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1 Introduction

This paper is a survey on the problem of classifying non-commutative tori up
to Morita equivalence and will review the necessary background and discuss
some results concerning this question (see [28],[29] and [22]).

The concept of Morita equivalence was first introduced in operator alge-
bras by M.Rieffel in the 1970’s, in connection with the problem of character-
izing representations of locally compact groups induced by representations
of (closed) subgroups (see [20], [14], [15] and also [21]). It provided, in par-
ticular, a new proof of Mackey’s imprimitivity theorem, in terms of group
C∗algebras. Since then, Morita equivalence has become a very important
and useful tool in the theory of C∗algebras (see [23], [19] and the references
therein).

Recently, the concept of Morita equivalence has been proven to be rele-
vant also in physics, in relation to applications of non-commutative geometry
to M(atrix)-theory. In fact, it was shown in [6] that one can consider com-
pactifications of M(atrix)-theory on non-commutative tori and in [29], it
was proven that compactifications on (completely) Morita equivalent non-
commutative tori are in some sense physically equivalent.

The present paper is organized as follows: the first section gives a brief
introduction to Morita theory for unital rings and describes how one can
adapt the main ideas to the category of C∗ algebras; the second section
discusses smooth and topological non-commutative tori - first, through a
purely C∗algebraic point of view and then using (strict) deformation quan-
tization; finally, the last section will discuss the problem of classifying non-
commutative tori up to Morita equivalence.

In what follows, the terms non-commutative tori and quantum tori will
be used interchangeably.

I would like to thank M. Anshelevich, D. Markiewicz and Professors A.
Weinstein and M. Rieffel for helpful discussions and comments.
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2 Morita Equivalence in C∗Algebras

The first part of this section presents a brief exposition of Morita theory
for unital rings. The inclusion of this subsection is to illustrate in a simpler
setting the main ideas of what we will do in the second part of this section,
when we define Morita equivalence of C∗algebras.

2.1 Morita Equivalence in Ring Theory

All rings in this section are unital, unless otherwise stated. The reader
should consult [13] and [1] for further details.

Given a unital ring R, the main idea of Morita theory is to study this
ring by looking at its representation theory as endomorphisms of abelian
groups. Equivalently, we want to study the category of left R-modules, that
will be denoted by RM.

Definition 1 Two unital rings R and S are called Morita equivalent if RM

and SM are equivalent categories.

Remark 1 Two categories A and B are equivalent if there are (covariant)
functors

F : A→ B, G : B→ A

satisfying F ◦ G ∼= IB and G ◦ F ∼= IA, where ∼= denotes isomorphism of
functors and I is the identity functor. Note that this notion is weaker than
the notion of isomorphism of categories (where ∼= is replaced by =), which is
usually too strong for categorical purposes. Observe that the above conditions
imply that if A ∈ Obj(A) and B ∈ Obj(B) then G◦F(A) ∼= A and F◦G(B) ∼=
B and hence F and G establish a bijection between isomorphism classes of
objects in A and B. So, we have essentialy an isomorphism of categories,
as long as we regard isomorphic objects as being the same. This idea can
be made more precise and actually gives rise to an alternative definition of
equivalence of categories - two categories are equivalent if and only if they
have isomorphic skeletons (see [12] or [16]).

Example 1 The classical example of Morita equivalent unital rings is R
and Mn(R), the ring of n× n matrices over R. In this case, if A is a (left)
R-module, then we can define a (left) Mn(R)-module by considering An with
the Mn(R) action given by matrix operating on vectors. One can check that
this defines an equivalence of categories between RM and Mn(R)M (see [13]).
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Properties of a ring R which are preserved under Morita Equivalence
are called Morita invariants. The example above shows that commutativity
is not a Morita invariant property. In general, whenever a ring-theoretic
property can be expressed in terms of (left)-modules over the ring and its
morphisms (for example, R is semisimple ⇔ every short exact sequence
of (left) R-modules splits) and this property of (left)-modules is categori-
cal (ie, preserved under equivalence of categories), then the ring-theoretic
property is a Morita invariant. Examples of such properties include R be-
ing semisimple, artinian, noetherian etc. Moreover, Morita equivalent rings
have isomorphic lattices of ideals and also isomorphic centers (hence, if R
and S are commutative, then they are Morita equivalent if and only if they
are isomorphic). See [13] and [1] for details.

Let R and S be unital rings. We will now discuss how to construct
functors from RM to SM and how to characterize those which implement
an equivalence of categories.

Note that given a (S,R)-bimodule SXR, we can construct a functor
F = (SXR ⊗R ·) :R M −→S M defined by

F(RA) = SX ⊗R A

It’s clear that F(RA) has a natural S-module structure uniquely deter-
mined by

s(x⊗ a) = sx⊗ a

If f :R A −→R B is a morphism, then we define

F(f) : SX ⊗R A −→ SX ⊗R B

by setting F(f)(x ⊗ a) = x ⊗ f(a). We will see that the extension of this
idea to C∗ algebras is called Rieffel induction.

It turns out that this way of constructing functors is very general. In
particular, it follows from a theorem of Eilenberg and Watts ([30]) that if
F :R M −→S M is an equivalence of categories, then there exists a bimodule
SXR such that SXR ⊗ · ∼= F .

Example 2 In the case of R and Mn(R), it’s clear that the functor de-
scribed previously corresponds to the bimodule Mn(R)(Rn)R.

In this setting, some natural questions arise: First, how can we character-
ize the bimodules SXR such that the corresponding functor F = SXR ⊗R ·
is an equivalence of categories (it’s clear that not all the bimodules will
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satisfy this condition - for instance the zero bimodule will not)? What is
the bimodule corresponding to the inverse functor? If R and S are Morita
equivalent, can we define R in terms of S?

We will now see that Morita theory for unital rings provides answers for
the questions above. But first we need a

Definition 2 A right R-module XR is called a progenerator if it is finitely
generated, projective and a generator (recall that a right R-module XR is
a generator if any other right R-module can be obtained as a quotient of a
direct sum of copies of XR)

Theorem 2.1 (Morita) Suppose that R and S are Morita equivalent and
let F :R M −→S M be an equivalence of categories. Then there exists a
bimodule SXR (which is an R-progenerator) such that F ∼= SX ⊗R · and
S ∼= EndR(XR).

Conversely, if SXR is an R-progenerator and S ∼= EndR(XR), then
SX ⊗R · defines an equivalence of categories between RM and SM.

Moreover, if SXR defines a Morita equivalence, then the (R, S)-bimodule
defining the inverse functor is given by RQS = HomR(XR, R).

Remark 2 Note that HomR(XR, R) has a natural (R, S)-bimodule struc-
ture: if f ∈ HomR(XR, R) then we define (r ·f)(x) = rf(x) and (f ·s)(x) =
f(sx).

Remark 3 The concept of Morita equivalence has also been adapted to Pois-
son geometry (see [34], [3]). To make the analogy between the above dis-
cussion and the definition of Morita equivalence in Poisson geometry more
transparent, note that S ∼= EndR(XR) can be expressed by S ∼= R′, where R′

is the commutant of R in End(X) (with X regarded as an abelian group).
See [17] for a survey on the subject.

2.2 Morita Equivalence in C∗Algebras

We will now show how to adapt the ideas presented in the previous section
to the category of C∗algebras.

2.2.1 The Category of Representations of a C∗Algebra

Given a C∗algebra A, we will consider its representation theory as bounded
operators on Hilbert spaces.
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Definition 3 A hermitian module over A is the Hilbert space H of a non-
degenerate ∗-representation π : A −→ B(H), together with the (left) action
a · h = π(a)h, a ∈ A and h ∈ H.

Remark 4 Recall that a ∗-representation π : A −→ B(H) is called nonde-
generate if π(A)h = 0⇒ h = 0

We denote by Her(A) the category of hermitian modules over A, with
morphisms given by (bounded) intertwining operators. Note also that from
the GNS construction (see [8]) it follows that this category is always nonempty.

Let now A and B be C∗algebras. We then define:

Definition 4 A and B are (weakly) Morita equivalent if Her(A) and Her(B)
are equivalent categories. We also require that the equivalence functors pre-
serve the adjoint operation on morphisms (i.e. F(f∗) = F(f)∗, for F equiv-
alence functor and f morphism).

It turns out that the notion defined above is too weak for most appli-
cations in C∗algebra theory (see [23], [21]) and hence some authors usually
refer to it as weak (or categorical) Morita equivalence. We will discuss this
matter later.

2.2.2 Hilbert C∗Modules and Rieffel Induction

Following the discussion presented about ring theory, the natural idea now is
to study functors from Her(A) to Her(B) corresponding to bimodules BXA.
But note that now we are only considering left modules equipped with an
additional Hilbert space structure and hence the bimodule BXA should also
have more structure in order to carry the Hilbert space structure of one
module to another. We will now describe this extra structure on BXA.

Let A be a C∗algebra.

Definition 5 An A-module is an algebraic module over A with a compatible
vector space structure over C.

Definition 6 A (right) pre-Hilbert A-module is a (right) A-module XA

equipped with a pairing 〈·, ·〉A : X ×X −→ A satisfying:

1. 〈x, λy + βz〉A = λ〈x, y〉A + β〈x, z〉A, for all x, y, z ∈ X and λ, β ∈ C

2. 〈x, y〉A = 〈y, x〉∗A, for all x, y ∈ X
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3. 〈x, ya〉A = 〈x, y〉A · a, for all a ∈ A and x, y ∈ X

4. 〈x, x〉A ≥ 0, for all x ∈ X (≥ in A)

5. 〈x, x〉A = 0⇒ x = 0, for all x ∈ X

Note that it easily follows from the above conditions that 〈·, ·〉A is anti-
linear in the first variable and also that 〈ax, y〉A = a∗〈x, y〉A. We will drop
the subscript A in our notation whenever the context makes it clear.

It can be shown that the following version of the Cauchy-Schwarz in-
equality holds:

〈x, y〉A〈y, x〉A ≤ ‖〈x, x〉A‖〈y, y〉A
for all x, y ∈ X. It then follows that ‖x‖A := ‖〈x, x〉A‖1/2 defines a norm
on X.

Definition 7 A (right) pre-Hilbert A-module XA is called a (right) Hilbert
A-module if it is complete with respect to ‖ · ‖A

Remark 5 One can also show that ‖xa‖A ≤ ‖x‖A‖a‖, for all x ∈ X and
a ∈ A.

The reader should consult [19] and [20] for all the details.
It is easy to see from the definition that if X is a Hilbert A-module then

span{〈x, y〉A, x, y ∈ X} ⊆ A is a 2 sided ideal. The following definition will
be useful later.

Definition 8 A Hilbert A-module X is called full if span{〈x, y〉A, x, y ∈ X}
is dense in A.

Remark 6 One can prove that if X is a full Hilbert A-module, then the
action of A on X is nondegenerate (meaning that x·A = 0⇒ x = 0, x ∈ X).

We will now give some examples of Hilbert C∗-modules.

Example 3 Hilbert C-modules are just ordinary Hilbert spaces.

Example 4 Let A be a C∗ algebra. Then AA is a Hilbert A-module with A
valued inner product defined by 〈a, b〉A = a∗b. The existence of an approxi-
mate identity in A implies that this Hilbert module is actually full.
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Example 5 Let’s now suppose that A is a commutative C∗algebra. Let’s
assume that A is unital, just for simplicity. Then A ∼= C(Y ), where Y is a
compact Hausdorff space. Now, observe that any hermitian complex vector
bundle E over Y gives rise to a Hilbert C(Y )-module given by Γ(E), the set
of (continuous) sections of E. Note that C(Y ) acts on Γ(E) in a natural
way (just by pointwise multiplication) and we can define a C(Y )valued inner
product on Γ(E) by setting 〈f, g〉C(Y )(t) = 〈f(t), g(t)〉t, for f, g ∈ Γ(E)
and t ∈ Y , where 〈·, ·〉t denotes the inner product given by the hermitian
structure on the fiber over t.

This example is not the most general one for commutative C∗ algebras.
See [5] for a discussion on Hilbert bundles.

We will now discuss how to construct functors between categories of her-
mitian modules over C∗algebras. We start defining the notion of “bounded”
map on a Hilbert C∗module.

let XA be a Hilbert C∗module.

Definition 9 A function T : X −→ X is called adjointable if there exists a
map T ∗ : X −→ X satisfying 〈Tx, y〉A = 〈x, T ∗y〉A, for all x, y ∈ X.

We denote by L(X) the set of all adjointable operators on X and note
that this set has a natural C∗algebra structure (with respect to the operator
norm).

Remark 7 Any adjointable map is a bounded, linear, A-module map (this
is not part of the definition). But we may have T : X −→ X A-linear and
bounded (with respect to ‖ · ‖A) but still with no adjoints. See [19] for an
example.

Let now A and B be C∗algebras and suppose we have a bimodule BXA

such that it is a Hilbert A-module and B acts on X by adjointable operators.

Theorem 2.2 There is a well-defined ∗-functor F : Her(A) −→ Her(B)
corresponding to BXA (i.e. F preserves the adjoint operation on mor-
phisms).

The proof of the theorem consists of the construction of induced repre-
sentations of C∗algebras, as described in [20], a process now called Rieffel
induction. We will discuss it now.

Suppose π : A −→ B(H) is a ∗-representation of A on H. We want to
define a new Hilbert space K, with a corresponding representation ρ : B −→
B(K). We can do it as follows:
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• First consider the space K̃ = BX ⊗A H. Note that we are tensoring
over A, i.e. in this set we have xa⊗ h = x⊗ π(a)h. It is clear that B
acts naturally on it.

• Define on K̃ the form 〈·, ·〉K̃ : K̃ × K̃ −→ C by 〈x1 ⊗ h1, x2 ⊗ h2〉K̃ =
〈h1, π(〈x1, x2〉A)h2〉H. It is not hard to show that

Proposition 2.1 〈·, ·〉K̃ uniquely defines a positive semi-definite inner
product on K̃ = BX ⊗A H

• Let now N = {α ∈ K̃|〈α, α〉K̃ = 0} and define K = (K̃/N ). Then K
has a natural Hilbert space structure.

• One can now show that the formula b · ([x⊗ h]) = [bx⊗ h] extends to
give a ∗-representation of b on B(K), ρ : B −→ B(K), where [·] denotes
the corresponding image of elements in K̃ in the quotient space K.
Moreover, if BX is nondegenerate (i.e. B · x = 0 ⇒ x = 0, x ∈ X),
then the induced representation ρ is also nondegenerate.

• Let’s finally say a few words about the functoriality of the above con-
struction. If H is an object in Her(A), then we set F(H) = K to be
the corresponding object in Her(B) as defined above. Now suppose
that (π1,H1) and (π2,H2) are two ∗-representations of A, and that
T : H1 −→ H2 is an intertwining operator. Then one can show that
there is a well-defined (bounded) operator F(T ) : K1 −→ K2 uniquely
determined by the condition F(T )[x ⊗ h1] = [x ⊗ Th1], x ∈ X and
h1 ∈ H1, which intertwines ρ1, ρ2, the corresponding induced repre-
sentations of B.

Remark 8 Moreover, it can be shown that F preserves unitary equiva-
lences, direct sums and weak containment of representations (see [19]).

2.2.3 Imprimitivity Bimodules and Morita Equivalence

We have so far discussed how to define a bimodule BXA corresponding to a
∗-functor F : Her(A) −→ Her(B), through Rieffel induction. We will now
discuss when such a bimodule defines an equivalence of categories.

Let A and B be C∗algebras.

Definition 10 A (B,A) imprimitivity bimodule BXA is a (B,A) bimodule
such that:
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1. BXA is a full right A-Hilbert module and a full left B-Hilbert module.

2. For all x, y ∈ X , a ∈ A, b ∈ B we have

〈bx, y〉A = 〈x, b∗y〉A, B〈xa, y〉 = B〈x, ya∗〉

3. For all x, y, z ∈ X, we have

B〈x, y〉z = x〈y, z〉A

Remark 9 As we will see, functors defined by imprimitivity bimodules will
implement equivalence of categories of hermitian modules. Some authors
prefer then to call such bimodules “equivalence bimodules”. The terminol-
ogy “imprimitivity” is due to the applications of such bimodules to prove
Mackey’s imprimitivity theorem (see [20], [14] and [19]).

Definition 11 Let A and B be C∗algebras. We say that A and B are
(strongly) Morita equivalent if there exists a (B,A) imprimitivity bimodule
BXA.

It’s not completely clear from the definition that the above relation be-
tween C∗algebras is actually symmetric. To see that, note that if BXA is a
(B,A) imprimitivity bimodule then we can define an (A,B) bimodule BX̃A

as follows:
Let X̃ be the vector space conjugate to X (that is, λx̃ = (̃λx), λ ∈ C).

Then consider the left A-action on it by adjoints elements and define a right
B-action similarly. Finally, consider the inner products: 〈x̃, ỹ〉B = B〈x, y〉
and A〈x̃, ỹ〉 = 〈x, y〉A. It’s not hard to check that this structure makes X̃
into an (A,B) imprimitivity bimodule.

Observe that a C∗algebra A is always (strongly) Morita equivalent to
itself. Indeed, we can consider A as an (A,A) bimodule (in the natural
way, using left and right multiplications), and endow it with A-valued inner
products

〈a, b〉A = a∗b, A〈a, b〉 = ab∗

One can check that all the axioms hold.
Moreover, by tensoring imprimitivity bimodules one can see that (strong)

Morita equivalence is a transitive relation. So we have

Theorem 2.3 (Strong) Morita equivalence defines an equivalence relation
between C∗ algebras.
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Remark 10 It should also be clear that isomorphic C∗algebras are Morita
equivalent.

Furthermore, (strong) Morita equivalence implies Morita equivalence in
the categorical sense:

Theorem 2.4 Suppose BXA is an imprimitivity bimodule. Then the cor-
responding functor F : Her(A) −→ Her(B) determines an equivalence of
categories. The inverse functor is defined by the conjugate module AX̃B.

Remark 11 Note that the fullness condition in the definition of imprimi-
tivity bimodules guarantees that the actions of A and B on X (and X̃) are
nondegenerate and hence the corresponding functors carry nondegenerate
representations to nondegenerate representations.

Remark 12 As we have mentioned earlier, Rieffel induction preserves weak
containment of representations. However, it can be shown that this is not
the case for arbitrary equivalence of categories (see [21], [23]). So (strong)
Morita equivalence is actually stronger than Morita equivalence in the cate-
gorical sense.

From now on, Morita equivalence will always mean strong Morita equiv-
alence, unless otherwise stated.

Remark 13 It is shown in [2] that if A and B are unital C∗algebras, then
they are Morita equivalent if and only if they are Morita equivalent as rings.

Let A and B be Morita equivalent C∗algebras. Following the analogy
with Morita theory for unital rings, it’s natural to ask whether one can
define B in terms of A. One can do it as follows:

Given A, let XA be a right Hilbert A-module. We have already defined
the “bounded” operators on X, L(X). We will now define the analog of
compact operators on a Hilbert space.

Recall that in an ordinary Hilbert space H, we have

K(H) = span{u⊗ v, u, v ∈ H},

where u⊗v(w) = u〈v, w〉H, for w ∈ H . Analogously, we define the operators
Θ(x,y) : X −→ X by

Θ(x,y)z = x〈y, z〉A, x, y, z ∈ X
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Note that Θ∗(x,y) = Θ(y,x) and hence Θ(x,y) ⊆ L(X), for all x, y ∈ X.
Now, we simply set

K(X) := span{Θ(x,y), x, y ∈ X}

It can be shown that K(X) is a closed 2 sided ideal in L(X) and hence,
in particular, it is a C∗algebra. It is clear that XA has a natural (K(X), A)
bimodule structure. But even more, we can define a K(X) valued inner-
product on X by setting K(X)〈x, y〉 = Θ(x,y). It can actually be shown that
K(X)X is a full left Hilbert K(X)-module. We then get an analog of Morita
Theorem for rings:

Theorem 2.5 Let XA be a full right Hilbert A-module. Then K(X)XA is an
imprimitivity bimodule (and hence A and K(X) are Morita equivalent).

Conversely, if A and B are Morita equivalent, with imprimitivity bimod-
ule BXA, then B ∼= K(XA).

Example 6 It follows from the above discussion that if H is a (ordinary)
Hilbert space, then it defines a (K(H),C) imprimitivity bimodule K(H)HC.
So C and K(H) are Morita equivalent. This is sometimes denoted by

K(H) 
 H
 C

We finish this section with a brief remark about Morita invariants in the
category of C∗algebras. It can be shown that Morita equivalent C∗algebras
share many properties in common. For instance, they have the same K-
theory (and same KK-theory and E-theory), isomorphic lattices of ideals
and, in the unital case, isomorphic centers.

3 Non-Commutative Tori

In this section, we will study C∗algebras known as non-commutative, or
quantum, tori. They arise in many different contexts in mathematics and
physics and some of these situations will be described in 3.1, 3.2 and 3.3
(see also the references therein).

3.1 The Algebraic Approach

We will here define quantum tori through a completely algebraic approach.
We will also show how to define a “smooth” stucture on these C∗algebras,
by making use of a natural action of Tn on them.
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3.1.1 Topological Structure

As a motivation for the general definition, we first treat the commutative
case, that is, we will present a purely algebraic characterization of C(Tn).

Let ui ∈ C(Tn) be defined by ui(z) = zi, for z = (z1, . . . , zn) ∈ Tn, i =
1, . . . , n. It’s clear that uiui = uiui = 1 (that is, ui are unitaries on
C(Tn)) and that these elements generate C(Tn), which we denote by writing
C(Tn) = C∗(u1, . . . , un). Note that simply saying that C(Tn) is a commu-
tative C∗algebra generated by n unitaries u1, . . . , un does not characterize
this C∗algebra completely (since, for instance, any quotient of this C∗algebra
will have the same property). We can, however, uniquely characterize C(Tn)
(up to isomorphism) as follows:

C(Tn) is the universal commutative C∗algebra generated by n unitaries

By universal we mean that given any other commutative C∗algebra
B = C∗(v1, . . . , vn), where v1, . . . , vn are unitaries, then there exists a ∗-
homomorphism Φ : C(Tn) −→ B such that Φ(ui) = vi.

For the proof of this claim, note that if B is as above, then B ∼= C(Y ),
where Y = σ(B) = {ω : B −→ C, ω nonzero homomorphism}. Then we
can consider the map φ : Y −→ Tn defined by φ(ω) = (ω(v1), . . . , ω(vn)),
which one can show is an actual embedding of Y into Tn. So, now realizing
Y ⊆ Tn, the map Φ : C(Tn) −→ B is simply defined by the restriction
Φ(f) = f |Y .

Let now θ = (θij) be an n× n anti-symmetric matrix.

Definition 12 We define Aθ to be the universal C∗algebra generated by n
unitaries u1, . . . , un satisfying:

ujuk = e2πiθjkukuj

It follows that for θ = 0, we just have Aθ ∼= C(Tn). We then think of
Aθ in general as the algebra of continuous functions on a non-commutative
torus “Tθ”.

Note that it’s not clear from the definition above that such an object ex-
ists. The usual way to define universal objects in the category of C∗algebras
is by first showing that there exists an algebra of operators in some Hilbert
space satisfying the commutation relations in question (not necessarily hav-
ing the universal property) and then defining a huge C∗algebra of operators
by summing up all such possibilities (carefully enough in order not to get into
any set theoretical trouble). See [8] for examples. Since we will construct
Aθ in a later section, we will not worry about this issue here.
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3.1.2 Smooth Structure

For the ordinary torus, there is a dense subalgebra of C(Tn) that encodes
its differentiable structure, namely the algebra C∞(Tn). In this section,
we will discuss how to define the analogous object A∞θ ⊆ Aθ for the non-
commutative case.

As we did in the previous section, we will try to express the commutative
object in such a way that it can be easily generalized to the non-commutative
setting.

Let’s first consider the natural action of Tn on itself by translation and
its lift to the action α : Tn −→ Aut(C(Tn)), λ 7−→ αλ where we define

αλ(f)(x) = f(λx)

Note that with respect to the generators of C(Tn), u1, . . . , un, we have

αλ(ui) = λiui

and, moreover, this action is continuous in the following sense: if we fix
f ∈ C(Tn), then the map α(f) : Tn −→ C(Tn), λ 7−→ αλ(f) is norm
continuous. Now we define

A∞0 = {f ∈ C(Tn)|f is a smooth vector for the action α}

Remark 14 We say that f is a smooth vector for α if the map α(f) defined
above is smooth.

One can now check that

Proposition 3.1 A∞0 = C∞(Tn)

We can define A∞θ analogously for θ 6= 0. First note that it follows from
the universal property of Aθ that Tn acts naturally on it. For each λ ∈ Tn,
there is an automorphism αλ of Aθ uniquely determined by the condition

αλ(ui) = λiui

where the ui’s are as in definition 12. Indeed, if we define vi = λui, i =
1, . . . , n, it’s clear that they are still unitaries generating Aθ. Furthermore,
they satisfy vjvk = e2πiθjkvkvj . Hence, the universal property of Aθ implies
that there exists a ∗-homomorphism αλ such that αλ(ui) = λiui. Arguing
similarly, we see that αλ−1 is also well defined and αλ−1 = αλ

−1. So αλ ∈
Aut(Aθ).

Moreover, one can check the following
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Proposition 3.2 The correspondence λ 7−→ αλ defines an action α : Tn −→
Aut(Aθ), which is continuous in the sense that for each a ∈ Aθ, the map
α(a) : Tn −→ Aθ, λ 7−→ αλ(a) is norm continuous.

Remark 15 It follows from the results proven in [11] that Aθ has no proper
nonzero ideal invariant under this Tn-action (see [24]). We will use this fact
in the next section.

As in the commutative case, we simply set

A∞θ = {a ∈ Aθ|a is a smooth vector for the action α}

and we think ofA∞θ as the algebra of smooth functions on the non-commutative
torus “Tθ”, where we can now do (non-commutative) differential geometry
(see [5],[4]). We refer the reader to [26] for a thorough survey on the (non-
commutative) topology and geometry of quantum tori.

3.2 Strict Deformation Quantization

We will now describe how to define the non-commutative torus as a defor-
mation quantization (in the strict sense) of the ordinary one. The main
idea is that, in this case, one can define a Weyl-Moyal type product and
actually take care of all the convergence problems (usually not treated in
formal deformation quantization). We will not describe this process here in
its full generality but only illustrate the main features of the theory for the
particular example of the torus. We refer the reader to [27] and [25] for the
general facts about strict deformation quantization.

We still fix θ = (θij) an n× n anti-symmetric matrix, which will now be
thought of as a (translation invariant) Poisson structure on Tn. The main
theorem is the following:

Theorem 3.1 For each ~ ∈ R, we can define on C∞(Tn) a (associative)
product ∗~, an involution ∗~ and a C∗norm ‖ ·‖~ (with respect to ∗~ and ∗~ )
such that, for ~ = 0:

∗0 = pointwise multiplication, ∗0 = complex conjugation, ‖ · ‖0 = sup. norm

and moreover:

1. ∀f ∈ C∞(Tn), the function ~ 7−→ ‖f‖~ is continuous.

2. ∀f, g ∈ C∞(Tn), ‖ (f∗~g−g∗~f)
~ − i{f, g}‖~ −−−→

~−→0
0
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One can actually show that this construction preserves the Tn-action,
that is, the Tn-action on C∞(Tn) (by translation) still defines an action on
the deformed algebra C∞θ,~ = (C∞(Tn), ∗~, ∗~ , ‖ · ‖~). This action extends to
an action of Tn on the C∗algebra Cθ,~ = C∞θ,~, with the property that the
set of smooth vectors for this action is exactly C∞θ,~. Moreover, in [27] it’s
shown that {Cθ,~}~ form a continuous field of C∗algebras (see [10])

We will now briefly describe how to define the deformed structure on
C∞(Tn). The definition of the deformed product, as mentioned before, will
follow the same idea of the Weyl-Moyal product in R

n.
We first consider the Fourier transform:

F : C∞(Tn) −→ S(Zn)

where S denotes the set of complex valued functions on Z
n decaying fast at

∞. This is a 1− 1 correspondence. We will use the following convention:

F(f)(n) = f̂(n) =
∫
Tn
e−2πi〈x,n〉f(x) dx

and we recall that

f̂g(n) = f̂ ∗ ĝ(n) =
∑
k∈Zn

f̂(k)ĝ(n− k),
∂̂f

∂xj
(n) = 2πinj f̂(n)

Then, we can check that the Poisson bracket becomes

{f̂ , ĝ}(n) = ̂{f, g}(n) = −4π2
∑
k∈Zn

f̂(k)ĝ(n− k)γ(k, n− k)

where γ(n,m) =
∑

k,j θkjnkmj = 〈n, θm〉.
We then define a skew-bicharacter

σ~ : Z
n × Z

n −→ T, σ~(n,m) = e−πiγ(n,m)~

and use it to twist the convolution on S(Zn) and define

f̂ ∗~ ĝ(n) =
∑
k∈Zn

f̂(k)ĝ(n− k)σ~(k, n− k)

The involution and norm are defined by

• f̂∗~(n) = (̂f)(n) = f̂(−n) (independent of ~)

• ‖f̂‖~ = ‖Mf̂‖l2 , where Mf̂ : l2(Zn) −→ l2(Zn) , ĝ 7−→ f̂ ∗~ ĝ
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We can then pull everything back to C∞(Tn) and this will define the
desired deformed structure on it.

Let’s now fix ~ = 1 and consider the algebras Cθ = Cθ,1 and C∞θ =
C∞θ,1. First observe that 1 is still a unit for these algebras and if we let
vj ∈ C∞(Tn) be defined by vj(x) = e2πixj , x = (x1, . . . , xn) ∈ Tn, then an
easy computation shows that

vj ∗ v∗j = v∗j ∗ vj = 1 and vj ∗ vk = e2πiθjkvk ∗ vj

and moreover Cθ = C∗(v1, . . . , vn). Therefore, by the universal property of
Aθ it follows that there exists a ∗-homomorphism

Φ : Aθ −→ Cθ, such that Φ(uj) = vj j = 1, . . . , n

where the ui’s are as in definition 12.
But we actually have

Theorem 3.2 Φ is an isomorphism and Φ(A∞θ ) = C∞θ .

To see that, recall that Tn acts on Aθ and Cθ in a similar fashion (that
is, for λ ∈ Tn, the result of the action on the corresponding generators is
ui 7−→ λiui and vi 7−→ λivi). It’s then easy to see that Φ is Tn-equivariant,
and therefore Ker(Φ) is a Tn-invariant ideal in Aθ. But then it follows from
remark 15 that Ker(Φ) = 0. As for the smooth algebras, just note that they
are both given by the set of smooth vectors with respect to the Tn-action
(see the discussion after theorem 3.1).

3.3 Final Remarks

There are still other ways to characterize the algebras Aθ. See, for instance,
[9] (where quantum tori arise as twisted group C∗algebras of Z

n), [22] (where
the case n = 2 is studied and quantum tori arise as rotation algebras)
and [18] (where they are characterized as the (unital) C∗algebras admitting
ergodic actions of Tn).

Another interesting construction of quantum tori is presented in [32]. It
is an example of the program of quantization of symplectic manifolds using
symplectic grupoids, as outlined in [31] and [33].

For applications in physics, see [6] and the references in [26].
The best results concerning the problem of classifying quantum tori up

to isomorphism and Morita equivalence have been obtained for n = 2. The
reader can find details and references in [22]. For n = 2, we identify θ with
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the matrix component θ12. It’s shown in [22] that if θ and θ′ are irrational
numbers, then Aθ ∼= Aθ′ if and only if

θ = ±(θ′ + k) k ∈ Z

As for Morita equivalence, still assuming n = 2 and that θ and θ′ are
irrational, we have that Aθ and Aθ′ are Morita equivalent if and only if

θ =
aθ′ + b

cθ′ + d

for some a, b, c, d ∈ Z, such that ad− bc = ±1.
The problem of Morita equivalence of higher dimensional quantum tori

will be discussed in the next section.

Remark 16 In general, if A∞θ and A∞θ′ (any dimension) are isomorphic,
then the C∗ completions Aθ and Aθ′ are also isomorphic but the converse is
not true, that is, we can have isomorphic quantum tori with non-isomorphic
smooth structures. One can also talk about Morita equivalence of pre-C∗al-
gebras (essentially by dropping the completion requirements in the definitons
presented here- see [19] for the definiton) and the above remark is still valid
if we replace “isomorphic” by “Morita equivalent”. See [28] for a discussion
about this issue and further references.

4 Morita Equivalence of Quantum Tori

Let τn denote the set of n × n antisymmetric matrices. We saw in the
previous sections how to define a correspondence

τn 3 θ 7−→ Aθ

We can, for example, think of θ as a (constant) Poisson structure on
Tn and the arrow meaning “strict deformation quantization”. The problem
now is to find conditions on θ, θ′ ∈ τn so that the corresponding Aθ and Aθ′
are Morita equivalent. In this section, we will describe the results presented
in [28].

Let O(n, n/R) be the group of linear transformations of R
2n preserving

the quadratic form Q(x, x) = x1xn+1 + . . . + xnx2n. If we write a linear
tranformation g : R

2n −→ R
2n as

g =
(
A B
C D

)

17



for A,B,C,D n× n matrices, then g ∈ O(n, n/R) if and only if

AtC + CtA = 0 BtD +DtB = 0 AtD + CtB = 1

We define an action of O(n, n/R) on τn by

gθ = (Aθ +B)(Cθ +D)−1

Note that, in principle, for each g, the action is only defined on the subset
τ gn ⊆ τn,

τ gn = {θ ∈ τn |Cθ +D is invertible }

and this set can be empty in general.

Remark 17 Note that we can represent τn as subspaces of R
2n by consider-

ing graph(θ), for θ ∈ τn. In this setting, the action of O(n, n/Z) on τn is just
given by applying the linear transformations to the corresponding subspaces.
Also observe that gθ is not defined as an element of τn if and anly if the im-
age of graph(θ) under g fails to be a graph and therefore doesn’t correspond
to any Poisson structure on Tn. However, as noticed by A. Weinstein, it
still defines a Dirac structure on it (see [7]).

We will actually be interested in the action of the subgroup

SO(n, n/Z) = {g ∈ O(n, n/R) | gij ∈ Z and detg = 1}

Let τ0
n = {θ ∈ τn | gθ is defined for all g ∈ SO(n, n/Z)}. Then it follows

that

Proposition 4.1 τ0
n ⊆ τn is dense.

We can now state the main result:

Theorem 4.1 (Rieffel-Schwarz, [28]) If θ ∈ τ0
n and g ∈ SO(n, n/Z),

then Aθ and Agθ are Morita equivalent.

See also [29] for applications of the result above to physics (M-theory).
The result proven in [28] is actually more general than the one above.

In order to state the more general version, we need to set some notation.
If R ∈ GL(n/Z), then a corresponding matrix ρ(R) ∈ SO(n, n/Z) can

be defined by

ρ(R)(xi, yi) = (Rijxj , (R−1)jiyj), i, j = 1, . . . , n
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If N ∈ τn and Nij ∈ Z, we can define an element ν(N) ∈ SO(n, n/Z) by

ν(N)(xi, yi) = (xi +Nijyj , yj), i, j = 1, . . . , n

Finally, consider σ ∈ SO(n, n/Z) given by

σ(xi, yi) = (y1, y2, x3, . . . , xn, x1, x2, y3, . . . , yn)

Then we have

Proposition 4.2 The elements ρ(R), ν(N) and σ generate the group SO(n, n/Z)

Let g ∈ SO(n, n/Z). Then we can write g = g1g2 . . . gn, where gi’s are
generators of the type above. The proof in [28] actually shows that

Theorem 4.2 (Rieffel-Schwarz,[28]) If θ ∈ τn is such that gi . . . gnθ is
defined for all i = 1, . . . , n, then Aθ and Agθ are Morita equivalent.

It’s conjectured in [28] that the result should still be true under the
single hypothesis that gθ is defined (it’s clear that it can happen even if the
condition in theorem 4.2 doesn’t hold).

Let’s also point out that the proof still works at the level of smooth
algebras.

It’s shown in [28] that one can find θ, φ ∈ τ0
n such that Aθ and Aφ are

isomorphic (and hence Morita equivalent), but φ is not in the orbit of θ
under SO(n, n/Z). Therefore, the converse of theorem 4.1 is not true. It is
true, however, for n = 2 (one can check that this formulation is equivalent to
the one presented in section 3.3). It’s not known if the converse of theorem
4.1 holds at the the level of smooth algebras.
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