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1. Introduction

Quantization is, most broadly, the process of forming a quantum me-
chanical system starting from a classical mechanical one. See (Be) for
an early attempt to obtain a general definition of quantization. (AbM)
also provides an introductory account of the subject. There are various
methods of quantization; see (BW) for a general introduction to the
geometry of quantization, and a specific geometric method (geometric
quantization).

In this survey we will be interested in deformation quantization. In-
tuitively a deformation of a mathematical object is a family of the
same kind of objects depending on some parameter(s). The deforma-
tion of algebras is central to our problem, and in particular we are con-
cerned with the deformations of function algebras. We use the Poisson
bracket to ”deform” the ordinary commutative product of observables
in classical mechanics, elements of our function algebra, and obtain a
noncommutative product suitable for quantum mechanics.

In the first section of this paper we will give a short overview of the
main ideas in deformation quantization. In the second section we will
go into more (historical) details about the directions in which the area
developed in the last 20 years and in the last section we will try to give
a very sketchy summary of recent results by Kontsevich.

2. Deformation Quantization: An Overview

The basic setup in deformation theory is as follows: We start with an
algebraic structure, e.g. a Lie algebra or an associative algebra and we
ask: Does there exist a one-(or n−)parameter family of similar struc-
tures such that for an initial value (say zero) of the parameter(s) we
get the structure we started with? (Fl) The question also has a purely
mathematical interest when considered in the most abstract sense, but
here we will be mainly interested in the more specific questions which
arise within the subject of quantization.

In general the observables of classical mechanics are identified with
smooth real-valued functions on a Poisson manifold, and they form a
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commutative (Poisson) algebra. The traditional quantum formalism on
the other hand interprets observables as certain operators on a Hilbert
space (and these do not commute!). Instead of forcing quantization
to involve such a radical change in the nature of the observables, the
authors of the influential papers (BFFLS1,BFFLS2) suggested that
it be understood as a deformation of the structure of the algebra of
classical observables. The main idea can be traced back to Dirac (Di),
who noted that quantization could be thought of as taking a Poisson
manifold and putting a new noncommutative product on the algebra
of functions, say f ∗ g, such that the commutator [f, g] = f ∗ g − g ∗ f
is equal to −i~{f, g} plus terms of order ~

2. [We can safely assume
that Dirac actually noticed that the higher order terms in ~ do come
up, but he chose to disregard them. In (Di) we see that the suggested
method of quantization with only a linear term in ~ is almost always
taken to be an approximation to the real quantum object.]

2.1. Some Definitions and Preliminaries:

Definition 1. A Poisson algebra is a real vector space A equipped
with a commutative associative algebra structure

(f, g) −→ fg

and a Lie algebra structure

(f, g) −→ {f, g}
which satisfy the compatibility condition

{fg, h} = f{g, h}+ {f, h}g

Definition 2. A Poisson manifold is a manifold M whose function
space C∞(M) is a Poisson algebra with respect to the usual pointwise
multiplication of functions and a prescribed Lie algebra structure.

Definition 3. A formal deformation of the algebra A = C∞(M), or
equivalently a star-product *, is defined to be a map

∗ : A× A −→ A[~]

(f, g) 7−→
∞∑

k=0

ck(f, g)~k

satisfying
(i) formal associativity, i.e. for all p ≥ 0
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∑
k+l=p

[ck(cl(f, g), h))− ck(f, cl(g, h))] = 0

(ii) c0(f, g) = fg
(iii) (1/2)(c1(f, g) − c1(g, f)) = {f, g} where {, } is the Poisson

bracket.
(iv) Each map ck : A× A −→ A should be a bidifferential operator.

Definition 4. A formal deformation of the Poisson bracket is a skew-
symmetric map

[ , ] : A× A −→ A[~]

(f, g) 7−→
∞∑

k=0

Tk(f, g)~k

satisfying:
(i) the formal Jacobi identity, i.e. for all p ≥ 0∑

(
∑

k+l=p

Tk(Tl(f, g), h)) = 0

where the outer sum is taken over the cyclic permutations of the set
{f, g, h}.

(ii) T0(f, g) = {f, g} where {, } is the Poisson bracket.
(iii) Each map Tk : A×A −→ A should be a bidifferential operator.

For variations of these definitions see (Br).
In classical mechanics the phase space M is the cotangent bundle

of the configuration space which is a smooth manifold. The observ-
ables are smooth functions on the phase space, and under the ordi-
nary pointwise multiplication the smooth functions make C∞(M) into
a commutative algebra. The canonical symplectic structure on M in-
duces a Poisson structure on C∞(M). [The standard Poisson structure
is:

{f, g} = Xg · f ]

Thus the question of quantization becomes: Can we find a formal
deformation of the function algebra of an arbitrary Poisson manifold?
Equivalently, can we define an associative multiplication operation *, a
star-product, depending on the parameter ~, of two functions so that
the function space C∞(M) with usual linear operators and this star-
product will be a formal deformation of the commutative algebra of
functions with the Poisson bracket?
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2.2. The Classical Example - The Moyal Product. .
[Here we will be following (very closely) the exposition in (Ka).] Let

M = Rd and let α be a constant Poisson structure on M. To be more
specific, let

α =
∑
i,j

1

2
αij ∂

∂xi

∧ ∂

∂xj

where αij = −αji ∈ R

where the xi are the coordinates on Rd. In such a case we would have:

{f, g} =
∑
i,j

αij ∂f

∂xi

∂g

∂xj

The Moyal *-product is then given by exponentiating this Poisson
operator:

f ∗ g =

(
exp(−i~

2

∑
i,j

αij ∂

∂xi

∧ ∂

∂xj

)

)
(f, g)

This is the first known example of a non-trivial deformation of the
Poisson bracket and the idea can be generalized to any Poisson manifold
equipped with a flat torsionless Poisson connection. See (BW), (Ka)
or (W) for more details.

2.3. Other Directions in Deformation Quantization. .
The question of existence of star-products has been extensively stud-

ied. We will see in the next section a short account of these develop-
ments. For a more detailed account see (Br). Another direction in
which research in deformation quantization has developed is strict de-
formation quantization in which the parameter ~ is no longer a formal
parameter, but a real one. In a way, the deformed algebras A[~] are
identified with the original algebra A. For a survey of this research see
(Bh).

3. Deformation Quantization: Historical Development

The results about deformation quantization came in gradually, as
existence proofs in increasing levels of generality. For instance the gen-
eralization of the Moyal *-product, as mentioned above, led to some
existence results. Even more general results could be obtained by coho-
mological methods (G), (GeS). [The following will involve some termi-
nology that will be defined shortly.] In attempting to solve the existence
problem for the ck recursively at each stage (referring to the definition
of the formal deformation of an algebra given in 2.1) we obtain an
equation of the form
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∂cj = Fj

where F is a quadratic expression in the terms determined before. The
operator ∂ goes from bilinear to trilinear A-valued functionals on A
and is precisely the coboundary operator for Hochschild cohomology
with values in A of the algebra A with multiplication given by c0. (W).
It turns out that the obstruction to extending the star-product belongs
to the third Hochschild cohomology group of the commutative algebra
A, while the obstruction to extending a deformation of the Poisson
bracket belongs to the third Chevalley cohomology group of the Lie
algebra (A, {, }).

Here we digress slightly to give some definitions for the terms used
above:

Let A be an associative algebra (over some commutative ring K) and
for simplicity assume it is a module over itself with the adjoint action
(i.e. algebra multiplication). [The generalization to cohomology valued
in a general module is intended.]

Definition 5. A p-cochain is a p-linear map C from Ap into the mod-
ule A, and its coboundary ∂C is given by:

∂C(u0, u1, ..., up) = u0C(u1, u2, .., up)− C(u0u1, u2, .., up)

+..+ (−1)pC(u0, u1, .., up−1up) + C(u0, u1, .., up−1)up

This is a complex, i.e. ∂2 = 0.

Definition 6. A p-cochain C is a p-cocycle if ∂C = 0.

Definition 7. Let Zp(A,A) be the space of all p-cocyles and Bp(A,A)
the space of those p-cocycles that are coboundaries (of a (p-1)-cochain).
The pth Hochschild cohomology space (of A valued in A) is defined as

Hp(A,A) = Zp(A,A)/Bp(A,A)

The Chevalley cohomology is developed in a similar vein. Let A be a
Lie algebra, with bracket {, }. The p-cochains here are skew-symmetric,
i.e. they are linear maps B : ΛpA −→ A and the Chevalley coboundary
operator ∂c is defined on a p-cochain B by:

∂cC(u0, u1, ..up) =

p∑
j=0

(−1)j{uj, C(u0, .., ûj, .., up)}

+
∑
i<j

(−1)i+jC({ui, uj}, u0, .., ûi, .., ûj, .., up)
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(where û means that u has to be omitted.) Again this is a complex,
i.e. ∂2

c = 0. Thus the cocycles space Zp
c , the coboundaries space Bp

c ,
and the quotient space Hp

c (A,A) (or Hp
c (A) in short) can be defined,

analogously..

We can now return to our short historical account:
With the above mentioned tools, first, in mid 1970s, the existence of

star-products for symplectic manifolds whose third cohomology group
is trivial was proved, but this restriction turned out to be merely tech-
nical. In the early 1980s the existence of star-products for larger and
larger classes of symplectic manifolds was proved, and finally it was
shown that any symplectic manifold can be ”quantized”. A further
generalization was achieved with (Fe) where Fedosov proved that the
results about the canonical star-product on an arbitrary symplectic
manifold can be used to prove that all regular Poisson manifolds can
be quantized. (See (W) for an account of Fedosov’s construction).

However the question at the end of Section 2.1 was still open. In
physics we sometimes require manifolds which have a degenerate Pois-
son bracket and so are not symplectic. The broadest framework for
classical mechanics thus involves general Poisson manifolds. Therefore
all the results mentioned above provided only a partial answer to the
problem of quantization.

In 1993-1994 M. Kontsevich proposed a statement (”Formality Con-
jecture”) which would imply the desired result, i.e. if the Formality
Conjecture could be proved this would imply that any finite-dimensional
Poisson manifold can be canonically quantized (in the sense of defor-
mation quantization). The Formality Conjecture is proved in (Ko3)
thus answering our question in 2.1 in the positive. In the last part of
this paper we will try to summarize these results (in a very sketchy
manner, I am afraid!).

4. Kontsevich’s Results:

The cohomological arguments were introduced before, as we have
seen above. In his work about quantization of Poisson manifolds, Kont-
sevich also made use of cohomology. However, his approach involved
further concepts that we will be introducing in 4.1. In 4.2 we briefly
discuss the basic conjecture / theorem. Section 4.3 will involve some
interpretations, implications, and possible new questions.

4.1. Some More Definitions and Preliminaries:
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Definition 8. A differential graded Lie algebra, or DGLA in short, is
a Z-graded Lie superalgebra

L =
⊕
i≥0

Li

with a map d : Li −→ Li+1 such that

d[a, b] = [da, b] + (−1)i[a, db] for a ∈ Li, b ∈ L
(where the bracket is denoted by [ , ]).

Let A = C∞(M) be the algebra of smooth functions on a smooth
real manifold M. Let C◦(A,A) be the (local) Hochschild complex of
the algebra A over M, i.e. for any n,

Cn(A,A) = {φ ∈ Hom(A⊗n, A)|φ(f1, f2, .., fn)

is a differential operator in each entry fi}
Then the corresponding Hochschild cohomology satisfies:

Hn(A,A) = ΛnTM = smooth multivector fields on M

Both the Hochschild complex and the cohomology are differential graded
Lie algebras (DGLAs).

Definition 9. Two DGLAs L, L’ are quasi-isomorphic if there is a
chain

L −→ L1 ←− L2 −→ ...←− Ln −→ L′

of DGLA homomorphisms all of which induce isomorphisms of coho-
mology.

4.2. The Formality Conjecture. .
In 1993-1994 (see (Ko1) and (Ko2)), Kontsevich proposed the fol-

lowing

Conjecture 1. (Kontsevich’s Formality Conjecture) The Hochschild
complex Cn is quasi-isomorphic as a DGLA to its (Hochschild) coho-
mology Hn.

and proved that this conjecture would imply the desired result for our
question at the end of 2.1. In other words he proved the following

Theorem 2. The Formality Conjecture for a manifold M implies de-
formation quantization of any Poisson structure on M.

[For a short account of a proof of this theorem see (Vo) or (Ya).]
Finally in (Ko3) Kontsevich proved the following
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Theorem 3. Let M be a smooth manifold and A = C∞(M). Then
there is a natural isomorphism between equivalence classes of defor-
mations of the null Poisson structure on M and equivalence classes
of smooth deformations of the associative algebra A. In particular any
Poisson bracket on M comes from a canonically defined (modulo equiv-
alence) star product.

[The main part of the proof involves the affine case, i.e. when M
is essentially Rd. The formulation of the result allows the ”gluing” of
charts, and this yields an explicit universal formula for the star-product
on M which involves graphs and Stokes’ formula.]

Hence we can conclude that classes of star products correspond to
classes of deformations of the Poisson structure. Moreover, our prob-
lem is solved: any Poisson structure can be deformed. For the theorem
implies the conjecture which implies the existence of deformation quan-
tization.

4.3. Final Results and Implications. .
(In this part we will be mainly following (St) and (Ko4)).
Kontsevich‘s result proves that classes of star products correspond

to classes of deformations of the Poisson structure, and our problem of
2.1 is finally solved: we can quantize (formally) any Poisson structure.
A later result shows that in addition to the existence of a canonical way
of quantization, we can define a universal infinite-dimensional manifold
parametrizing quantizations.

Now it can be seen that Kontsevich has proved a more general result
than the existence of deformation quantization of any Poisson manifold.
He has proved that in a suitably defined homotopy category of DGLAs
two objects are equivalent. The first object is the Hochschild complex
of the algebra of functions on the manifold M, and the second is a
Z-graded Lie superalgebra of multivector fields on M. In the course of
the proof he constructs an explicit isomorphism for the case M = Rn

which under a certain interpretation tells us that our assumptions in
deformation quantization include some sort of string theory. Although
he has some doubts as to the naturality of the method for quantum
mechanics Kontsevich seems to believe that the result shows there is
some intrinsic relation with string theory. (See remarks in 1.5 of (Ko3)
about this.)

Thus even though the original question that arose at the end of
2.1 is answered, there are new interesting questions that come up.
For instance a natural conjecture that could follow the above results
could be: The relation with 1-differentiable deformations of the Poisson
bracket with Fedosov’s construction (i.e. any Fedosov deformation can
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be obtained by a sequence of successive 1-differentiable deformations of
the initial Poisson bracket) extends to general Poisson manifolds. An-
other relation to be considered could be that of the result with some
2-cohomology on the manifold. A comparison of Kontsevich‘s proof
with the proofs of the previous results, eg. the geometric methods of
Fedosov also remains to be done.

In a different direction we might consider a remark of Kontsevich:
the isomorphism of the (second and the) main theorem in 3.2 should be
taken as one of a family of isomorphisms, and this leads us to a new con-
jecture: the motivic Galois group acts on deformation quantizations.
(Ko4) Another question that remains involves the infinite dimensional
case: Kontsevich‘s results settle the problem in the finite dimensional
case, but there are places in physics where we have to deal with infi-
nite dimensional Poisson manifolds, i.e infinite dimensional manifolds
with a Poisson structure on them. This case involves new problems
and perhaps may shed light on a better mathematical understanding
of quantum field theory. (St)
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