∗ Y ⇔ F (X) = F (Y ) for each X,Y ⊆ N.

6. Separation of classes of structures

Our objective is to separate the classes of structures in
Figure 1, where a line between two classes of structures cor-
responds to inclusion. Our separation results will show that
all the inclusions are proper. Some of the proper inclusions
are immediate. The class of injective Borel structures is not



included in the class of Rabin structures; we saw that in Ex-
ample 5.3 that second order arithmetic is a Borel structure
but not Rabin automatic. For the remaining separations we
will show that there is an Injective Rabin automatic struc-
ture without a Borel presentation and that there is a Büchi
structure which has neither an injective Borel presentation
nor an injective Rabin presentation, and of course no injec-
tive Büchi presentation.

Our separation results rely on a lemma which states that
the Boolean algebra (P(N),⊆) is Borel stable in the sense
that all isomorphisms between any two Borel presentations
of the algebra are Borel.

Lemma 6.1. Let S = (A,E,≤) and S ′ = (B,F,≤′) be
Borel presentations of B = (P(N),⊆) and let Φ : S/E 7→
S ′/F be an isomorphism. Then the graph of Φ,

{〈x, y〉 ∈ A×B : Φ([x]E) = [y]F }

is Borel.

Proof. Recall that an element x is an atom of a Boolean
algebra if x 6= 0 and no element y exists such that 0 <
y < x. Thus, atoms of (P(N),⊆) are the sets of the form
{n}, where n is a natural number. Let {[an]E : n ∈ N}
be a listing of the atoms of S/E. Let bn ∈ B be such that
Φ([an]E) = [bn]F . Then

Φ([x]E) = [y]F iff ∀n (an ≤ x↔ bn ≤′ y).

Thus the graph of Φ is a countable intersection of Borel re-
lations. Borel sets are closed under countable intersections.
Hence the graph is Borel itself.

The next lemma shows that being Borel is an intrinsic
property of relations in the Boolean algebra (P(N),⊆):

Lemma 6.2. Suppose C is a countable set and U ⊆
P(C)m is not Borel. Then the structure (P(C),⊆, U) has
no Borel presentation.

Note that identifying C with N, we can identify the set
P(C) with {0, 1}ω in a natural way and hence talk about
Borel relations of P(C).

Proof. Without loss of generality assume that U is a unary
relation. Suppose Ψ is an isomorphism from (P(C),⊆, U)
to a Borel presentation (A,E,≤, V )/E. Then for each
X ⊆ N, we have X ∈ U ⇔ [Ψ(X)]E ∈ V/E ⇔ ∃b ∈
V Ψ(X) ∈ [b]E . Also, X ∈ P(C) \ U ⇔ [Ψ(X)]E ∈
(A \ V )/E ⇔ ∃b ∈ A \ V Ψ(X) ∈ [b]E . So both U and
P(C) \ U are Σ1

1. Hence by Lemma 5.1 the set U is Borel
which is a contradiction.

As a corollary we prove the following theorem:

Theorem 6.3. There exists an injective Rabin presentable
structure that is not Borel presentable.

Proof. For the proof recall that a set is Π1
1 if and only if its

complement is Σ1
1. Also, Π1

1-complete sets are not Borel
[11].

Let C = {0, 1}?. Consider the set

U = {B ⊆ 2<ω : ∀π ∈ 2ω |{n : π � n ∈ B}| <∞}.

For the reader U can be thought of as the collection of all
{0, 1}-labeled trees (T , v) such that along every path η in
the tree the number of 1s appear finitely often. It is not hard
to see that the set U is Rabin recognizable. We now invoke
a result of Niwinsky stating that the set U is Π1

1-complete,
and hence not Borel [18] (also see [1]). Indeed, in order
to show that U is Π1

1-complete, consider the embedding
from ω? into 2? given by (n0, . . . , nk) → 0n01 . . . 0nk1.
The pre-image of U under this embedding is the class of
well-founded trees. It is well-known that the class of well-
founded trees is Π1

1-complete [11].
The desired structure is (P(C),⊆, U). It is clear that the

structure is Rabin automatic. By Lemma 6.2 the structure
has no Borel presentation.

We answer the first injectivity problem formulated in the
introduction:

Theorem 6.4. There exists a Büchi automatic structure A
without an injective Borel presentation.

Proof. We use the signature consisting of three symbols ≤,
U andR, whereU is a unary predicate symbol, and≤ andR
both are binary relation symbols. Let B = (P(N),⊆) and
B∗ = (P(N)/ =∗,≤). The structureA is the disjoint union
of the partial orders B,B∗, where U holds for the elements
of B, and R is the canonical projection B → B∗.

First we give a Büchi presentation S = (D,E,≤, U,R)
of A. Let (D,≤) = B0 t B1 where B0,B1 are disjoint
copies of B. Let E be the equivalence relation on D which
is the identity on B0, and =∗ on B1. Let U be the domain of
B0, and let R be the bijection B0 7→ B1 given by the iden-
tity. Clearly, all the relations can be recognized by Büchi
automata.

Now assume that S ′ = (D′,≤′, U ′, R′) is an injective
Borel presentation of A. Let Φ be an isomorphism S 7→ S ′
and let G be the restriction of Φ to B0, which is Borel by
Lemma 6.1. Then the map F = R′ ◦ G : P(N) → D′ is
Borel and satisfies that

X =∗ Y ⇔ RA(X) = RA(Y )
⇔ Φ(RA(X)) = Φ(RA(Y ))
⇔ R′(G(X)) = R′(G(Y )),

contrary to Theorem 5.6.

Corollary 6.5. There exists a Büchi automatic structure
which does not have an injective Büchi automatic presen-
tation.



Now we answer the second injectivity problem:

Theorem 6.6. There exists a Büchi automatic structure A
without an injective Rabin presentation.

Proof. Our goal is to show that the structure obtained in the
proof of Theorem 6.4 has no injective Rabin presentation.

This proof requires the use of a technical notion in set
theory, namely the one of absolutely ∆1

2 sets. We first out-
line the idea. If there were an injective Rabin presenta-
tion of the structure obtained in the proof of Theorem 6.4,
then, as in that proof, we would be able to obtain an abso-
lutely ∆1

2 function F : P(N) → Bω for some B such that
X =∗ Y ⇔ F (X) = F (Y ) for each X,Y ⊆ N. An exten-
sion of Theorem 5.6 says that no such a function F exists.

We now give the details. A relation R on Bω is called
absolutely ∆1

2 if there are descriptions of R and its comple-
ment as (lightface) Σ1

2 relations that yield the complemen-
tary relations in each generic extension of the set-theoretical
universe. If R is given by a Rabin automaton then by the
proof of Rabin’s complementation theorem [20] there is a
computable function g taking us from the automaton for
R to an automaton for its complement. This form of Ra-
bin’s Theorem involving g can of course be proved in ZFC.
Therefore each Rabin recognizable relation is absolutely
∆1

2.
Each absolutely ∆1

2 set has the property of Baire, and
hence each absolutely ∆1

2 function is Baire measurable [9].
Since each Baire measurable function is continuous on a
comeager set, we can strengthen Theorem 5.6 to the effect
that F cannot be absolutely ∆1

2.
If the structure had a Rabin presentation then as in the

proof of Theorem 6.4 we would obtain such an F that is
absolutely ∆1

2. This is a contradiction. (Here we used a
modified version of Lemma 6.1: if the given presentations
of B are lightface ∆1

2 then so is the graph of the isomor-
phism.)

7. Complexity of isomorphism and Borel Cate-
goricity

A natural question when studying a certain class of struc-
tures is how to recognize when two structures from the class
are isomorphic, and how complex the isomorphism can be.
We think of presentations as being encoded in some effec-
tive way by natural numbers. For the case of automatic
structures, Khoussainov, Nies, Rubin and Stephan [14] have
shown that the problem of deciding whether two presenta-
tions describe isomorphic structures is Σ1

1-complete. This
tells us that the problem is as hard as an isomorphism prob-
lem can be in a class of computable structures. The com-
plexity of the isomorphism problem for word automatic
structures has also been investigated in Khoussainov and

Minnes [12]. From these results it follows that the iso-
morphism problem for loop-automatic structures is also Σ1

1-
complete.

We give an example of a structure that has two Büchi
presentations which are not Borel isomorphic.

We start with the following definition that singles out the
structures with exactly one Borel isomorphism type:

Definition 7.1. We say that Borel presentations S1,S2 are
Borel isomorphic if there is a Borel mapping f : D1 → D2

that induces an isomorphism between the presentations. A
structure A is Borel categorical if any two Borel presenta-
tions of A are Borel isomorphic.

Example 7.2. Examples of Borel categorical structures are:

1. The Boolean algebra (P(N),⊆).

2. The linearly ordered set (R,≤).

3. The field (R,+,×).

The first example follows from Lemma 6.1. The second
and third examples also follow from the fact that the struc-
tures have isomorphic countable dense substructures. The
isomorphisms between these substructures can naturally be
extended to the main structures.

Note that the first two examples above are Büchi auto-
matic structures. They may suggest that automaticity of the
structure would imply Borel categoricity. This is refuted in
the following theorem:

Theorem 7.3. There are two Büchi automatic presentations
of (R,+) that are not Borel isomorphic.

Proof. The structures (R,+) and (R,+)× (R,+) are both
Büchi presentable as we have seen before. These structures
are isomorphic because they are both Q-vector spaces of
dimension 2ℵ0 . However, they are not Borel isomorphic
since any Borel isomorphism between Polish groups must
be a homeomorphism (see for instance Section 1.2 of [2].
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