Symplectic categories

Alan Weinstein (University of California, Berkeley)

I will speak in these lectures about work (much of it still in progress) with Henrique Bursztyn, Alberto Cattaneo, Benoit Dherin, Shamgar Gurevich, and Ronny Hadani, as well as work of others.

Quantization problems suggest that the category of symplectic manifolds and symplectomorphisms should be augmented by the inclusion of more general morphisms, namely canonical relations, i.e. lagrangian submanifolds of products. It is well known that these relations compose well when a transversality condition is satisfied, but the failure of this condition to hold in general means that they do not comprise the morphisms of a category.

I will discuss several existing and potential remedies to the transversality problem. Some of these involve restriction to classes of lagrangian submanifolds for which the transversality property automatically holds. Others involve allowing lagrangian "objects" more general than submanifolds.

I will also mention another meaning of the term "symplectic category", namely a category in which the morphism spaces Hom(X,Y), rather than the individual objects X and Y, are symplectic manifolds, and the composition operation Hom(X,Y) x Hom(Y,Z) ---> Hom(X,Z) is a morphism in one of the categories of the preceding paragraph. These can produce associative algebras upon quantization.

Geometry Summer School Lisbon, July 13-17, 2009

3	notions of "symplectic category"
①	objects are symplectic manifolds (or more general symplectic objects, such as varieties or stacks)
	· Morphisms include symplectomorphisms and often more (sometimes less) They
	are lagrangian subobjects of product of symplectic manifolds, generalizing the grayhs of symplectomorphisms.
	Whereas in (1), the morphism spaces may or may not have some structure, they are generally not symplectic. Thus we have something new when we require:
3	The collection of all the objects is thought of as a single object in some codegory (perhapsi) just as a set.
	· The morphism spaces Hom (X,Y) are symplectic objects in a coategory of type ().
	· The composition operations Hom(X,Y) x Hom(Y,Z) -> Hom(X,Z)
	are morphisms in the type () cartegory -
	. The "unit(s)" in Hom (X,X) for each X also belong somehow to the underlying O cutegory.
	(Some forther explanation will be given later; one should work in a monoidal category to nake
	Sense of x and "the unite".)

3 Here se are "folly symplecti" . Ob(e) and Mor (e) are symplectic object of type The target and source maps

Ob(E) < 1 Mor(E) → Ob(E) are morphisms in the underlying category. · The composition operation Mor (E) x Mor (E) -> Mor (E) is somehow a morphism in the underlying category

Much of the interest in these categories comes from quantization, in which symplectic manifolds "become"

Hilbert (or more general vector) spaces, and morphisms

become operators between those spaces. This applier

directly in type (); when applied in the context

of types (2) and (3), it should lead to algebras.

Type (1) categories

Start with objects are sympleotic manifolds, morphisms are symplectomorphisms.

This category is too big to quantize fully (no go theorems), but also too small; quantizing symplectomorphisms generally leads to unitary operators, but not to ,e.g., projections, or partial isometries.

Too big: The most successful solution is to limit to symplectic vector spaces (or affine spaces) and linear (or affine) symplectom orphisms. If we look at just one vector space V, ax get the symplectic group Sp(V), and quantization should produce a representation of Sp (V). It's well known that the most interesting construction leads to a "2-valued representation", i.e. a representation of the metaplectic group Mp (V), a double

covering of Sp(V)

One of the standard contractions of this representation uses polarizations, in foliations by parallel affine lagrangion sobspaces. One frequently chooks a polarization, but by using all the planizations at once, one gets a (2-valued) quantization of the entire linear symplectic sategory. Gurevich and Hadani have carned out this procedure very effectively over finite fields wing methods of stated elgobraic geometry (Grothendorch-Deligne) to get explicat formulas, with applications to grantum chaos and signal analysis. (In this setting, Sp(V) is without passing to the double covering.)

Too small: One gets only invente maps, not, for instance, inclusion or projection operators. For instance, if $V = T^*Q$, Q a vector space (this is the polarization return referred to above the "vector" which is the constant functions on Q (not in L2, but we have to live with that) are associated with the lagrangian subspace [O] x Q* = Q x Q" = T Q. Inclision of the space of constant fine times (> Fun(Q) is associated with the lagrangian subspace (SolxQ) x sol in T+Q x T*Q, where Q is a O-dimensional vector space. Similarly, the dud "integration" map is associated J.K (0) x ((0) x Q) , T'Q x T'Q. (10) ×Q) ×(10) ×Q) = TQ × TQ, which is a lagrangion subspace, not the graph of a symplectomorphism. This example is one of many which lead to the linear symplectic category There is also an affine version), in which the object are symplectic vector (or affine) spaces and the morphism space Hom (V, W) is the set (a manifold) Lag (V x W) of Legrangian subspaces of VXW. (Or think of these as morphisms to Y from W.

Composition in this cutegory is well defined lexercise); the invertible morphisms are the graphs of symplectomorphisms. Thus, the automorphism group of V is notrolly isomorphic to the symplectic group Sp (V), and we have an enlargement of our original linear category.

Lag (V x V) is a compactification of Sp (V) (i.e. the latter is dense in it). When V = T*Q the symmetric bilinear from Sym²(Q x Q) on Q x Q also embed naturally as a dense open subset.

THE PROBLEM: Composition of linear canonical relations is not continuous. More precisely, in Hom(V, W) x Hom (W, X) we have strata

Z. (= Z(V, W, X) defined by

 $Z_j = \{(L_1, L_2) \mid dim(L_1 \times L_2 \cap \{0\}) \times \Lambda_W \times \{0\}\} = j\}$ $\Sigma_j = \{(L_1, L_2) \mid dim(L_1 \times L_2 \cap \{0\}) \times \Lambda_W \times \{0\}\} = j\}$ $\Sigma_j = \{(L_1, L_2) \mid dim(L_1 \times L_2 \cap \{0\}) \times \Lambda_W \times \{0\}\} = j\}$ $\Sigma_j = \{(L_1, L_2) \mid dim(L_1 \times L_2 \cap \{0\}) \times \Lambda_W \times \{0\}\} = j\}$ $\Sigma_j = \{(L_1, L_2) \mid dim(L_1 \times L_2 \cap \{0\}) \times \Lambda_W \times \{0\}\} = j\}$ $\Sigma_j = \{(L_1, L_2) \mid dim(L_1 \times L_2 \cap \{0\}) \times \Lambda_W \times \{0\}\} = j\}$ $\Sigma_j = \{(L_1, L_2) \mid dim(L_1 \times L_2 \cap \{0\}) \times \Lambda_W \times \{0\}\} = j\}$ $\Sigma_j = \{(L_1, L_2) \mid dim(L_1 \times L_2 \cap \{0\}) \times \Lambda_W \times \{0\}\} = j\}$ $\Sigma_j = \{(L_1, L_2) \mid dim(L_1 \times L_2 \cap \{0\}) \times \Lambda_W \times \{0\}\} = j\}$ $\Sigma_j = \{(L_1, L_2) \mid dim(L_1 \times L_2 \cap \{0\}) \times \Lambda_W \times \{0\}\} = j\}$ $\Sigma_j = \{(L_1, L_2) \mid dim(L_1 \times L_2 \cap \{0\}) \times \Lambda_W \times \{0\}\} = j\}$ $\Sigma_j = \{(L_1, L_2) \mid dim(L_1 \times L_2 \cap \{0\}) \times \Lambda_W \times \{0\}\} = j\}$

Composition to Hom (V, X) is continuous on strata but discontinuous "ecross strata". (Exercise: make this precise and prove it.)

Sabot's category.

- Special case of composition applied to spectral
theory, electric circuit theory, and random walks
on graphs (C. Sabot, also Colin de Verdière)

- Las (TQ) as composition of Sym²(Q).

Discontinuity problem "resolved" by introducing
(in special case), for (L, L2) & Z; (V, W, X),

Lie L2 = {L3 & Las (V, X) | codim (L3 n Lie L2, Lie L2) < j}.

(A "higher Meslov cycle")

If $(L, L_2) \notin \Sigma_0$, e.g. if L, or L_2 is invertible, then $L_1 \circ L_2 = \{L_1 \circ L_2\}$.

WHY THIS? {(L, L2, L3 & L, o L2)} is the closure of the graph of o. It is a chosed subvariety of Lag(V, W) x Lag(W, X) x Lag(V, X). As such, it is the graph of a "rational map"—multiple-valued but single-valued on an open dense subset.

Conjecture: Sabot's product produces a category internal to a category of varieties and various al maps.

Next step: Quantize this category, using some multiple-valued composition of operators.

	Composition of canonical relations: more details
	Reall, if LEXXY,, LZSYXZ, we form
	(L,×L2) n(X × Dy × Z) and then project
	If intersection is clean (T(AOB) = TAOTD)
	than the image in X x Z is an immersed
	than the image in X x Z is an immersed lagrangian submanifold (projection has constant vante).
_	The mice CECE:
	The mice CECE: (D) Intersection 11 transverce. Then
	projection is an immersion.
	projection is an immersion. (2) Projection is (proper) embedding.
	Wehrheim-Woodward rescue the category in
	\mathcal{M}
	tuo vays.
	tuo vays.
	tuo vays.
	A Morphisms are equivalence classes of sequences of conomical relations; (Lo, L,,, Ln), with
	two ways. (A) Morphisms are equivalence classes of sequences of conomical relations; (Lo, L,, Ln), with (Lo,, Ln) ~ (Lo,, Lielie, Liez,, Ln) when
	two ways. (A) Morphisms are equivalence classes of sequences of conomical relations; (Lo, L,, Ln), with (Lo,, Ln) ~ (Lo,, Lielie, Liez,, Ln) when
	A Morphisms are equivalence classes of sequences of conomical relations; (Lo, L,, Ln), with (Lo,, Ln) ~ (Lo,, Lielier, Liez,, Ln) when (Li, Lie,) is a nice pair. Composition is by concatenation of relations.
	A Morphisms are equivalence classes of sequences of conomical relations; (Lo, L,, Ln), with (Lo,, Ln) ~ (Lo,, Liolin, Ling, Li
	A Morphisms are equivalence classes of sequences of conomical relations; (Lo, L,, Lm), with (Lo,, Lm) a (Lo,, Liel, Liez,, Lm) when (Li, Lie) is a nice pair. Composition is by concatenation of relations. 1)-0 show that there is a functor from this codegory to an "adaptoraic" one. The objects are
	A Morphisms are equivalence classes of sequences of conomical relations; (Lo, L,, Lm), with (Lo,, Lm) a (Lo,, Liel, Liez,, Lm) when (Li, Lie) is a nice pair. Composition is by concatenation of relations. 1)-0 show that there is a functor from this codegory to an "adaptoraic" one. The objects are
	A Morphisms are equivalence classes of sequences of conomical relations; (Lo, L,, Ln), with (Lo,, Ln) ~ (Lo,, Liolin, Ling, Li

(B) General principle: replace equivalence relation
by "modes of equivalence" Get a 2-cotogory.
hy "modes of equivalence." Get a 2-cotogory. Morghisms are sequences of canonical relations
· 2 morphisms are Donaldson-Fikaya morphisms.
· Composition of morphisms is given by
concatenation and an operation in D.F theory. with the result that (Deguivalence (=)
-
(B) is smorphism.
All this is very technical and requires reppleases to
conditions and structures.
The symplectic microcolegory (with Cattaines
The symplectic microcolegory (with Cottanes (another Type 1 example) [Ar Xi, N])
Ţ
Lagrangian submanifolds in cotangent bundue
Lagrangian submanifolds in cotangent bundles — remiclarsical an algris — symplectic group oids
The usual composition problem an Es.
,
Micmfolds
Pairs ASM up to equivalence.
For symplectic microfold, take A Lagrang ran.
Maps ore sems [M,A] -> [N,B],
symplectromorphisms in the symplectic case.
Products, submanifolds, graphs, special submanifolds in the symplectic cace.
sooman. plas in the simple city care.

Transversality condition on individual canonical relations => transvera composition.

MODEL: A & B ~ T*9: T*A->T*B Obvious when Q is a diffeomorphism. Since $Gr(T^{*}Q) = \{(x,\overline{5}), (y,\eta) | x = Q(y), \eta = (T,y)^{*}(\overline{5})\}$ Also, $Gr(T^*\varphi) = \{(x,\overline{x}),(y,\eta) \mid (x,\eta,\overline{x},-\eta) \in \mathcal{V}^* Gr(\varphi)\}$ is always lagrangian.

A & B & C Landle Also, Gr(T*4). Gr(T*4) = Gr(T*(904)), and the composition is transverse.

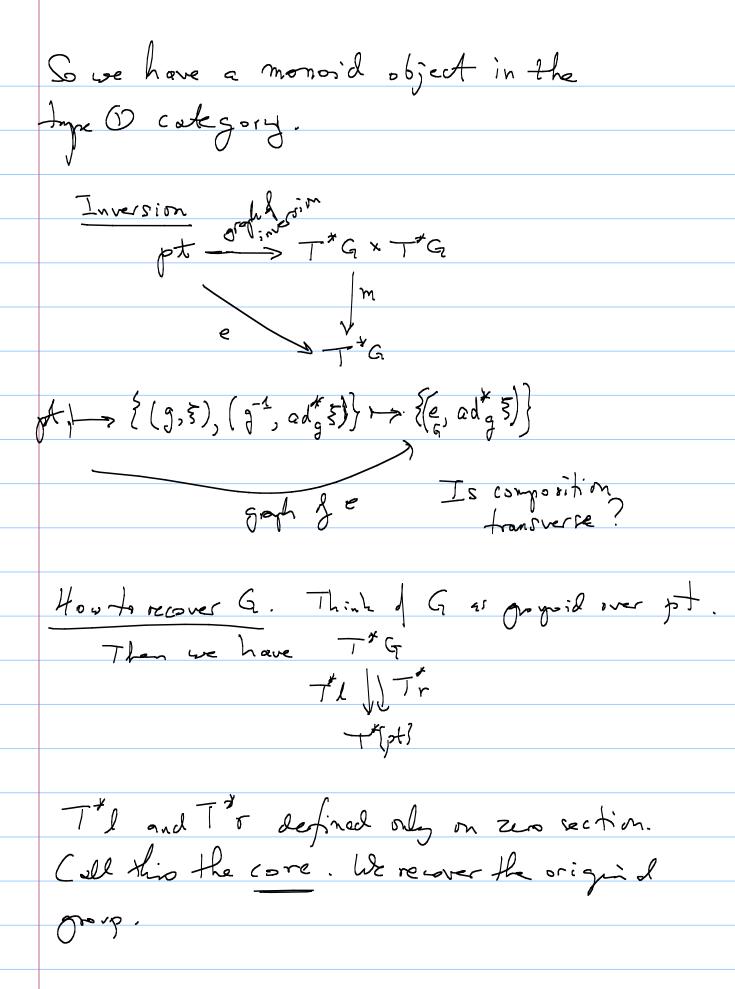
IDFA. Take "small "perturbortions of canonical relations of the form Gr (T*4). Norh near zero section - Microfolds

Definition. A symplectic micromorphism is a cononical relation ([V], graph 4): [M, A] \rightarrow [Y, B] such that $SV(a) = \varphi^{-1}(a)$ $\forall a \in A$ $TV(v) = (T\varphi)^{-1}(v)$ $\forall v \in TA$

Write ([N), 4) instead; 4 is the core map.

Some facts

- · Closed under composition, contains units.
- · 9 invertible (TV), 9) invertible (i.e. symplecto)
- · ([V], 9) -> 9 is a function, with 9->([Gr T*y], 4) a cross section
- · Every object ([M], A) is (noncononically)
 isomorphic to the cotongent microbundle ([TA], A)
 (Iromorphisms are charts.)


In progress

- · Every morphism is a Top in suitable charts.
- · Quantization of the cotegory by microlocal Fourier integral operators.

Type (2). Cotegories whose morphism
Type (2). Cotegories whose morphism spaces are objects in a Type (1) cotegory.
Simple example:
· Objects are symplectic manifolds in 1)
· Hong(X,Y) = X x \(\overline{Y} \)
· Composition is
(x,y)(y,z)(x,z) (x,y)(y,z)(x,z) (x,y)(x)(y,z)(x,z) (x,y)(x)(y,z)(x,z)
= Hom (Hom, (X, Y) XHom, (Y, Z), Hom, (X, Z))
EXERCISE. Compositions involved in associatuity
check are transverse.
Tenerary composition in appointing chack?
Hong (x, y) of my (y, z) + Hon (z, y) - Hon(x) of m (y, y) $C_{X_{1}, x} \sim L_{X_{1}} \times C_{X_{1}, x} \times C_{X_{2}} \times$
(m. 19.19); and (m. p. m) There are a first of the state
(* (1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1
Everything also works in the microsymplectic cutegory. In cotanget microbundles composition morphisms are cotangent lifts
cutegory. In cotanget microbundles
composition morphisms are as ton gent to
(of diagonal maps).

A more general type @ example.
(with H. Dorsetyn, Par 2003)
(with it. Dorsztyn, Par 2003) [Lots of open problems in lost section]
Objects are (complete) symplectic redirations
Objects are (complete) symplectic redirations S => P
$l \cap l \cap D$
Hom (S, J, P, S, J, P) (classical intertwiner)
() = () =
= S, \$ S = S × S 2/N, where ~ is characteristic foliation.
Technical wadorion:
Technical coaddion: S => P is symplectic torsor ("rew technology")
EXFACISE: Is associatify check
a transverse composition?

	7 pe (3)
_	Mostly speculative (with in progress with Santigo Cañez).
	Example: Ga Lie group. On TG, have
	T*m: T*G x 7*G -> T*G, 6v+ it is
	not a map, only a relation. It is
	associative. From one point of view it is
	the multiplications of a groupoid structure
	(over y - the coadjoint action groupoid).
	Bot 9* is not symplectic, so we are
	"out of the codesory".
	[Sami derect product]
	Other viewp= nA: e.pt -> TG given by flore over identify is the unit. Check that:
	isently is the unit. Check that:
	()
	pt x 7*G (e,10) T*G x T*G
	Trm
	July 2
	Commtes.
	commetes.
	$(pt,(g,\overline{s})) \mapsto \{(e_{\alpha}, \gamma) \mid \eta \in \overline{x}^{\sharp}\}(g,\overline{s}) = (g,\overline{s}).$
	$(g, \overline{s}) \cdot p \rightarrow (g, \overline{s}) \cdot (e_{G}, \gamma) \cdot \beta = (g, \overline{s}) \cdot \beta$
	(5,3). FT = 3(9,5) (leg, 1) = Conp. if \$= 7
	5 - 1

All of the above worths when Ging Go is core of TG = To is G = G. Ami Defre the cotangent bundle of a stack is Seems to work for global quatronts.