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1. Introduction

Non-dissipative phenomena in classical physics, chemistry and other
sciences are often modeled by hamiltonian systems of differential equa-
tions. The name symplectic integrator is usually attached to a numer-
ical scheme that intends to solve such a hamiltonian system approx-
imately, while preserving its underlying symplectic structure. It is a
guiding principle defended by some that “an algorithm which trans-
forms properly with respect to a class of transformations is more basic
than one that does not. In a sense the invariant algorithm attacks the
problem and not the particular representation used.” (from [20]).

It is the objective of this paper to present a brief survey of the theory
and performance of symplectic integrators. In Section 2 we introduce
symplectic integrators, and consider an important class of examples. In
Section 3 we study some qualitative properties of symplectic methods,
focusing on their relation to conservation of energy and the backward
error interpretation. Finally, in Section 4 we present a summary of
the performance exhibited by these methods in a variety of numerical
experiments. But, before we plunge into the subject of symplectic
integrators per se, it seems worthwhile to describe at least one problem
that requires efficient numerical solving techniques.

The stability problem of celestial mechanics refers to the question of
determining whether our planetary system will keep the same general
form in the (distant) future as it has now, or whether some planets
might leave the system or collide with another one, in such a way that
radical changes would ensue. This famous question has moved the sub-
ject since the times of Laplace, Lagrange and Poisson, and it can be
described mathematically in terms of the so called n-body problem: n
mass points which move in three dimensional space according to New-
ton’s laws. Inspired by the case in point, one also assumes, usually,
that n-1 of the mass points are much smaller that the remaining one
(playing the Sun’s rôle), and then we are interested in the behavior
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of the system for all time. While the beautiful result of Kolmogorov,
Arnold and Moser on perturbation of completely integrable systems
threw new light on the subject, showing that stability is possible at
least in principle, recent numerical integration of the movement of the
outer planets (from Jupiter outward) seems to imply that this is not
the case(see [21], [37], [40] and references therein, as well as [3], [28],
[29]). Here symplectic integration, alongside more established and per-
haps more trusted methods, has played an important role, and recently
there have been some claims as to a theoretical reason explaining and
confirming these numerical experiments (see [21]).

2. Symplectic Integrators

Let Ω be a domain in R
2d, endowed with the canonical symplectic

structure ω =
∑
dqi ∧ dpi. A smooth function H ∈ C∞(Ω) gives rise

to the hamiltonian system of ODE’s

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

i = 1, . . . , d.(1)

In physics, Ω usually corresponds to phase space, and H to a hamil-
tonian for the system.

Let h > 0 be fixed. A (single-step) numerical scheme to solve such
a system consists of a function ψh,H : Ω → Ω depending smoothly
on the step-size h and the hamiltonian H. Given an initial condition
(p0, q0), the approximate solution at time nh defined as (qn, pn) can be
computed iteratively by

(qn+1, pn+1) = ψh,H(qn, pn)

It is important to remark that this definition is a temporary simplifi-
cation, and that frequently the function ψh,H cannot be defined on the
whole domain Ω. Implicit integrators are examples of this phenome-
non, as we will see shortly, but this map still makes sense locally, much
in the same way as flows of vector fields on a manifold.

Now let φt be the flow of (1). The method ψh,H is said to be of order
r ∈ N if, as h→ 0,

‖φh(x)− ψh,H(x)‖ = O(hr+1), x ∈ Ω

At least heuristically, the source of the idea of order is that, to approx-
imate φt(x) by dividing [0, t] into N parts and iterating ψh,H with a
step-size h = t/N we would perform O(h−1) computations, so as to
expect that

‖φt(x)− ψN
h,H(x)‖ = O(hr+1) ·O(h−1) = O(hr)
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Definition 1. A map ψh,H is called a symplectic integrator if it pre-
serves the symplectic form, i.e. ψ∗h,Hω = ω.

Historically, symplectic integrators appeared for the first time in the
pioneering work of de Vogelaere in the 50’s [39], and in the 80’s Ruth
[30], Channell [8], Menyuk [27], and Feng [12, 13, 14] introduced meth-
ods arising from Hamilton-Jacobi Theory. We start, however, with the
serendipitous independent discovery by Lasagni [23], Sanz-Serna [31]
and Suris [36] that some implicit Runge-Kutta methods are symplectic
for an appropriate choice of parameters.

In brief, for s a positive integer, an s-stage (implicit) Runge-Kutta
method for the ODE

y′ = f(t, y), y(0) = y0 t ≥ 0(2)

starts with a choice of a tableau

c1 a11 · · · ass
...

...
...

...
cs as1 · · · ass

b1 · · · bs

and setting

yn+1 = yn + h
s∑

j=1

bjf(tn + cjh, ξj)

where

cj ≥ 0,
s∑

j=1

cj = 1

s∑
i=1

aji = cj, j = 1, . . . , s

∑
j

bj = 1

tn = nh

and where the ξj’s are given implicitly by

ξj = yn + h
s∑

i=1

ajif(tn + cjh, ξi)

Remark 1. The fact that the ξj’s are given implicitly implies that to
find them uniquely (with some other numerical scheme, e.g. Newton’s

3



method), one needs some conditions on f and h. For example, the in-
verse function theorem is often the theoretical result behind such unique-
ness, and one requires f to be smooth, appropriately non-singular, and
h to be small. In fact, generally ψh,H can be defined only for small h,
depending on the starting point. This implies that frequently there is
no uniform choice of h, and ψh,H cannot be defined on all of Ω. (For
less strict conditions, see [19]).

It is clear that there is great freedom in the choice of parameters in
the Runge-Kutta (abbreviated RK) method. This means that much
of the art of RK methods rests on the ability to choose the remain-
ing parameters wisely. First and foremost, one should make sure that
such a method is convergent, i.e. that as the step-size shrinks to zero
one actually recovers the exact solution. This is crucial, and realiz-
able while still leaving free choices for the parameters, but we choose
to refer the reader to [19] for the details. Secondly, one searches for
the best possible combination of accuracy and speed, which involves
choices of step-size, and order for the method. Regarding order, it is
possible to show that for an s-stage RK method an appropriate choice
of tableau gives rise to a 2s-order method, so that there are RK meth-
ods of arbitrarily high order available. (for more details see [19] and
[16])

Now let M = (mij)
s
i,j=1 be the real s× s matrix given by

mij = biaij + bjaji − bibj
for i, j = 1, . . . , s. The matrix M comes up frequently in the study of
RK schemes and nonlinear stability (see [11]) and moreover Lasagni,
Sanz-Serna and Suris showed that

Theorem 2.1. If M = 0, then the corresponding implicit Runge-Kutta
method is symplectic.

Remark 2. According to Sanz-Serna [33], Lasagni has shown that, for
RK methods without redundant stages (that is, when the stages cannot
be sub-partitioned into equivalent ones), this condition is actually nec-
essary for the method to be symplectic. I could not find a (direct) proof
for this result in the literature, however Abia and Sanz-Serna in [1]
prove the analogous result for Partitioned Runge-Kutta methods.

Of course, the next issue is whether there are symplectic Runge-
Kutta methods of arbitrarily high order (having a very high order is
not necessarily useful in applications, due to increase in computations
per step, error propagation and so on, but it is desirable that these be
available). In fact, the classical s-stage Gauss-Legendre Runge-Kutta
methods are of 2s-order, and moreover
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Theorem 2.2. The Gauss-Legendre Runge-Kutta methods are sym-
plectic.

We direct the reader to [19] for the tableaux corresponding to the
Gauss-Legendre methods. Given these, the verification that M = 0
is immediate. For example, the 2-stage Gauss- Legendre method has
tableau

1

2
−
√

3

6

1

4

1

4
−
√

3

6

1

2
+

√
3

6

1

4
+

√
3

6
1
4

0.5 0.5

and it is clear that M = 0 by inspection.
Modifications of the idea of looking for symplectic integrators among

already established algorithms have been of course carried much fur-
ther. As an example, in many practical situations (e.g. the integration
of the movement of the outer planets), one has a separable hamiltonian

H(q, p) = T (p) + V (q)

and the system (1) decouples into two simpler ones, suggesting the
use of different schemes for each variable. RK methods of this type
are called Partitioned Runge-Kutta schemes (abbreviated PRK), and
one can still show that there are symplectic PRK algorithms ([33]).
Moreover, in this very special case one can choose the two components
of the PRK method to be explicit (which is not possible in the general
case), and thus makes the overall method more straightforward.

Other methods exist in the Runge-Kutta class. There are for instance
Runge-Kutta-Nyström, and combinations of all of the above employing
the so-called Yoshida trick ([43]), which one could perhaps describe as
a clever application of the Baker-Campbell-Hausdorff formula to the
Lie algebra of symplectic vector fields. We will take on this subject in
a later section.

Finally, it is important to remark that there exists a very different
class of symplectic integrators that comes from the theory of generating
functions and the Hamilton-Jacobi equation, and these have found their
way to important applications. However, we will not be able to look
into this subject, for the sake of briefness.

3. Properties of Symplectic Integrators

3.1. Conservation of Energy. Perhaps following the guiding princi-
ple of looking for algorithms that preserve the structure inherent to a
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problem, it is reasonable to inquire whether it is possible to augment
further a symplectic algorithm so that it also preserves the energy (i.e.
the hamiltonian) of the underlying system. As an example of a situa-
tion where this is possible, Sanz-Serna proved

Theorem 3.1. [31] A symplectic Runge-Kutta method leaves all qua-
dratic first integrals of a hamiltonian system invariant, i.e. if yn =
(qn, pn) and G = Gt ∈M2d(R), then yt

n+1Gyn+1 = yt
nGyn for all n.

In particular, if a linear autonomous system is integrated with a
symplectic RK method, than the energy will be conserved exactly (up
to truncation errors, of course).

This setting, however, is very restricted. Indeed, Z. Ge1 and J. Mars-
den proved

Theorem 3.2 (Ge and Marsden[15]). Let K ⊆ C∞(Ω) be a Poisson
sub-algebra and assume that ∀F ∈ K, {F,H} = 0⇒ F (z) = F0(H(z))
for some smooth function F0 and let ψh be a smooth symplectic method
defined for small h > 0 from a generating function in K. If ψh con-
serves H exactly, then it is the time advance map for the hamiltonian
up to a reparametrization of time.

Remark 3. The assumption that ψh,H comes from a generating func-
tion is not restrictive. Locally every symplectomorphism arises from
such a function, and in that case the theorem has to be modified ac-
cordingly.

The requirement on this theorem, that there be no first integrals
of the given hamiltonian system independent of H in K, might seem
very strong at first sight. However, given a symplectic manifold M ,
it is known that, under certain conditions, the set R(M) of all hamil-
tonian systems of M that have no first integrals independent of the
energy is rather large. For example, L. Markus and K. Meyer [24] have
shown that when M is compact and 4-dimensional, R(M) is actually
generic (in the sense of Baire category) in the set of all C∞ hamiltonian
systems.

Of course, the strong negative result of Ge and Marsden can be
turned into a tool, in at least three different ways: 1) by enlisting
the energy variation with respect to the real solution as a measure of
the deviation from it, 2) as an active way of “projecting” the sym-
plectic solution to the appropriate energy level and so try to increase
accuracy (which can cause difficulties with convergence and order esti-
mates), or 3) adding the additional conserved quantities as constraints

1while Zhong Ge appears with this name in [15], in the literature and in Math-
scinet he is also listed as G. Zhong.

6



via Lagrange multipliers, and other ad hoc techniques (see for example
[4, 18, 19]).

Remark 4. The numerical analysis community has devoted a great
deal of attention to energy conserving methods, which are sometimes
applicable even to non-hamiltonian situations. The Ge-Marsden The-
orem points to a very important question, then: given a specific hamil-
tonian system, should one use symplectic or energy conserving methods
to integrate it? Energy conservation guarantees, a priori, only that the
approximate solution is restricted to a codimension 1 submanifold of
Ω. When this dimension is big there is no reason to expect that this
information is very helpful. Nevertheless, energy conserving methods
have been available for a longer time, and hence have gone through con-
siderable enhancement. On the other hand, symplectic integrators take
into account the symplectic form, and hence to a certain extent a more
global and multi-dimensional behavior. Moreover, numerical experi-
ments have shown that symplectic integrators have exhibited a bounded
energy error. In practice, since many problems are worth their own
tailored solutions, general judgments on efficiency cannot be expected.

3.2. Backward Error Interpretation. The concept of backward er-
ror interpretation comes from numerical linear algebra, and it refers
to the ability of reinterpreting the numerical solution of a problem in
a certain class as the exact solution of a perturbation of the original
problem, without leaving that class [17].

In our present context, this helps to explain the experimental obser-
vation that the energy deviation of the numerical solution of a hamil-
tonian system by a symplectic method remained bounded for long-time
integrations (for a very interesting example of this fact, see [37]).

Before we consider this phenomenon more closely, recall that if G if
a Lie group and g is its Lie algebra,

Theorem 3.3 (Baker-Campbell-Hausdorff Formula). There is a nei-
ghborhood U of 0 in g and an analytic map θ : U × U → g such that
for all X, Y ∈ U ,

exp(X) · exp(Y ) = exp(θ(X,Y ))

For a proof, and more details, the reader is directed to [38]. One can
compute the first terms of θ(X, Y ) to find

θ(X, Y ) = X + Y +
1

2
[X, Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X]]) + . . .

Returning to hamiltonian systems, we have observed before that of-
ten in practical situations the hamiltonian is H separable, that is to
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say, H(p, q) = T (p) + V (q), and one can integrate each variable with
different methods (namely, integrating first the hamiltonian equations
for T with an RK method, and then doing the same for V , which can
be done even exactly if these are especially simple). In terms of the
hamiltonian vector fields X = XT and Y = XV (i.e. ıXω = dT and
ıY ω = dV , following Yoshida [44] we can express this as

ψh,H = exp(hX) · exp(hY )

So that, by the BCH formula,

ψh,H = exp(θ(hX, hY ))

for h small enough. Of course this argument is formal, since here the
underlying ‘Lie group’ is the group of symplectomorphisms of the man-
ifold, and one cannot expect that θ(X, Y ) corresponds to a hamiltonian
vector field. To have

ψh,H = exp(hHh
∞)

it is necessary that

Hh
∞(p, q) = T (p)+V (q)−h

2
{T, V }+h2

12
({T, {T, V }}+{V, {V, T}})+. . .

converges in some sense. Side-stepping this issue, however, we can
clearly define for r > 0 the r-order truncation Hh

r by

Hh
∞ = Hh

r +O(hr+1)

and so we have that, for a fixed amount of time, up to an arbitrary or-
der the given symplectic integrator preserves a perturbed hamiltonian.
When the sum is convergent, the perturbed hamiltonian is preserved
for all times.

It is interesting to observe that this hints at a potential problem
for variable step-size symplectic integrators, for in this case one cannot
expect to conserve a certain approximate hamiltonian (different h’s and
vector fields at each step prevent a profitable use of the BCH formula).
In fact, experiments show ([6]) that an implementation of a symplectic
method with variable step-sizes seems to destroy the advantages of
symplectic integrators with respect to more classical ones. We refer
the reader to [5, 6] for more information on this topic.

In the case when Hh
∞ can actually be defined, one can understand

mathematically the bounded oscillatory behavior of the energy in ex-
periments with symplectic integrators. The powerful theory of Kolmo-
gorov-Arnold-Moser on perturbations of completely integrable systems
states that for a small perturbation of such a system the majority of
orbits will be quasi-periodic (in the sense that the set of unstable orbits
has small measure in phase space. See [3] for more details on KAM
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theory). For the n-body problem, this accounts for the quasi-periodic
behavior of the energy error in symplectic integrations.

Remark 5. By judiciously applying the BCH formula one can obtain
methods of arbitrarily high order. Indeed, if H is a separable hamil-
tonian H = T + V as before, with X,Y the hamiltonian vector fields
corresponding to T, V respectively, then

exp(tX + tY ) = exp(tX/2) exp(tY ) exp(tX/2) +O(t3)

which is a second order symplectic integrator. One can proceed further,
by good choices of partitions of the interval, to attain higher orders (see
Yoshida in [43]).

4. Experimental Performance

In numerical analysis, actual speed and accuracy of computations
provide the real measure of success of a method. Symplectic methods
are usually implicit (even though for certain special hamiltonians ex-
plicit schemes do exist [33]), and, moreover, at least heuristically one
would expect that the extra ‘symplectic requirements’ (for example
M = 0 for symplectic Runge-Kutta) might render these less advanta-
geous for short time computations. This is actually the case, and any
advantages should be sought for in long-time integrations, where the
built-in symplectic feature might for example have a favorable error-
propagation behavior.

As we have mentioned in the introduction, one of the most interest-
ing sources of numerical experiments employing symplectic integrators
has been astrophysics. In particular, Holman, Sussman, Wisdom and
others ([21, 37, 42]) have performed long time integrations in order to
study the chaotic behavior of the outer planets. They have built on
important previous work (see references in [37]), for example the 1-
million-year integration of Cohen, Hubbard and Oesterwinter [10], the
5-million-year integration of Kinoshita and Nakai [22], and the 210-
million-year integration performed on the Digital Orrery [2] to name
just a few. In [41], for example, a symplectic method is introduced
to tackle the movement of the outer planets for 1 billion years, and
Wisdom and Holman were led to the conclusion (in accord with earlier
experiments) that the motion of Pluto is chaotic. It is clear that while
symplectic integrators seemed to behave satisfactorily in these exper-
iments, in the sense that the gain in speed was not paid dearly with
accuracy at least in comparison to the Digital Orrery computation,
statements regarding chaotic behavior based on numerical integration
are clearly worrisome. Nevertheless, trust in symplectic integrators
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seems to have been vindicated: very recently Holman and Murray [21]
have proposed a theoretical explanation for these results. This subject,
however, is historically full of twists and turns, and the jury is certainly
still out on such a recent development.

Other experiments can be found in molecular dynamics, where some
good results have been achieved in the long-time integration of some
complicated collisions or long-lived trajectories. In [34], for example,
a comparison of many algorithms, including traditional top-of-the-line
ones, is made, and the authors conclude that “the sixth-order [sym-
plectic] integrator of Teloy is definitely better than all others, which
we have now or earlier tested, and it has very good stability. We will use
it henceforth for our routine calculations”. For more popular symplec-
tic algorithms applied in molecular dynamics, including the “leapfrog”
method, see [35].

There are of course many other experiments (see [6, 7, 9, 27, 32, 33],
the articles in [25] and references therein), but the conclusion appears
to be that the application of symplectic methods to long-time integra-
tions is very successful in identifying most relevant qualitative features
of hamiltonian systems. In these experiments, often some compar-
ison is made with more traditional methods of same order of accu-
racy, which frequently require smaller step-sizes (and hence more iter-
ations) to identify the relevant dynamics. While this seems encourag-
ing, it also comes through that symplectic integrators have often been
brought to problems already understood, sometimes to great extent,
via the application of other methods. Even the case of the chaotic
behavior of the outer planets, one may rightfully defend, falls in this
category. This might account for the apparent reluctance that the nu-
merical analysis community has had to embrace these tools. (It does
not help, unfortunately, that symplectic integrators are often compared
with traditional methods of the same order, sometimes even with fixed
step-sizes. This ignores the state-of-the-art mathematical technology
for traditional methods, and the standing principle that one should
use variable step-size techniques whenever possible. The argument on
the side of symplectic integrators is that the fairness of comparing a
newborn method with mature state-of-the-art ones that had years of
enhancement is at least questionable).

Finally, it is appropriate to mention that although we have dealt
mostly with systems of ODE’s, there are more recent methods that
apply geometric ideas to the numerical analysis of PDE’s. For these
developments, we direct the reader to [26].
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