Marsden-Weinstein Reductions for Kahler,
Hyperkahler and Quaternionic Kahler
Manifolds

Chenchang Zhu
Nov, 29th 2000

1 Introduction

If a Lie groupG acts on a symplectic manifoldV, w) and preserves the sym-
plectic formw, then in some cases there may exist a moment map ¢Gipm
M to the dual of the Lie algebra. When the action is (locally) free, the preimage
of a point in the dual of the Lie algebra modulo the isotropy group of this point
will still be a symplectic manifold (orbifold). This process is called the Marsden-
Weinstein reduction (MW reduction) and the reduced manifold is called Marsden-
Weinstein quotient (MW quotient) ([IMW)]). It has been generalized to hyperkah-
ler and quaternionic Kahler maniflods by Hitchin et al. ([HKLR]) and Galicki
and Lawson ([GL]), respectively. In this term paper, we will show how Marsden-
Weinstein reduction works in Kéhler, hyperkahler and quaternionic Kahler cases
and then give some examples to see how MW reduction gives a new approach to
get manifolds or orbifolds in each case.

2 Whatls a Moment Map and What is the MW Re-
duction?

Let a Lie groupG act on a symplectic manifoldM, w) preserving the sym-
plectic form. Then a ma@ from M to g* satisfying the following conditions is
called a moment map.



1. d < ®(x),v>=i(vm)Ww|x, Wherevy is the vector field generated by the
action ofvon M, i.e.vm(p) = Si—oexptv- p.

2. Equivariance, i.epa= Ad;®, for alla € G.

G is then said to act oM hamiltionianly. For every vector field on M and
vin g, we have< TO(X),v>=X(< ®P,v>)=d < P(x), V> (X) = w(vm, X);
therefore ® is unique up to a “local constant”, i.e. somethingHA(M).

Let G, be the isotropy group at poipte g*. SinceGy, acts equivariantly, it
preserves the-level set of®, i.e. there is also &, action on® (). Although
the original symplectic formw on M when restricting ord~(p) is not nonde-
generate any more, after dividing by the groBp, we will get a well-defined
symplectic form orﬂ)*l(u)/Gu. This whole process is called Marsden-Weinstein
reduction (or Marsden-Weinstein-Meyer reduction)Glécts freely on the-level
set, then this quotient space is actually a manifold (thus a symplectic manifold); if
the action is only locally free (for example when we only know that a regular
value of the moment map), this quotient space may be an orbifold. This process
allows one to construct and recover a lot of symplectic manifolds.

Example2.1 (Complex projective spaceshet U(1) = S_1 act onC" by scalar
multiplication on each component 8s(z,...,z,) = (€ %z,...,e7%z,). Then,
one may verify that the moment map is given by

D(21,2,...,20) = (1/2) i 172,
=1

SinceS! is commutative, the isotropy group at every point is the wisleThen
the MW quotient at the point 1/2 is

®H1/2)/st=s""1/st=CP" .

It's well known thatCP"~1 has a hermitian metric
(i/2)d0log(|z?)

inherited fromC" and it is indeed a Kahler metric (see the next section), so its
imaginary part is a symplectic form. If the MW reduction is nice enough, this
symplectic form should be the “reduced” symplectic form got from the MW re-
duction. And it is! This is so because the “reduced” symplectic form is also
inherited from the standard symplectic form @A, which is compatible with its
own complex structure.



Example2.2 (Coadjoint orbits of a compact Lie grouplet G be a compact Lie
group. ThenT *G carries a natural symplectic structuve= —da, wherea is the
tautological 1-form (see [C], p. 8), such tha} € T*G, VX € Tg(T*G), T, the
projection fromT*G to G,

afg(X) = B(TLX).

Since vy« Is infinitesimal (lifted) left translation for al in the Lie algebra,
Lv;.c0 =0, and then

i(VT*G)dCX + d(i (VT*G)G) =0.

Take the value g8, and notice thatt, vy« is the differential of a left translation,
hence a right invariant vector field, then we will have,

d <right translat to e, v >=i(Vr+g)w,

i.e. if we take the trivialization of *G =2 G x g* by the right translation, then the
moment map now is just the projection onto the second componemdtSqi) =
G and the MW quotient at pointis

®~1(l) /Gy, = the coadjoint orbit ofs.

Example2.3 (Toric manifolds and symplectic cuth toric manifoldM is a com-
pact -dimensional symplectic manifold with an effective hamiltonmadimensionals
torusT"-action. The image of the moment mép M — t* = R" is then a con-
vex polytope inR", called Delzent polytope (see [C], Section 28.), and inversely,
M can be constructed as

M=®dM)xT/~,

where~ means thatp,t) ~ (g,s) <= p=qandts~! ¢ exp(( the face containing
p)+). Therefore, there is a one-to-one correspondence between Delzant polytopes
and toric manifolds.

A symplectic manifold M, w) with anSt-action and a moment majp: M —
R can be operated on by the following process:

(i) Let St act onM x C by €°(m,z) = (€®-m, e792);

(i) Let the moment map be; : (m,z) — ®(m) + (1/2)|2> — A;

(iii) Do the reduction:®; *(0)/S".

This process is called symplectic cutting.

We can see why it is called symplectic cutting in the case of toric manifolds.
LetM = (R, )"x T/ ~, (~ is as defined just now ar@& ;. )" is the first quadrant of
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RM), St = a subtorus off: (€9, 1,...,1). Then after the symplectic cutting, we’ll
end up with a quotient manifol(0, A1] x (R+)"1) x T/ ~, as if we cutR"} by
the hyperplane corresponding to tefs Geometrically, differen§'’s correspond
to different directions of the hyperplane, differexit's correspond to different
places of the cutting.

Since a polytope can always be obtainedchtputs onR" , a toric manifold is
in fact a result of a series of symplectic cuttings, hence a MW quotient.

In fact, R x T/ ~=C", and we can write all the reductions in the&uts as
one if we ask

(i) T to act onC" x C" by “double” ordinary action, i.e.

(expiB1,...,expi6p) - (W1,...,Wn, Z1,...,Zn)
= (exp(—iB1)wy, ..., exp(—iBn)Wn, exp(—i01)zy, ..., eXp(—iBn)z);
(i) the moment maysb:
(W21, Zn) = (P2(W) + (1/2)[Z2]2 = A, oee, Pr(W) + (1/2) 202~ An),

where®; is the moment map of thgth subtorus in the process of cutting with
the action orC" induced from the ordinar{-action.

So all toric manifolds can be viewed as the MW quotient from the simple
spaceC?",

3 Kahler Reduction

Definition 3.1. A Kéhler manifold(M, g, |, w) is a symplectic complex Rieman-
nian manifold such that these three structures are compatible, i.e.

g(| - ) — w(.’ )
The hermitian forng+ iwis then called the K&hler metric of M.
Remark3.2 From the point of view of holonomy bundles (see [S]), Kéhtes-
the holonomy bundle is contained in tbgn) frame bundle. When the manifold

M is compact, an isometry group automatically preserves the Kahler metric. (see
[S], Section 8.)

Theorem 3.3 ([HKLRY]). If a compact Lie group G acts on a Kahler manifold
M isometrically, hamiltonianly and freely, then its MW quotient is still a Kahler
manifold.



Actually, this theorem is not hard to prove. First, look at the symplectic mani-
fold Q = ®~1(0)/G. TheG-orbit and the level seb—1(0) are symplectic orthog-
onal, i.e. if we askV = {w : ve g} CV = TxM, then

Ty Q=W/W = (I-W)L /W = (I - W): nW-.

(Here L. w means the symplectic orthogondl, means the ordinary orthogonal
under the Riemannian structure). $9Q is invariant under thé-action. Hencé
can be reduced to it. Its integrability will be inherited from the original manifold
since the group action is isometric. So, together with the reduced symplectic form
we have known and the reduced Remannian metric by the isometric property, the
only thing left is to check the compatibility.

Secondly, if the theorem is true in the O-case, it will be true in a general case
because instead of considering thaction and the moment map, we can con-
sider theGy-action and the moment map — p, and reduce thg-case to the
O-case.

Example3.4. Recalling from Example 2.1, thg!-action preserves the metric,
so the result manifol€P"~* is a Kahler manifold. Unsurprisingly, the reduced
Kéahler metric is the same one inherited fr@if.

Example3.5. SinceT acts onC" x C" isometrically, and toric manifolds are MW
quotients ofC" x C", toric manifolds are Kéahler manifolds.

Remark3.6. The coadjoint orbits of a compact semisimple Lie gr@igre Kéhler
manifolds; however, one can’t expect them to be deduced fro@ by the usual
Kahler reduction. R.S. Filippini explained this in his paper [F].

4 Hyperkéahler Reduction

Definition 4.1. A hyperkahler manifold is a Riemannian maniféM, g) carrying
three complex structurds, |2, 13, and three symplectic structures, wyp, w3 such
that they are compatible respectively as in the Kéhler casd@ahdls behave
algebraically like quaternions, i.e.

12=13=12=—1, o =13,  etc.

Remark4.2 From the point of view of holonomy bundles (see [S]), hyperkah-
ler <= the holonomy bundle is contained in tbkén, H) frame bundle. (Some
people like to call it aSpn) as well.)



Given an isometrids action on a hyperkahler manifoldl with structures
(g, 11, I2, I3, 01, wp, u3), we may define their moment magy, ®,, P3 corre-
sponding to each symplectic form, which can be written as a single map
P:M— g*QR3
The generalized theorem is as following:

Theorem 4.3 ([HKLR]). Let a compact Lie group G acts on a hyperkahler mani-
fold M isometrically, hamiltonianly (with respect to all the 3 symplectic structures)
and freely. Then the MW quotient is again a hyperk&hler manifold.

The proof is similar to the case of Kahler manifolds. (The authors only gave a
proof for the O-level set, but again it's not hard to generalize it to the general case.)

Remarkd.4. The coadjoint orbits of the complexificati@? of a compact semisim-
ple Lie groupG are hyperkahler ([K]), but | don’t know how one can get them by
hyperkahler reduction.

5 Quaternionic Reduction

Definition 5.1. 4n-dimensional ManifoldM is said to be almost quaternionic if
there is a 3-dimensional subbunabeof Hom(T M, T M) such that at each point it
is isomorphic to Ini (i.e. the image part of the quaternionic numbers).

So at each point of M, we will have a basigd;, Jo, J3 in the fibre® such that:

Il =3, Dz =1, B = Do, JjJj = -1, =123 (1)

Comparing with the hyperkéhler case, at each point, we won't have a canonical
choice ofJ1, Jp, J3. What we have is only a unit sphere oflim

A Riemannian metrig is called adapted to the quaternion structurévoif
eachJ € & is orthogonal, i.e.,

<Jv Iw>=<v,w> (2)

for all unitJ € & and allv, w € TyM. By a local trivialization of®, we can always
choose some orthonormal basis,

V1,J1Vv1,Jov1,J3Vve, Vo, ..., J3Vp, 4n=dimM, Jj asin (1). (3)
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Thus we always have some “local metric” which is adapted. Then, by partition of
unity, (globally) adapted metric always exists.

Given a metric, we can identify*M with TM; hence® C Hom(TM, TM) =
T*"M®@TM=T*M ® T*M. In fact, this embedding can be given by

J— w: (v, W) =< Jv,w> . (4)

If the metric is adapted in addition, we can easily discover that fact is in
A2T*M. So we can view as a subbundle gf?T*M. Letw;j be the corresponding
basis ofJ;j in (1), then by a direct calculation the associated exterior 4-form

3
Q= Wi A Wi
] ]

2,

is invariant no matter howo;j is chosen.

Definition 5.2. The Riemannian manifold M together wighis quaternionic Kéh-
ler if 00Q = 0, wherell denotes the Levi-Civita connection.

This is equivalent saying that the holonomy bundle is contained id theH)
U(1, H) frame bundle. ([S]) So this terminology can be confusing, becdlise
may not be a Kahler manifold in the ordinary sense. Locally, it is then possible
to make a smooth choice df, Jo, J3, but they cannot be assumed to be complex
structures. However, what is nice for quaternionic Kéhler manifold is that it must
be Einstein, i.e. constant Ricci curvature. (See [S], Section 9.) This implies that
the scalar curvature &fl must be constant. When the scalar curvatur®as 0,
one can show thad is flat and the metric is hyperk&hler ([GL]), hence reducing
to the case of the last section. When the scalar curvatuvkisfnot 0, we do not
necessarily have a canonical choice of a closed 2-form to define the moment map
as before. All we have now is a closed 4-fofn(dQ = 0 becauselQ = 0 by
a direct calculation. See [J] p. 134 for details). However, we can also define a

®-valued 2-form: .

> wj@w  for wjin(4).

=1
Itis also well defined as in the case@f For a Lie grougH acting onM preserving
everything it should, then corresponding to t#isvalued 2-form we might hope

that the moment mag@ goes fromM to h*® & hence a section of the bundle
Hom(h, ®). And we might also hope that thiB satisfies:

3
O<P(x),v>= Z (V)W ® wj =: O(v) (for the future use) (5)
=1

7



In fact, K. Galicki and H. B. Lawson proved that we will always have a moment
map provided that the scalar curvature is nonzero. The following result belongs
to them. [GL] First consider the Lie group

Aut(M) :={a:a"Q = Q andais an isometry}
and its Lie algebra
aut(M) := {v:L,Q = 0 andv is a Killing vector field onM }.

Lemma 5.3. Assume that the scalar curvature of M is not zero. Then to each
v € aut(M) there corresponds a unique sectianefQ0(®) such that

|:| fv - Ov. (6)

In fact, since® is a 3-dimensional oriented vector bundle, we can identify SkewEnd
(&) with & via the cross product. From this point of view,i$ given explicitly by
the formula

fv=(1/M)(Lv—Dv), 7)
whereA is some nonzero constant.

Definition 5.4. If H is a compact Lie subgroup of Aut(M), then a moment n@ap
associated to it is a section of the bunfifex & such that,

< P(x),v>= fy(x), Yxe M, YW e b.

Remark5.5. By the definition itself and Lemma 5.3 we can see that the moment
map uniquely exists and satisfies (5).

Remark5.6. By the uniqueness in Lemma 5.®,is H-equivariant. This means
that fora € H we must haveb(ax) = (a.®)(x), ¥x € M. Viewing & as the sub-
bundle inA°T*M, a,® is naturally defined bAd; © (a=1)*, i.e.

< (a®)(x),v>=(a 1)* < d(ax),Ad,-1v >, We b.
Then equivariance means thev,€ h, ac H,
fy(@ax) =< d(a1x),v>=< (a; 1d)(x),v>
—a* < ®(a 1x),Adyv >= a* fagy(@ x).
However
O(a" faqy) = &' 0(fady) = @ Oad,y = OAdav = O( fy).

This means* faq,y = fv, hence the equivariance holds.
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Remark5.7. The action ofH onh ® & is linear on each fibre, so it preserves the
zero section

Lh={XeM:d(x) =0} ={xeM: fy(x) =0,Vv},

SoH acts on it and it is the only natural level set®that can have aH-action.
The generalized theorem in this case is as the following:

Theorem 5.8 (Quaternionic Reduction).Let M be a quaternionic Kahler mani-
fold with nonzero scalar curvature. Let H aut(M) be a compact subgroup with
moment mab. Let £ be the H-invariant subset of the zero secti&m where

@ intersects the zero section transversally and where H acts freely. TH¢Hl
equipped with the induced quotient metric is again a quaternionic Kéhler mani-
fold.

Applying the theorem above to the cade= S, we can end up with some
guaternionic Kéhler orbifolds. This is described by the following Corollary:

Corollary 5.9. Let M be as above and supposesHS' C Aut(X) is a closed 1-
parameter subgroup generated by a vector field amst(M). If vy is not O at all
points xe £y, thenLy /H is a compact quaternionic Kahler orbifold.

Example5.10(Quaternionic Kahler manifoldlP" and some quaternionic reduc-
tion of it). Viewing a matrix inU(n+ 1,H) as an orthogonal frame iH"*! =
C?*2, U(n+1,H)/U(n, H) tells us how to choose a unit quaternionic vector
in AL, SoU (n+ 1, H)/U (n, H) x U (1, H) gives us the quaternionic projective
spacedP" because a unit quaternionic vector moduloingutié, H)-action gives
exactly a quaternionic line i1, Similarly, U(n+ 1, H)/U(n, H) x U (1, C)

will give us CP?"*1 because a unit quaternionic vector can also be viewed as a
unit complex vector on its underlying complex space. Hence we have the Hopf
fibration:

on+1 _ U(n+1H) T U (n+1,H) o
CP" = U(n,H)xU(1,C) UnH)xU(LH) HIP"

which assigns to a complex line "1 its quaternionic span. Each fibre is a
CP!. ButTtis not holomorphic (in facHP" does not even admit a global almost
complex structure). Each poiatc T 1(x) determines an almost complex struc-
turel, on the real tangent spad@gHP" by pulling back the complex structure on
CP?"*1, To be more specific, to applyto a vectow, apply the complex structure



in T,CP?"*+1 to any lift of v, and then project back P". The family of almost
complex structures determined in this manner may be identified with the 2-sphere
of unit imaginary quaternions. This shows thi&@P" is almost quaternionic. It
is actually quaternionic Kahler. Lét,..., un) be the linear coordinates on the
quaternionic vector spadé™t!, where scalar multiplication is defined from the
right. Think them as the “homogeneous coordinates” for the quaternionic projec-
tive spacedP" = (H"*! — {0})/H*.

For notational convenience, we write the homogeneous coordinateg, a3
whereu = (uy, ..., Uy). For each pair of integers q € Z* with (p, ) = 1 and 0<
g/p < 1, we shall consider the action &fP" defined in homogeneous coordinates
by

@ (o, u) = (€™ "ug, €"P'u),

wheret € [0,1) if (p+q) is odd and wheré € [0, 1/2) if (p+q) is even. This
action is in AutfIP"), and gives a vector field:

V (Uo, u) = (iquo, ipu). (8)

Consequently, we can consider the quaternionic moment map for this action. The
moment map is a section & & and® at a point is made up by all the complex
structures got by pulling back the complex structured®" 1 along the fibre.

For a particular vector field as in (8),fy (x) = 0 means that in the direction of
V(x), all the complex structures pulled back don’t change, which can only happen
if V(x) L x. Hence,

£q = {(up, u) € HP" : qugiup + puiu = 0}.

One can verify that the circle action is locally free. (See [GL] Theorem 4.4.)
So the corollary tells us the quaternionic reduction gives a compact quaternionic
orbifold Ogp(n—1)

Oqp(n—1) = £q/S"
In the case wherp = g =1, we see that the s€ is invariant under lef (n+
1,C) action with respect ta Explicit calculation about the stabilizer shows that

U(n+1,0C)
Un—1,C)xU(2)°

Ogp(n—1) =
with its symmetric quaternionic Kahler metric. [GL] In the casge p, the re-
duction will end up with quaternionic K&hler orbifolds which are not locally sym-

metric. In fact, H. B. Lawson and K. Galicki discovered thatdgp < 1, when
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q/p — 1 the metric onDq p(n— 1) converges locally to the metric ady ; and
wheng/p — 0, these metrics converge locally to a hyperk&hler metrit@&" .
[GL].
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