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Wave maps

The wave map equation is a generalization of the wave equation to
(Riemannian) manifold-valued maps Φ : (M, g)→ (N, h). The action is given
by

S[Φ] =

∫
gµν〈(dΦ)µ, (dΦ)ν〉h dVolg

and wave maps are formal critical points of this action.

If M is of the product form M = R× M̃ (or more generally, if there exists a
time-like Killing vector field), then there exists a coercive conserved energy (or
the Hamiltonian) for the system, which takes the form

E[(Φ, Φ̇)](t) =
1

2

∫
{t}×M̃

〈Φ̇, Φ̇〉h(t) + g̃ij〈(dΦ)i , (dΦ)j〉h(t) dVolg̃ .

When M = R1+2, the energy is invariant under the scaling symmetry of the
equation. This fact underscores the special nature of the (1 + 2)-dimensional
wave maps.
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Wave maps from R1+2

There has been fantastic progress over the past two decades on this equation,
and a good deal is known in the case M = R1+2.

Theorem (Wave maps from R1+2)

Consider the initial value problem (IVP) for the wave map equation in the case
M = R1+2 with initial data of energy E <∞.

1. If (N, h) is negatively curved (i.e., all sectional curvatures < 0), then the
IVP is globally well-posed and the solution scatters to a constant map.

2. In general, global well-posedness of the IVP and scattering to a constant
map holds if E < E[(Q, 0)], where Q is the lowest energy non-trivial
harmonic map R2 → N.

3. There exists a solution which blows up in finite time in the case
(N, h) = (S2, gS2) and E > E[(Q, 0)].
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Wave maps from R1+2, continued

Remarks

I Part 1 is a consequence of Part 2, as there are no non-trivial finite energy
harmonic maps from R2 to negatively curved targets (Eells-Sampson).

I Note the key role played by finite energy harmonic maps from R2 to N.
Harmonic maps are time-independent solutions to the wave map equation.

The theorem in the form we stated is due to

I Parts 1, 2: Sterbenz–Tataru, Krieger–Schlag, Tao

I Part 3: Krieger–Schlag–Tataru, Rodnianski–Sterbenz, Raphaël–Rodnianski

Other work on wave maps on R1+2 include

I Low regularity theory. Klainerman–Machedon, Klainerman–Selberg,
Tataru, Tao, Klainerman–Rodnianski, Nahmod–Stefanov–Uhlenbeck,
Shatah–Struwe, Krieger, etc.

I Wave maps under symmetry. Christodoulou–Tahvildar-Zadeh,
Shatah–Tahvildar-Zadeh, Müller–Struwe, Struwe, Côte,
Côte–Kenig–L.–Schlag, etc.
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Equivariant wave maps from R×H2

Consider wave maps Φ from M = R×H2 to (N, h). For simplicity, we make
further assumptions:

I N = H2 or S2, with geod. polar coord. (ψ, ω), ds2 = dψ2 + g 2(ψ)dω2

where g(ψ) = sinhψ when N = H2 and g(ψ) = sinψ when N = S2.

I Φ is k-equivariant: Φ(t, r , ω) = (ψ(t, r), kω)

Then the wave map equation becomes

∂2
t ψ −

1

sinh r
∂r (sinh r∂rψ) + k2 g(ψ)g ′(ψ)

sinh2 r
= 0 (1)

The conserved energy takes the form

E[ψ, ∂tψ](t) =
1

2

∫ (
(∂tψ)2(t, r) + (∂rψ)2(t, r) +

k2g(ψ(t, r))2

sinh2 r

)
sinh r dr (2)
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Equivariant wave maps from R×H2: The Cauchy problem

Restrictions on finite energy data: For example, consider the Cauchy problem
for k = 1 and N = S2, g(ψ) = sinψ:

ψtt − ψrr − coth rψr +
sin 2ψ

2 sinh2 r
= 0, ~ψ(0) = (ψ0, ψ1)

E(ψ0, ψ1) =
1

2

∫ ∞
0

(
ψ2

t + ψ2
r +

sin2 ψ

sinh2 r

)
sinh r dr

(3)

Finite energy requires:

I ψ0(0) = 0 (or more generally mπ, m ∈ Z).

I There exists α ∈ R so that limr→∞ ψ0(r) = α. Endpoint α is fixed by the
evolution. It is thus natural to consider the Cauchy problem for data
within disjoint energy classes

Eα := {(ψ0, ψ1) | E(ψ0, ψ1) <∞, ψ0(0) = 0, ψ0(∞) = α}

I Contrast with equivariant wave maps R1+2 → S2 – endpoint must be nπ,
which means every finite energy Euclidean wave map into S2 has a fixed
integer valued topological degree.
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Features of the model

Because the volume of the sphere of radius r grows exponentially in r on Hd ,
linear waves on Hd exhibit improved dispersion in the long term. This aspect
and its effect on nonlinear dispersive PDEs have been well-studied by focusing
on model equations such as NLW and NLS:

I NLW on R×Hd :

�R×Hd u = ±|u|p−1u

Anker–Pierfelice, Metcalfe–Taylor, L.-O.-S., etc.

I Shifted NLW on R×Hd : Tataru, Anker–Pierfelice–Vallarino,
Shen–Staffilani, Shen etc.

I NLS on R×Hd : Banica, Banica–Carles–Staffilani,
Banica–Carles–Duyckaerts, Banica–Duyckaerts, Ionescu–Staffilani,
Ionescu–Pausader–Staffilani, Borthwick-Marzuola, etc.
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Features of the model, continued.

There are new features in the wave map model that arise from the interplay of
the hyperbolic geometry and the nonlinear structure of the wave map equation.
Observe:

I H2 is conformally equivalent to the flat disk D2

I Two dimensional harmonic maps, as well as their respective energy, are
conformally invariant.

Combining these two facts, we obtain an abundance of finite energy harmonic
maps, which are of different nature than those on R2. We are motivated to
pursue the following goal.

Main goal

Understand the long term dynamics of finite energy wave maps from R×H2,
for which these harmonic maps are expected to play a key role.
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Asymptotic stability of harmonic maps to H2

To illustrate the difference between the case M = R×H2 and the flat case, we
present our first result when the target is N = H2.

Theorem 1 (L.-O.-S., ’14)

Consider the 1-equivariant WM from R×H2 to H2.

1. There exists a one-parameter family {Pλ}λ∈[0,1) of finite energy harmonic
maps, given by the formula

Pλ = 2arctanh (λ tanh(
r

2
)) for λ ∈ [0, 1).

We have E[(Pλ, 0)]↗∞ as λ→ 1. There are no other finite energy
harmonic maps.

2. Each Pλ is asymptotically stable under perturbations in H0, i.e., for any
data of the form (Pλ + ψ0, ψ1), where ψ0, ψ1 ∈ C∞0 (H2) with

‖(ψ0, ψ1)‖H0 :=

∫ (
|ψ1|2 + |∂rψ0|2 +

|ψ0|2

sinh2 r

)
sinh rdr � 1,

the solution ψ to the IVP scatters to Pλ as t → ±∞.

Remark. It is simple to extend this theorem to k ≥ 2.
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Proof of Theorem 1

Proof of Part 1. Recall the expression

Pλ(r) = 2arctanh (λ tanh(
r

2
)).

That Pλ(r) for λ ∈ [0, 1) is a finite energy harmonic map is evident from:

P�

That these are all of the finite energy harmonic maps in the first equivariance
class follows from an ODE argument.
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Proof of Theorem 1, continued

Proof of Part 2. The idea is to study spectral properties of the linearized
operator about Pλ. For convenience, we conjugate the problem to L2[0,∞) by

φ := sinh
1
2 r(ψ − Pλ).

Then the linearized operator takes the form

Lλφ = −φ′′ +
3

4

1

sinh2 r
φ+

1

4
φ+ Uλφ (4)

where Uλ ≥ 0. Furthermore,

L0 := −∂2
r +

3

4

1

sinh2 r
+

1

4
' −4H4 − 2.

Spectrum of L0 is purely abs. cont. and given by [1/4,∞). By Sturm
comparison, Lλ has no eigenvalues or resonances. From this spectral
information local energy decay and Strichartz estimates follow. Now Part 2
follows by the usual Picard iteration argument.

Remark. We prove (1 + 4)-dimensional Strichartz estimates, thanks to the

extra repulsive potential from the term
g(ψ)g ′(ψ)

sinh2 r
=

sinh 2ψ

2 sinh2 r
.
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Further questions in the case N = H2

In order for blow up to happen in our problem, there must be a non-trivial
harmonic map R2 → N. Since this is false for N = H2, we have GWP in this
case. The following conjecture about asymptotic behavior is reasonable:

Conjecture (Soliton resolution for equivariant wave maps H2 → H2)

Consider the IVP for the 1-equivariant WM from R×H2 to H2, with finite
energy initial data (ψ0, ψ1). Let λ = tanh ψ0(∞)

2
∈ [0, 1). Then the IVP is

globally well-posed, and the solution scatters to Pλ as t → ±∞.

Using the celebrated concentration compactness/rigidity approach of
Kenig-Merle, (’06, ’08), we were able to make partial progress on the problem.
One of the key technical ingredients is a Bahouri-Gérard type profile
decomposition established in a recent preprint, (L.O.S. ’14), following recent
work of Ionescu, Pausader, Staffilani on the NLS.

Theorem 2 (L.-O.-S., forthcoming)

The above conjecture holds for initial data with 0 ≤ λ < Λ, where Λ = 0.56 . . .
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Harmonic maps to S2

When the target is N = S2 and the equivariance index is k = 1, we have a one
parameter family of finite energy harmonic maps {Qλ}λ∈[0,∞), given by the
formula

Qλ(r) = 2 arctan(λ tanh(
r

2
)) (5)

Note that Q0(∞) = 0, Q1(∞) = π
2

(equator) and Qλ(∞)→ π (south pole) as
λ→∞. The range of Qλ for different values of λ is plotted below:

λ =
1

2
λ = 1 λ =

√
3
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Existence of a gap eigenvalue in the case N = S2

In the case N = S2, there is an additional feature, which is in stark contrast to
the flat case.

Theorem 3 (L.-O.-S., ’14)

Consider the 1-equivariant WM from R×H2 to S2.

1. The maps Qλ (λ ∈ [0,∞)) are harmonic maps of energy

E[Qλ, 0] = 2
λ2

λ2 + 1
↗ 2 = ER×R2 [Q, 0].

There are no other finite energy harmonic maps.

2. For λ < 1 + δ (say δ ≤ 0.095), Qλ is asymptotically stable under
perturbations in H0.

3. For λ� 1, the linearized operator Lλ about Qλ has a gap eigenvalue
µ2
λ ∈ (0, 1/4). This eigenvalue is simple and unique. Moreover,

µ2
λ → 0 as λ→∞.
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Existence of a gap eigenvalue in the case N = S2

Remarks.

I Recall that when λ = 1, the range of Qλ is exactly the upper hemisphere,
which is geodesically convex. Although we have not used this fact directly
in the proof, it is likely to be the geometric reason for non-existence of a
gap eigenvalue in this case. See also Theorem 4 later.

I An eigenfunction gives rise to a non-decaying solution to the linearized
wave equation ∂2

t φ+ Lλφ = 0. Therefore, asymptotic stability fails at the
level of the linearized equation for λ� 1.

I In the flat case, the linearized operator about the ground state Q has a
resonance at 0, which is generated by the scaling symmetry of the
problem. Part 3 is, roughly speaking, a consequence of the interplay
between this resonance near r = 0 and the global geometry of H2, more
specifically, the spectral gap of −4H2 on H2.
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Wave maps to S2 in higher equivariance classes

A natural question is whether we can prove existence of gap eigenvalues in
other models. Recently, we have been able to give an affirmative answer for
k-equivariant wave maps for arbitrary k ≥ 1, as well as for the equivariant
energy critical Yang-Mills equation on 4d hyperbolic space. In the case of
k-equivariant wave maps, we have

Theorem 4 (L.-O.-S., forthcoming)

Consider the k-equivariant WM from R×H2 to S2 with any k ≥ 1.

1. The maps

Q
(k)
λ = 2 arctan(λ tanhk(

r

2
)).

are the only finite energy harmonic maps in this setting.

2. For λ < 1 + δ(k), the linearized operator L(k)
λ about Q

(k)
λ does not have

any eigenvalues or resonances.

3. For λ� 1, the operator L(k)
λ has a gap eigenvalue (µ

(k)
λ )2 ∈ (0, 1/4). This

eigenvalue is simple and unique, and we also have

(µ
(k)
λ )2 → 0 as λ→∞.
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Implications of the gap eigenvalue for nonlinear dynamics

We return to the case k = 1, λ� 1. Although the gap eigenvalue precludes a
proof of asymptotically stability via a pertubative argument based on linear
theory, the “usual mechanisms” for instability of Qλ are not present at the
nonlinear level.
Wave maps from R1+2 → S2: ∃ unique harmonic map Qeuc(r) = 2 arctan r .
Top. deg. = 1. Unstable. Small perturbations within degree class can lead to
finite time blow-up (KST, RR, RS).

I Struwe’s Bubbling Thm: If ψ(t) blows up at t = 1, then ∃ seq. tn → 1,
λn = o(1− tn) so that the rescaled seq.

ψn(t, r) = ψ(tn + λnt, λnr)→ Qeuc locally in H1
loc((−1, 1)× R2)

Euclidean bubbles for R×H2 → S2 Identical result holds for hyp. wave maps
R×H2 → S2. Euc. HM Qeuc is bubbled. Why? Blow-up occurs via energy
concentration at r = 0 (at tip of light cone) ⇒ behavior is Euclidean.

I ⇒ finite time blow up requires at least Eeuc[Qeuc, 0] = 2 worth of energy.

But E[Qλ, 0] = 2λ2

1+λ2 < 2. Hence small perturbations of Qλ lead to global
solutions.

Moreover, no global scaling symmetry.
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Implications of the gap eigenvalue for nonlinear dynamics, continued

Recalling that E[Qλ, 0] < 2, where 2 is the energy of the Euclidean ground
state Qeuc (we have normalized away 2π). Therefore, at least for small energy
perturbations of Qλ, finite time blow up is impossible, and hence the solution
exists globally. The remaining question is thus:

Question (Stability of Qλ for λ� 1)

What happens to the solution ψ to the IVP for data (ψ0, ψ1) such that
‖(ψ0, ψ1)− (Qλ, 0)‖H0 � 1 as t → ±∞?

I One possibility is Lyapunov stability without asymptotic stability, i.e., ψ
does not converge to Qλ, even locally in energy.

I Another possibility is asymptotic stability, i.e., ψ does converge to Qλ in
some norm (e.g., local convergence in energy). The mechanism would be
radiative damping, which refers to leaking of the energy associated to the
eigenvalue to the continuous spectrum by a fully nonlinear mechanism.
(Soffer–Weinstein, Sigal–Zhou, Zhou, Cuccagna, Cuccagna–Mizumachi,
Bambusi–Cuccagna etc.) Would require verification of so-called “nonlinear
Fermi golden rule.”
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Motivation behind the proof of Theorem 3: existence of a gap eigenvalue

Pass to half-line formulation: The goal is to understand the spectral properties
of the linearized operator about Qλ. For convenience, we can conjugate the
problem to L2([0,∞)) via

φ := sinh
1
2 r(ψ − Qλ).

Then the linearized operator takes the form

Lλφ = −φ′′ +
3

4

1

sinh2 φ+
1

4
φ+ Vλφ (6)

where

Vλ(r) =
cos2Qλ − 1

sinh2 r
=

−2λ2

(cosh2(r/2) + λ2 sinh2(r/2))2
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existence of a gap eigenvalue, continued

Observation: Change variables. Introduce “renormalized” coordinates

ρ := λr , φ̃(ρ) := φ(r), L̃λφ̃ =
1

λ2
(Lλφ)(·/λ)

Obtain

L̃λ := −∂2
r +

3

4λ2 sinh2(ρ/λ)
+

1

4λ2
+

1

λ2
Vλ(ρ/λ)

1

λ2
Vλ(ρ/λ) =

−2

(cosh2(ρ/2λ) + λ2 sinh2(ρ/2λ))2

Formal convergence to Euc. linearized operator: Note that for each fixed r > 0,
“L̃λ → Leuc” as λ→∞, where

Leucφ = −φ′′ +
3

4ρ2
φ+ Veucφ, Veuc(ρ) =

−2

(1 + (ρ/2)2)2

is obtained by linearizing the Euc. WM eq. about Qeuc. Note that Leuc has a
threshold resonance, Leucϕeuc = 0,

ϕeuc(ρ) =
ρ

3
2

1 + (ρ/2)2
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Existence of gap e-val: Sketch of the proof: I

Step I: Sturm oscillation theory. Existence of an eigenvalue for Lλ below 1
4

is
equivalent to the following statement:

Proposition 1

Any solution to

L̃λφ̃0 =
1

4λ2
φ̃0, φ̃0 ∈ L2[0, c], ∀ 0 < c <∞

must change sign.

Roughly speaking: Sign change of φ̃0 is a consequence of the interplay between

1. The existence of the Euclidean threshold resonance ϕeuc, which is a
positive solution to Leucϕeuc = 0.

2. The formal convergence “Lλ → Leuc”, (note that these are half-line
operators with strongly singular potentials. Nonetheless this formal limit is
useful on compact intervals in ρ which can then be extended to large
intervals of size [0, ελ] via a contradiction hypothesis.)

3. The spectral gap (0, 1
4λ2 ) for L̃λ.
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Existence of gap e-val: Sketch of the proof: II

Step II: To exploit the formal convergence “Lλ → Leuc”, we renormalize about
the threshold resonance ϕeuc. Define

f (ρ) := φ̃0(ρ)/ϕeuc(ρ)

Then f solves

(f ′ϕ2
euc)′ = ϕ2

eucWλf

f (ρ) = 1 +

∫ ρ

0

∫ τ

0

ϕ2
euc(σ)

ϕ2
euc(τ)

Wλ(σ)f (σ)dσdτ, f (0) = 1, f ′(0) = 0

We call Wλ = Lλ − Leuc the renormalized potential – gains extra smallness
factor of λ−2. In particular, we can find ε > 0, p0, c1 indept. of λ, so that

Wλ(ρ) ≤ − c1
λ2
, ρ0 ≤ ρ ≤ ελ (7)

Contradiction assumption: Suppose that f (ρ) is always positive.
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Existence of gap e-val: Sketch of the proof: II continued

Cheat for a moment: Suppose we could in fact assume that

f (ρ) ≥ c2 > 0 (8)

Recalling (7) (actually, let’s cheat a bit more and assume Wλ(ρ) ≤ − c1
λ2 on

[0, ελ)), we then have

f (ρ) = 1 +

∫ ρ

0

∫ τ

0

ϕ2
euc(σ)

ϕ2
euc(τ)

Wλ(σ)f (σ)dσdτ

≤ 1− c1c2
λ2

∫ ρ

0

1

ϕ2
euc(τ)

dτ

∫ τ

0

ϕ2
euc(σ)dσ

. 1− cρ2

λ2
log(2 + ρ)

Setting ρ = ελ (recall that ε is fixed) yields

f (ελ) . 1− cε2 log(2 + ελ) < 0

which gives a contradiction by taking λ large enough.
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Existence of gap e-val: Sketch of the proof: III

Step III It remains to establish (8). In fact, we show that

Lemma 1

Either f (ρ) changes sign or there exists ε1 > 0, c2 > 0 independent of λ so that

f (ρ) ≥ c2 > 0, ∀ 0 ≤ ρ ≤ ε1λ

This can be rephrased in terms of the original threshold function φ0 which is
our L2

loc solution to Lλφ = 1
4
φ.

I To prove Lemma 1 we need to bring in information from r =∞.

I Use explicit solution ζλ0 to Lλζλ0 = 0 obtained by differentiating
∂λQλ =: ζλ0 , and its conjugate ζλ∞ which behaves like

ζλ∞ ∼ e−r/2 as r →∞

I Show that if φ0(r) > 0, ∀r , then

φ′0/φ ≥ (ζλ∞)′/ζλ∞

which yields explicit lower bound on log derivative of φ0, which can be
parlayed into an explicit lower bound for f (ρ).
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Thank you for listening!
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