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1 Introduction

If a Lie groupG acts on a symplectic manifold(M, ω) and preserves the sym-
plectic formω, then in some cases there may exist a moment map ([C])Φ from
M to the dual of the Lie algebra. When the action is (locally) free, the preimage
of a point in the dual of the Lie algebra modulo the isotropy group of this point
will still be a symplectic manifold (orbifold). This process is called the Marsden-
Weinstein reduction (MW reduction) and the reduced manifold is called Marsden-
Weinstein quotient (MW quotient) ([MW]). It has been generalized to hyperkäh-
ler and quaternionic Kähler maniflods by Hitchin et al. ([HKLR]) and Galicki
and Lawson ([GL]), respectively. In this term paper, we will show how Marsden-
Weinstein reduction works in Kähler, hyperkähler and quaternionic Kähler cases
and then give some examples to see how MW reduction gives a new approach to
get manifolds or orbifolds in each case.

2 What Is a Moment Map and What is the MW Re-
duction?

Let a Lie groupG act on a symplectic manifold(M, ω) preserving the sym-
plectic form. Then a mapΦ from M to g∗ satisfying the following conditions is
called a moment map.
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1. d < Φ(x), v >= i(vM)ω|x, wherevM is the vector field generated by theg

action ofv on M, i.e.vM(p) = d
dt |t=0exptv· p.

2. Equivariance, i.e.Φa = Ad∗aΦ, for all a∈G.
G is then said to act onM hamiltionianly. For every vector fieldX on M and

v in g, we have< TΦ(X),v >= X(< Φ, v >) = d < Φ(x), v > (X) = ω(vM,X);
therefore,Φ is unique up to a “local constant”, i.e. something inH0(M).

Let Gµ be the isotropy group at pointµ∈ g∗. SinceGµ acts equivariantly, it
preserves theµ-level set ofΦ, i.e. there is also aGµ action onΦ−1(µ). Although
the original symplectic formω on M when restricting onΦ−1(µ) is not nonde-
generate any more, after dividing by the groupGµ, we will get a well-defined
symplectic form onΦ−1(µ)/Gµ. This whole process is called Marsden-Weinstein
reduction (or Marsden-Weinstein-Meyer reduction). IfG acts freely on theµ-level
set, then this quotient space is actually a manifold (thus a symplectic manifold); if
the action is only locally free (for example when we only know thatµ is a regular
value of the moment map), this quotient space may be an orbifold. This process
allows one to construct and recover a lot of symplectic manifolds.

Example2.1 (Complex projective spaces).Let U(1) = S1 act onCn by scalar
multiplication on each component asθ · (z1, ... ,zn) = (e−iθz1, ... ,e−iθzn). Then,
one may verify that the moment map is given by

Φ(z1,z2, ... ,zn) = (1/2)
n

∑
j=1
|zj |2.

SinceS1 is commutative, the isotropy group at every point is the wholeS1. Then
the MW quotient at the point 1/2 is

Φ−1(1/2)/S1 = S2n−1/S1 = CPn−1.

It’s well known thatCPn−1 has a hermitian metric

(i/2)∂∂̄ log(|z|2)

inherited fromCn and it is indeed a Kähler metric (see the next section), so its
imaginary part is a symplectic form. If the MW reduction is nice enough, this
symplectic form should be the “reduced” symplectic form got from the MW re-
duction. And it is! This is so because the “reduced” symplectic form is also
inherited from the standard symplectic form onCn, which is compatible with its
own complex structure.

2



Example2.2 (Coadjoint orbits of a compact Lie group).Let G be a compact Lie
group. ThenT∗G carries a natural symplectic structureω =−dα, whereα is the
tautological 1-form (see [C], p. 8), such that,∀β ∈ T∗G, ∀X ∈ Tβ(T∗G), π, the
projection fromT∗G to G,

α|β(X) = β(π∗X).

SincevT∗G is infinitesimal (lifted) left translation for allv in the Lie algebra,
LvT∗G

α = 0, and then

i(vT∗G)dα+d(i(vT∗G)α) = 0.

Take the value atβ, and notice thatπ∗vT∗G is the differential of a left translation,
hence a right invariant vector field, then we will have,

d < right translateβ to e, v >= i(VT∗G)ω,

i.e. if we take the trivialization ofT∗G∼= G×g∗ by the right translation, then the
moment map now is just the projection onto the second component. SoΦ−1(µ)∼=
G and the MW quotient at pointµ is

Φ−1(µ)/Gµ = the coadjoint orbit ofµ.

Example2.3 (Toric manifolds and symplectic cut).A toric manifoldM is a com-
pact 2n-dimensional symplectic manifold with an effective hamiltoniann-dimensionals
torusTn-action. The image of the moment mapΦ : M −→ t∗ = Rn is then a con-
vex polytope inRn, called Delzent polytope (see [C], Section 28.), and inversely,
M can be constructed as

M = Φ(M)×T/∼,

where∼means that(p, t)∼ (q,s)⇐⇒ p= q andts−1∈ exp(( the face containing
p)⊥). Therefore, there is a one-to-one correspondence between Delzant polytopes
and toric manifolds.

A symplectic manifold(M, ω) with anS1-action and a moment mapΦ: M−→
R can be operated on by the following process:

(i) Let S1 act onM×C by eiθ(m,z) = (eiθ ·m, e−iθz);
(ii) Let the moment map beΦ1 : (m,z) 7→Φ(m)+(1/2)|z|2−λ;
(iii) Do the reduction:Φ−1

1 (0)/S1.
This process is called symplectic cutting.
We can see why it is called symplectic cutting in the case of toric manifolds.

Let M = (R+)n×T/∼, (∼ is as defined just now and(R+)n is the first quadrant of
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Rn), S1 = a subtorus ofT: (eiθ, 1, ...,1). Then after the symplectic cutting, we’ll
end up with a quotient manifold([0, λ1]× (R+)n−1)×T/ ∼, as if we cutRn

+ by
the hyperplane corresponding to thisS1. Geometrically, differentS1’s correspond
to different directions of the hyperplane, differentλ1’s correspond to different
places of the cutting.

Since a polytope can always be obtained byn cuts onRn
+, a toric manifold is

in fact a result of a series of symplectic cuttings, hence a MW quotient.
In fact, Rn

+×T/ ∼= Cn, and we can write all the reductions in then cuts as
one if we ask

(i) T to act onCn×Cn by “double” ordinary action, i.e.

(expiθ1, . . . ,expiθn) · (w1, . . . ,wn, z1, . . . ,zn)
= (exp(−iθ1)w1, ...,exp(−iθn)wn, exp(−iθ1)z1, ...,exp(−iθn)zn);

(ii) the moment mapΦ:

(w,z1, ...,zn) 7→ (Φ1(w)+(1/2)|z1|2−λ1, ...,Φn(w)+(1/2)|zn|2−λn),

whereΦ j is the moment map of thej-th subtorus in the process of cutting with
the action onCn induced from the ordinaryT-action.

So all toric manifolds can be viewed as the MW quotient from the simple
spaceC2n.

3 Kähler Reduction

Definition 3.1. A Kähler manifold(M, g, I , ω) is a symplectic complex Rieman-
nian manifold such that these three structures are compatible, i.e.

g(I · , ·) = ω(·, ·).

The hermitian formg+ iω is then called the Kähler metric of M.

Remark3.2. From the point of view of holonomy bundles (see [S]), Kähler⇐⇒
the holonomy bundle is contained in theU(n) frame bundle. When the manifold
M is compact, an isometry group automatically preserves the Kähler metric. (see
[S], Section 8.)

Theorem 3.3 ([HKLR]). If a compact Lie group G acts on a Kähler manifold
M isometrically, hamiltonianly and freely, then its MW quotient is still a Kähler
manifold.
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Actually, this theorem is not hard to prove. First, look at the symplectic mani-
fold Q = Φ−1(0)/G. TheG-orbit and the level setΦ−1(0) are symplectic orthog-
onal, i.e. if we askW = {vM : v∈ g} ⊂V = TxM, then

T[x]Q = W⊥ω/W = (I ·W)⊥/W = (I ·W)⊥∩W⊥.

(Here⊥ ω means the symplectic orthogonal,⊥ means the ordinary orthogonal
under the Riemannian structure). SoT[x]Q is invariant under theI -action. HenceI
can be reduced to it. Its integrability will be inherited from the original manifold
since the group action is isometric. So, together with the reduced symplectic form
we have known and the reduced Remannian metric by the isometric property, the
only thing left is to check the compatibility.

Secondly, if the theorem is true in the 0-case, it will be true in a general case
because instead of considering theG-action and the moment mapΦ, we can con-
sider theGµ-action and the moment mapΦ− µ, and reduce theµ-case to the
0-case.

Example3.4. Recalling from Example 2.1, theS1-action preserves the metric,
so the result manifoldCPn−1 is a Kähler manifold. Unsurprisingly, the reduced
Kähler metric is the same one inherited fromCn.

Example3.5. SinceT acts onCn×Cn isometrically, and toric manifolds are MW
quotients ofCn×Cn, toric manifolds are Kähler manifolds.

Remark3.6. The coadjoint orbits of a compact semisimple Lie groupG are Kähler
manifolds; however, one can’t expect them to be deduced fromT∗G by the usual
Kähler reduction. R.S. Filippini explained this in his paper [F].

4 Hyperkähler Reduction

Definition 4.1. A hyperkähler manifold is a Riemannian manifold(M, g) carrying
three complex structuresI1, I2, I3, and three symplectic structuresω1,ω2,ω3 such
that they are compatible respectively as in the Kähler case andI1, I2, I3 behave
algebraically like quaternions, i.e.

I2
1 = I2

2 = I2
3 =−1, I1I2 = I3, etc..

Remark4.2. From the point of view of holonomy bundles (see [S]), hyperkäh-
ler ⇐⇒ the holonomy bundle is contained in theU(n,H) frame bundle. (Some
people like to call it asSp(n) as well.)
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Given an isometricG action on a hyperkähler manifoldM with structures
(g, I1, I2, I3, ω1, ω2, ω3), we may define their moment mapsΦ1, Φ2, Φ3 corre-
sponding to each symplectic form, which can be written as a single map

Φ : M −→ g∗⊗R3

The generalized theorem is as following:

Theorem 4.3 ([HKLR]). Let a compact Lie group G acts on a hyperkähler mani-
fold M isometrically, hamiltonianly (with respect to all the 3 symplectic structures)
and freely. Then the MW quotient is again a hyperkähler manifold.

The proof is similar to the case of Kähler manifolds. (The authors only gave a
proof for the 0-level set, but again it’s not hard to generalize it to the general case.)

Remark4.4. The coadjoint orbits of the complexificationGc of a compact semisim-
ple Lie groupG are hyperkähler ([K]), but I don’t know how one can get them by
hyperkähler reduction.

5 Quaternionic Reduction

Definition 5.1. 4n-dimensional ManifoldM is said to be almost quaternionic if
there is a 3-dimensional subbundleG of Hom(TM,TM) such that at each point it
is isomorphic to ImH (i.e. the image part of the quaternionic numbers).

So at each pointx of M, we will have a basisJ1,J2,J3 in the fibreG such that:

J1J2 = J3, J2J3 = J1, J3J1 = J2, JjJj =−1, j = 1,2,3. (1)

Comparing with the hyperkähler case, at each point, we won’t have a canonical
choice ofJ1,J2,J3. What we have is only a unit sphere of ImH.

A Riemannian metricg is called adapted to the quaternion structure ofM if
eachJ ∈G is orthogonal, i.e.,

< Jv, Jw>=< v, w > (2)

for all unit J∈G and allv, w∈ TxM. By a local trivialization ofG, we can always
choose some orthonormal basis,

v1,J1v1,J2v1,J3v1,v2, ...,J3vn, 4n = dimM, Jj as in (1). (3)
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Thus we always have some “local metric” which is adapted. Then, by partition of
unity, (globally) adapted metric always exists.

Given a metric, we can identifyT∗M with TM; hence,G ⊂ Hom(TM,TM) =
T∗M⊗TM =T∗M⊗T∗M. In fact, this embedding can be given by

J 7−→ ω : ω(v, w) =< Jv, w > . (4)

If the metric is adapted in addition, we can easily discover thatω in fact is in
∧2T∗M. So we can viewG as a subbundle of∧2T∗M. Letω j be the corresponding
basis ofJj in (1), then by a direct calculation the associated exterior 4-form

Ω =
3

∑
j=1

ω j ∧ω j

is invariant no matter howω j is chosen.

Definition 5.2. The Riemannian manifold M together withG is quaternionic Käh-
ler if ∇Ω = 0, where∇ denotes the Levi-Civita connection.

This is equivalent saying that the holonomy bundle is contained in theU(n, H)
U(1, H) frame bundle. ([S]) So this terminology can be confusing, becauseM
may not be a Kähler manifold in the ordinary sense. Locally, it is then possible
to make a smooth choice ofJ1,J2,J3, but they cannot be assumed to be complex
structures. However, what is nice for quaternionic Kähler manifold is that it must
be Einstein, i.e. constant Ricci curvature. (See [S], Section 9.) This implies that
the scalar curvature ofM must be constant. When the scalar curvature ofM is 0,
one can show thatG is flat and the metric is hyperkähler ([GL]), hence reducing
to the case of the last section. When the scalar curvature ofM is not 0, we do not
necessarily have a canonical choice of a closed 2-form to define the moment map
as before. All we have now is a closed 4-formΩ (dΩ = 0 because∇Ω = 0 by
a direct calculation. See [J] p. 134 for details). However, we can also define a
G-valued 2-form:

3

∑
j=1

ω j ⊗ω j for ω j in (4).

It is also well defined as in the case ofΩ. For a Lie groupH acting onM preserving
everything it should, then corresponding to thisG-valued 2-form we might hope
that the moment mapΦ goes fromM to h∗⊗ G hence a section of the bundle
Hom(h,G). And we might also hope that thisΦ satisfies:

∇ < Φ(x), v >=
3

∑
j=1

i(v)ω j ⊗ω j =: Θ(v) (for the future use). (5)
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In fact, K. Galicki and H. B. Lawson proved that we will always have a moment
map provided that the scalar curvature is nonzero. The following result belongs
to them. [GL] First consider the Lie group

Aut(M) := {a : a∗Ω = Ω anda is an isometry}

and its Lie algebra

aut(M) := {v : LvΩ = 0 andv is a Killing vector field onM }.

Lemma 5.3. Assume that the scalar curvature of M is not zero. Then to each
v∈ aut(M) there corresponds a unique section fv ∈Ω0(G) such that

∇ fv = Θv. (6)

In fact, sinceG is a 3-dimensional oriented vector bundle, we can identify SkewEnd
(G) with G via the cross product. From this point of view, fv is given explicitly by
the formula

fv = (1/λ)(Lv−∇v), (7)

whereλ is some nonzero constant.

Definition 5.4. If H is a compact Lie subgroup of Aut(M), then a moment mapΦ
associated to it is a section of the bundleh∗⊗G such that,

< Φ(x), v >= fv(x), ∀x∈M, ∀v∈ h.

Remark5.5. By the definition itself and Lemma 5.3 we can see that the moment
map uniquely exists and satisfies (5).

Remark5.6. By the uniqueness in Lemma 5.3,Φ is H-equivariant. This means
that fora∈ H we must haveΦ(ax) = (a∗Φ)(x), ∀x∈M. Viewing G as the sub-
bundle in∧2T∗M, a∗Φ is naturally defined byAd∗a⊗ (a−1)∗, i.e.

< (a∗Φ)(x), v >= (a−1)∗ < Φ(ax),Ada−1v >, ∀v∈ h.

Then equivariance means that,∀v∈ h, a∈ H,

fv(a−1x) =< Φ(a−1x), v >=< (a−1
∗ Φ)(x), v >

= a∗ < Φ(a−1x),Adav >= a∗ fAdav(a−1x).

However

∇(a∗ fAdav) = a∗∇( fAdav) = a∗ΘAdav = ΘAdav = ∇( fv).

This meansa∗ fAdav = fv, hence the equivariance holds.
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Remark5.7. The action ofH on h⊗G is linear on each fibre, so it preserves the
zero section

LH = {x∈M : Φ(x) = 0}= {x∈M : fv(x) = 0,∀v},

SoH acts on it and it is the only natural level set ofΦ that can have anH-action.

The generalized theorem in this case is as the following:

Theorem 5.8 (Quaternionic Reduction).Let M be a quaternionic Kähler mani-
fold with nonzero scalar curvature. Let H⊂ aut(M) be a compact subgroup with
moment mapΦ. Let LM

H be the H-invariant subset of the zero sectionLH where
Φ intersects the zero section transversally and where H acts freely. ThenLM

H /H
equipped with the induced quotient metric is again a quaternionic Kähler mani-
fold.

Applying the theorem above to the caseH = S1, we can end up with some
quaternionic Kähler orbifolds. This is described by the following Corollary:

Corollary 5.9. Let M be as above and suppose H∼= S1 ⊂ Aut(X) is a closed 1-
parameter subgroup generated by a vector field v∈ aut(M). If vx is not 0 at all
points x∈ LH , thenLH/H is a compact quaternionic Kähler orbifold.

Example5.10(Quaternionic Kähler manifoldHPn and some quaternionic reduc-
tion of it). Viewing a matrix inU(n+ 1,H) as an orthogonal frame inHn+1 =
C2n+2, U(n+ 1, H)/U(n, H) tells us how to choose a unit quaternionic vector
in Hn+1. SoU(n+1, H)/U(n, H)×U(1, H) gives us the quaternionic projective
spaceHPn because a unit quaternionic vector moduloing theU(1, H)-action gives
exactly a quaternionic line inHn+1. Similarly, U(n+ 1, H)/U(n, H)×U(1, C)
will give us CP2n+1 because a unit quaternionic vector can also be viewed as a
unit complex vector on its underlying complex space. Hence we have the Hopf
fibration:

CP2n+1 = U(n+1,H)
U(n,H)×U(1,C)

π−−−→ U(n+1,H)
U(n,H)×U(1,H) = HPn

which assigns to a complex line inHn+1 its quaternionic span. Each fibre is a
CP1. But π is not holomorphic (in factHPn does not even admit a global almost
complex structure). Each pointz∈ π−1(x) determines an almost complex struc-
ture Iz on the real tangent spaceTxHPn by pulling back the complex structure on
CP2n+1. To be more specific, to applyIz to a vectorv, apply the complex structure
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in TxCP2n+1 to any lift of v, and then project back toHPn. The family of almost
complex structures determined in this manner may be identified with the 2-sphere
of unit imaginary quaternions. This shows thatHPn is almost quaternionic. It
is actually quaternionic Kähler. Let(u0, ..., un) be the linear coordinates on the
quaternionic vector spaceHn+1, where scalar multiplication is defined from the
right. Think them as the “homogeneous coordinates” for the quaternionic projec-
tive spaceHPn = (Hn+1−{0})/H∗.

For notational convenience, we write the homogeneous coordinates as(u0, u)
whereu= (u1, ..., un). For each pair of integersp, q∈Z+ with (p, q) = 1 and 0<
q/p≤ 1, we shall consider the action onHPn defined in homogeneous coordinates
by

φt(u0,u) = (e2πiqtu0, e2πiptu),

wheret ∈ [0, 1) if (p+ q) is odd and wheret ∈ [0, 1/2) if (p+ q) is even. This
action is in Aut(HPn), and gives a vector field:

V(u0, u) = (iqu0, ipu). (8)

Consequently, we can consider the quaternionic moment map for this action. The
moment map is a section onR⊗G andG at a point is made up by all the complex
structures got by pulling back the complex structure onCP2n+1 along the fibre.

For a particular vector fieldV as in (8),fV(x) = 0 means that in the direction of
V(x), all the complex structures pulled back don’t change, which can only happen
if V(x)⊥ x. Hence,

LS1 = {(u0, u) ∈HPn : qū0iu0 + pūiu = 0}.

One can verify that the circle action is locally free. (See [GL] Theorem 4.4.)
So the corollary tells us the quaternionic reduction gives a compact quaternionic
orbifold Oq,p(n−1)

Oq,p(n−1) := LS1/S1.

In the case wherep = q = 1, we see that the setLS1 is invariant under leftU(n+
1,C) action with respect toi. Explicit calculation about the stabilizer shows that

Oq,p(n−1) =
U(n+1, C)

U(n−1, C)×U(2)
.

with its symmetric quaternionic Kähler metric. [GL] In the caseq 6= p, the re-
duction will end up with quaternionic Kähler orbifolds which are not locally sym-
metric. In fact, H. B. Lawson and K. Galicki discovered that forq/p < 1, when
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q/p→ 1 the metric onOq,p(n−1) converges locally to the metric onO1,1 and
whenq/p→ 0, these metrics converge locally to a hyperkähler metric onTCPn−1.
[GL].
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