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1 Introduction

The “moduli space” referred to in the title of this paper is the space M of
gauge equivalence classes of flat connections on a principal G bundle over a
compact Riemann surface Σ. Atiyah and Bott [1] constructed a symplectic
structure ωM on M by symplectic reduction from the infinite dimensional
symplectic manifold of all connections. Since M is a finite-dimensional
object, it seems desirable to have a finite-dimensional construction of its
symplectic form. In fact, M can also be realized as the representation
space Hom(π,G)/G, where π is the fundamental group of Σ and G acts by
conjugation. Using the resulting identification of the tangent spaces of M
with cohomology spaces of π with suitable coefficients, Goldman [9] gave a
direct construction of ωM as a nondegenerate 2-form, but he was unable to
prove that this form is closed without recourse to the infinite-dimensional
picture. This gap in Goldman’s approach was filled recently by Karshon
[10], who showed that dωM = 0 by methods of group cohomology, without
using the space of connections. 1

The purpose of this paper is to place Karshon’s computations in an ap-
propriate general setting, namely the double complex of forms on cartesian
powers of G [5] [14], or more precisely the corresponding complex of equiv-
ariant forms [2] [3] with respect to the action of G by conjugation.

∗Research partially supported by NSF Grant DMS-90-01089.
1L. Guillou and J. Huebschmann also inform me that they have found finite-dimensional

proofs that the form is closed.
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Andreas Floer’s refinement of the Casson invariant for homology 3-
spheres was constructed in terms of the gradient “flow” of the Chern-Simons
invariant on a space of connections. Floer himself remarked that there should
be an alternative construction of his invariant which, like Casson’s own, takes
place on the finite-dimensional space M. 2 Such a construction would use
the symplectic structure of M in an essential way. We hope that the new
description of the symplectic structure here may be of some assistance in
the realization of Floer’s hope.

I would like to thank S. Bates, R. Bott, A. Givental, Y. Karshon, and J.
Weitsman for their valuable help in the preparation of this paper.

2 The de Rham–bar bicomplex

The standard “bar” complex for computing the cohomology of a group G [6]
involves functions on cartesian powers of the group. When G is a Lie group,
the functions can be replaced by differential forms, and one obtains a double
complex C∗∗(G), with Cp,q(G) defined to be the space Ωq(Gp) of q forms
on Gp. The second coboundary operator is just the exterior differential d,
while the first, δ, is defined by the usual formula from group cohomology,
with some reinterpretation of the notation:

δα(a0, . . . , ap) =

α(a1, . . . , ap) +
p∑
i=1

(−1)iα(a0, . . . , ai−1ai, . . . , ap) + (−1)p+1α(a0, . . . , ap−1).

Here, when φ is a differential form on Y and y = f(x) is the notation “in
variables” for a mapping f : X → Y , the expression φ(f(x)) is interpreted
to mean the pullback of φ to X by f , just as in the case of functions.

The importance of the de Rham-bar bicomplex revolves around the fact
that the cohomology of the corresponding total complex (with differential
(−1)pd+ δ) is naturally isomorphic to the real cohomology H∗(BG) of the
universal classifying space of G. Furthermore, there is a natural mapping
Φ from the ring of invariant polynomials on the Lie algebra g to the total
cocycles in C∗∗(G) (see [14]).

Application of the de Rham–bar bicomplex C∗∗(G) to the moduli space
comes about through the following construction. Let π be a discrete group.
We consider the space Hom(π,G) as a singular “manifold” as is usual in
this subject [9]. The evaluation mappings E : πp×Hom(π,G)→ Gp induce

2Some progress in this direction is reported in [7].
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pullbacks E∗ : Cp,q(G)→ Ωq(πp × Hom(π,G)). Since π is discrete, the last
space can be identified with Cp(π) ⊗ Ωq(Hom(π,G)), where Cp(π) is the
usual space of (real-valued) p-cochains on π, i.e. the functions on πp.

Our key observation is that E∗ is a mapping of bicomplexes, where
C∗(π)⊗Ω∗(Hom(π,G)) is considered as the tensor product of the bar com-
plex of π and the de Rham complex of Hom(π,G). Composing E∗ with Φ,
we get a map from the invariant polynomials on g to the tensor product of
the cocycles in C∗(π) and the closed forms on Hom(π,G). Applying this
map to the quadratic polynomial on g given by an invariant symmetric bi-
linear form, and pairing the result with the “fundamental cycle” for π, when
π is the fundamental group of a Riemann surface, we obtain a closed 2-form
ω̃ on Hom(π,G).

It turns out that ω̃ is just the pullback of the symplectic structure on
moduli space. It is clear from our discussion so far that ω̃ is invariant under
the adjoint action of G, but it is not so clear that ω̃ is horizontal. Horizon-
tality is, however, analogous to closedness where the operator d is replaced
by the operators of interior product with the infinitesimal generators of the
adjoint action. The sum of these two operators is essentially the equivariant
differential [2] [3], so it will be natural to extend all of our bicomplexes and
complexes to their equivariant versions.

3 Maurer-Cartan calculus

Given a Lie algebra g and a manifold M , the g valued differential forms
on M form a super-Lie algebra; i.e. the algebraic identities defining a Lie
algebra are satisfied by g valued forms with the appropriate inclusion of
signs [11]. In particular, [η, η] is not necessarily zero when η is a g-valued
1-form, but the super Jacobi identity implies that [η, [η, η]] = 0. For further
properties of vector valued differential forms, we refer to [4].

On any Lie group G, we denote by ω the g-valued left invariant 1-form
which maps each tangent vector to the left invariant vector field having that
value. The corresponding right invariant form will be denoted by ω. They
are related by the equation

ω = φω,

where φ is the adjoint representation, considered as a 0-form on G with
values in Hom(g, g).

The forms ω and ω satisfy the structure equations

dω = −1
2

[ω, ω]
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and
dω =

1
2

[ω, ω].

Suppose now that g has an Ad-invariant inner product (not necessarily
positive definite), which we denote simply by · . Ad-invariance means that
[x, y] · z = −y · [x, z] for any three elements of g, so that the triple product

[x, y] · z (1)

is completely antisymmetric. For g-valued 1-forms, it is completely symmet-
ric.

We consider the 3-form

λ =
1
6
ω · [ω, ω].

Lemma 3.1 dλ = 0.

Proof. [ω, ω] is closed by the structure equation, so

dλ = − 1
12

[ω, ω] · [ω, ω].

By Ad-invariance, the last expression equals − 1
12ω ·[ω, [ω, ω]], which vanishes

by the super Jacobi identity.

2

We will use the following notation for forms and vector fields on G×G.
If α is any differential form on G, we denote by αi the pullback of α to G×G
by the projection pi onto the i’th component. If X is a vector field on G,
we denote by Xi the vector field on G×G which projects to X under pi and
to zero under the other projection. m : G×G→ G is group multiplication.

In terms of this notation, we have the following lemma, whose proof is
left to the reader:

Lemma 3.2 m∗ω = φ−1
2 ω1 + ω2.

The object which will eventually give us the symplectic structure on
moduli space is the 2-form

Ω = ω1 · ω2

on G×G. Using the structure equations and the relation between ω and ω,
we compute the exterior derivative

dΩ = −1
2

([ω1, ω1] · φ2ω2 + ω1 · [φ2ω2, φ2ω2]).
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The form dΩ is evidently nonzero (unless G is abelian). However, we
have:

Lemma 3.3
dΩ = δλ.

Proof.
−δλ = m∗λ− λ1 − λ2 =

1
6

(φ−1
2 ω1 + ω2) · [φ−1

2 ω1 + ω2, φ
−1
2 ω1 + ω2]− 1

6
ω1 · [ω1, ω1]− 1

6
ω2 · [ω2, ω2].

Using the fact that the values of φ are automorphisms of both the bracket
and inner product structures on g, we may simplify the expression above to:

1
2

([ω1, ω1] · φ2ω2 + ω1 · [φ2ω2, φ2ω2]).

2

Another simple computation, which we leave to the reader, shows:

Lemma 3.4 δΩ = 0.

Combining Lemmas 3.1, 3.3, and 3.4, we conclude:

Corollary 3.5 Ω − λ is a cocycle of degree 4 in the total complex of the
double complex C∗∗(G).

Remark The forms Ω and λ were originally found by analysis of objects in
[10], but in fact Ω− λ is precisely the result of applying the Bott-Shulman
map Φ to the invariant polynomial X ·X on g.

4 The equivariant theory

The equivariant cohomology of a G-manifold M can be computed using the
complex of equivariant differential forms on M [2] [3]. By definition, these
are polynomial maps from g to Ω∗(M) which are equivariant with respect
to the adjoint representation. The equivariant differential dG is defined by
(dGα)(X) = (d − iXM )(α(X)). Here, XM denotes the vector field given by
the Lie algebra element X acting on M .

In the setting of the previous section, if a group H acts on G by automor-
phisms, it is natural to extend the double complex C∗∗(G) to its equivariant
version C∗∗H (G), where Cp,qH (G) consists now of the H-equivariant q-forms
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on Gp, and the second differential is replaced by dH . 3 In what follows, we
will restrict our attention to the special case where H = G, acting by inner
automorphisms.

The form Ω−λ, which is closed for the operator δ+(−1)pd, is not equiv-
ariantly closed. The extra part of the equivariant differential is calculated
in the next two lemmas, in which the X on the right hand side is to be
interpreted as a constant g-valued 0-form on G.

Lemma 4.1 iXGλ = −d(X · (ω + ω)).

Proof. We begin by noting that XG for the adjoint representation is just
X−X, where X is the right-invariant vector field which agrees at the identity
with the left invariant vector field X. Then we have

6iXGλ = iX−X(ω · [ω, ω]).

Since λ is also equal to ω · [ω, ω], the last expression can be rewritten as

iX(ω · [ω, ω])− iX(ω · [ω, ω]).

Using the equations iXω = X and iXω = X and the symmetry properties
of the triple product (1), the last expression simplifies to

3X · ([ω, ω]− [ω, ω]),

which, by the structure equations, is just

−d(6X · (ω + ω)).

2

Lemma 4.2 iXG×GΩ = X · (ω1 − φ−1
2 ω1 + ω2 − φ1ω2).

Proof. Since XG×G = X1 −X1 +X2 −X2, we have

iXG×GΩ = iX1−X1+X2−X2
(ω1 · ω2)

Using the fact that X = φ−1X, one can easily transform the last expression
into the right hand side of the statement of the lemma.

3We expect that the cohomology of the corresponding total complex should be iso-
morphic to the H-equivariant cohomology of BG, which is in turn isomorphic to the
cohomology of BK, where K is the semidirect product of H with G.
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Lemmas 4.1 and 4.2 suggest that a piece of the puzzle is missing, namely
the equivariant form

θ(X) = X · (ω + ω).

The calculations above show that

(δ + (−1)pdG)(Ω− λ+ θ)(X) = −iXG×GΩ + δθ(X) + iXGθ(X).

The next two lemmas now complete the picture.

Lemma 4.3 iXGθ(X) = 0.

Proof.

iXGθ(X) = iX−X(X · (ω + ω)) = X · (iXω − iXω) = 0.

2

Lemma 4.4 δθ(X) = iXG×GΩ

Proof.
δθ(X) = θ(X)1 + θ(X)2 −m∗θ(X)

= X · (ω1 + ω1 + ω2 + ω2 − (φ−1
2 ω1 + ω2 + ω1 + φ1ω2))

= X · (ω1 + ω2 − (φ−1
2 ω1 + φ1ω2)).

Now compare with Lemma 4.2.

2

As a consequence of the preceding calculations, we have

(δ + (−1)pdG)(Ω− λ+ θ) = 0.

We state our main results below.

Theorem 4.5 −λ+θ is an equivariantly closed form of degree 3 on G, and
Q4 = Ω − λ + θ is an equivariantly closed element of degree 4 in the total
complex of the bicomplex C∗∗G (G).
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5 Forms on representation spaces

To complete our work, we have little to do but to pull back the 4-form Q4

of Theorem 4.5 by the evaluation maps E : πp × Hom(π,G) → Gp. Since
each E is obviously equivariant, E∗Q4 is a cocycle in the total complex of
the bicomplex C∗(π)⊗C∗G(Hom(π,G)). By pairing with cycles in C∗(π), we
obtain equivariant forms on Hom(π,G).

If c ∈ C2(π) is a 2-cycle, then

dG〈E∗Ω, c〉 = dG〈E∗Q4, c〉 = 〈E∗dGQ4, c〉

= E∗〈−δQ4, c〉 = −E∗〈Q4, ∂c〉 = 0,

so 〈E∗Ω, c〉 is an equivariantly closed 2-form on Hom(π,G). A similar com-
putation using Ω − λ and the ordinary differential shows that 〈E∗Ω, c〉 is
closed. It follows that 〈E∗Ω, c〉 is a G-invariant closed form on Hom(π,G)
which is annihilated by iXHom(π,G)

for every X ∈ g, so that it is the pullback
of a closed 2-form ωM on (at least the smooth part of) the moduli spaceM.

If we pair with a 2-boundary ∂b, then we have

〈E∗Ω, ∂b〉 = 〈δE∗Ω, b〉 = 〈E∗δΩ, b〉,

which is zero by Lemma 3.4. Thus we have proven:

Theorem 5.1 Pairing E∗Ω with 2-cycles defines a natural homomorphism
from H2(π) to the space of closed 2-forms on M.

Following [10], one may show easily that if π is the fundamental group
of a closed Riemann surface and c is the fundamental cycle of that surface,
then ωM is the usual symplectic structure on moduli space.

It is also possible to pair E∗(λ) with a class of degree 1 in H∗(π) (i.e.
a conjugacy class in π). The resulting object is a closed, invariant, 3-form
on Hom(π,G). This form does not, however, push down to M. In fact,
if we subtract E∗θ from E∗λ, the result is an equivariantly closed form on
Hom(π,G), but it can be pushed down as a class to M only where the G
action is free, and as a form only with the aid of a connection for that action.

A reader familiar with other work on the cohomology of moduli spaces
may recognize that we have found, in a new guise, the generating classes of
Newstead [12]. (Actually, these classes only apply directly to the “twisted”
moduli spaces; see [1].) One of Newstead’s generators is, however, missing,
namely the class of degree 4 obtained by pairing with the fundamental 0-
cycle of π. In fact, we can obtain this class as well by considering the element
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of C0,4
G (G) given simply by the invariant quadratic polynomial Φ(X) = X ·X.

This pulls back to Ω∗G(Hom(π,G)) as the same polynomial, which is an
equivariant form of degree 4. The limitations on pushing down to M are
the same as those just discussed for the classes of degree 3.

It is perhaps useful to describe the symplectic form on M, as we have
constructed it, in more concrete terms. A 2-cycle for π is just a (finite)
formal linear combination of elements of π × π. Pairing E∗(Ω) with such a
cycle gives a linear combination of pullbacks of Ω from G2 to Hom(π,G) by
evaluation on pairs of elements of π. Now choose a finite subset γ of π which
contains a generating set and is large enough so that our cycle is supported
in γ × γ. We consider the singular space Hom(π,G) as embedded into the
smooth manifold Gγ of maps from γ to G. The evaluation map E extends in
an obvious way to a map from π2×Gγ to G2, so when we pair with the cycle
we get a smooth 2-form on Gγ which extends our form on Hom(π,G). It is
important to note, though, that the extended evaluation map is no longer
compatible with the two bicomplex structures, so the extended 2-form is not
necessarily closed. We do not know whether a smooth closed extension can
be found; nevertheless, it is reassuring to see the form on the singular space
Hom(π,G) extended to a smooth form on a smooth manifold.

6 Discussion

Our construction of the symplectic structures on moduli spaces raises several
questions.

First of all, it would be nice to prove with our formalism that the closed
2-form on moduli space is nondegenerate. One way to do so would be to
construct the corresponding Poisson structure by an analogous procedure.
This approach leads to the idea of applying our method to the moduli spaces
of flat connections on manifolds with boundary, which are Poisson manifolds
in which the symplectic leaves are given by specifying the conjugacy class
of the holonomy on each boundary circle.

Secondly, we have dealt with only the characteristic class of degree 4 for
the group G. It turns out that this leads to several equivariant cohomol-
ogy classes on Hom(π,G), only one of which passes to a canonical form on
M. It would be interesting to carry out a similar analysis for the entire
characteristic ring of G.

Although the forms Ω and λ were seen to arise directly by the Bott-
Shulman construction, the equivariant form θ(X) was put in “by hand”. It
should be possible to find a “grand unified theory” encompassing all three of
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these forms, as well as the degree 4 class mentioned near the end of Section
5, by using a suitable de Rham model for H∗G(BG).

The geometric quantization of M, which is so important for topological
quantum field theory, begins with the construction of a line bundle whose
curvature is ωM. The construction of this line bundle in [13] relies on the
Chern-Simons functional. Is it possible to construct the line bundle from an
object analogous to the de Rham–bar complex?

We hope to return to these points in a sequel to this paper.
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