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ABSTRACT. Floer theory is one of the most active fields in mathematical
physics. In this expository paper, we will discuss where this theory comes from
and what it is as well as its relation with TQFT.

§1 Foundation of Symplectic Geometry and Morse Homology
Historically, Eliashberg, Conley-Zehnder, Gromov respectively proved the

Arnold conjecture for Riemann surfaces, 2n-torus, the existence of at least one
fixed point under π2(M) = 0. Then Floer [F1,F2,F3,F4] made a breakthrough
toward the Arnold conjecture. He first established the Arnold conjecture for
Lagrangian intersections and symplectic fixed points (still under π2(M) = 0).
Then he used the variational method of Conley and Zehnder as well as the
elliptic techniques of Gromov and Morse-Smale-Witten complex to develop his
infinite dimensional approach to the Morse theory. Now this method is widely
recognized as Floer theory.

We first give the background of the Arnold conjecture.
Let (M,ω) be a compact symplectic manifold. The symplectic form ω deter-

mines an isomorphism between T ∗M and TM . Thus we can get a Hamiltonian
vector field XH : M → TM from the exact form dH : M → T ∗M , where
H : M → R is called a Hamiltonian function. We can write the above
relation explicitly as ι(XH)ω = dH. Then we extend the Hamiltonian func-
tion to a smooth time dependent 1-periodic family of Hamiltonian functions
Ht+1 = Ht : M → R, for t ∈ R.

Consider the Hamiltonian differential equation
(1) ẋ(t) = XHt

(x(t))
The solution of (1) generates a family of symplectomorphisms ψt : M →M ,

s.t.
d

dt
ψt = Xt ◦ ψt, ψ0 = id.

We find the fixed points of the map ψ1 are in 1-1 correspondence with the
1-periodic solutions of (1) and denote such kind of solutions by P(H) = {x :
R/Z →M |ẋ(t) = XHt

(x(t))}

Definition 1.1 A periodic solution x is called non − degenerate if the fol-
lowing identity holds.

(2) det(I − dψ1(x(0))) 6= 0.
Now we can state the Arnold conjecture.

Conjecture 1.2 (Arnold) Let (M,ω) be a compact symplectic manifold
and Ht = Ht+1 : M → R be a smooth time dependent 1-periodic Hamiltonian
function. Suppose that the 1-periodic solutions of (1) are all non-degenerate.
Then
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#P (H) ≥
2n∑
i=0

dimHi(M,Q), where Hi(M,Q) denotes the singular homology

of M with rational coefficients.
Remark: If Ht is independent of t, then the Arnold conjecture reduces to

Morse theory. Because in that case, nondegeneracy condition of the 1-periodic
condition implies the nondegeneracy of critical points for Hamiltonian function
H, where it becomes Morse function.

It is a fact that the space of all compatible almost complex structures is
nonempty and contractible. Then the first Chern class c1 = c1(TM, J) ∈
H2(M,Z) is independent of the choice of the compatible almost complex struc-
ture.

The Arnold conjecture can be proved under the assumption

(4)
∫

S2
υ∗c1 = τ

∫
S2
υ∗ω for every smooth map υ : S2 → M and some

constant τ ∈ R.
It is divided into three cases:
a) τ > 0 positive curvature (2-spheres) the symplectic manifolds with this

property is called monotone, which is the case treated by Floer [F5] and it led
him to define the so called Floer homology.

b) τ = 0 zero curvature (2-torus) Especially the case c1 = 0 was treated by
Hofer-Salamon [FHS, HS1], which can be considered as an extension of Floer’s
original work with the group coefficients in Novikov ring.

c) τ < 0 negative curvature (high genus surface) The case of compact sym-
plectic manifold was proved by Fukaya-Ono [FO], Liu-Tian [LT], and Hofer-
Salamon.

In the following discussion, we need to make a further assumption that∫
S2
υ∗ω ∈ Z for all smooth map υ : S2 →M .

As Floer theory is actually a theory of extending the Morse theory to the
infinite dimensional version, we must first familiar with the Morse theory, which
have two approaches-classical one and newer one. We will mainly focus on the
second approach, which leads to the Floer thoery.

Let M be a compact smooth Riemannian manifold and f : M → R be a
Morse funciton. Now we need to introduce some symbol for further discussion.

Crit(f) = {x ∈M |df(x) = 0}, Hessian d2f(x) : TxM × TxM → R
The Morse condition says that the Hessian for every critical points are non-

degenerate.
Let ϕs : M →M denote the flow of the following (negative) gradient flow
(5) u̇ = −∇f(u)

Definition 1.3 The stable and unstable manifolds are defined as follows
W s(x; f) = {y ∈M | lim

s→∞
ϕs(y) = x}, Wu(x; f) = {y ∈M | lim

s→−∞
ϕs(y) = x}

Definition 1.4 The Morse index of a critical point is the number of negative
eigenvalues of the Hessian.

2



Here are some results from Morse theory.

Property 1.5 1) The stable and unstable manifolds are smooth submani-
folds of M for every critical point x of f under the Morse condition.

2) The Morse index indf (x) = dimWu(x; f).

Definition 1.6 The gradient flow is called a Morse− Smale system, if for
any pair of critical points x, y of f , the stable and unstable manifolds intersect
transversally. Denote W s(x; f) ∩Wu(y; f) by M(y, x; f).

Remark: The set M(y, x; f) is the space containing all the trajectories con-
necting y to x.

Property 1.7 For a Morse-Smale system, we have
1) The set M(y, x; f) is a smooth submanifold of M .
2) dimM(y, x; f) =indf (y)− indf (x)
3) Cosider the space of all the gradient flow lines running from y to x. Then

M̂(y, x; f) = M(y, x; f)/R is a manifold of dimension indf (y) − indf (x) − 1,
where R acts on M(y, x; f) by translation.

Remark:
1) Now Morse-Smale condition tells us that indf (y)− indf (x) > 0 whenever

there is a connecting orbit from y to x.
2) If dimM̂(y, x; f) =0, then M̂(y, x; f) is a finite set.
In order to define the Morse homology, we need to discuss the orientation

first.
Fix an orientation of the unstable manifold Wu(y; f) for every critical point

x of f , which gives rise to a natural orientation for every connecting orbit. Then
there exists a vector space isomorphism

TzW
u(y; f) ∩∇f(z)⊥ → TxW

u(x; f) determined by dϕt(z) for large t.
Then we can define ε(z) = ±1 respectively for the case of orientation pre-

serving or reversing.

Definition 1.8 Assume the gradient flow of f is a Morse-Smale system and
fix an orientation of Wu(x) for every critical point x.

The free abelian group was defined as CMk(f) =
⊕

df(x)=0

indf (x)=k

Z 〈x〉 and the

boundary operator ∂M : CMk(f) → CMk−1(f) is defined as
∂M 〈y〉 =

∑
df(x)=0

indf (x)=k−1

∑
[u]∈M̂(y,x;f)

ε(u) 〈x〉 for y ∈ crit(f) and indf (y) = k.

The above complex is called the Morse− Smale−Witten complex.

Theorem 1.9 If the gradient flow of f is a Morse-Smale system, then the
corresponding operator ∂M satisfies the condition ∂M◦ ∂M = 0. There exists a
natural isomorphism between this new homology and the singular homology.

Remark: Proving this theorem in Morse homology involves compactification
by broken flow lines [H].
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Now we have necessary foundation, which will be used quite often in the
further discussion.

Then we return to the monotone case of the Hamiltonian differential equa-
tions.

Our target is to develop the corresponding homology theory as an extension
of Morse homology.

Roughly speaking, at the very beginning, we need to interpret 1-periodic
solutions of (1) as some critical ”points” of some functional on the loop space
LM .

The loop space is defined as LM , {x ∈ C∞(R → M)|x(t + 1) = x(t)
∀t ∈ R}.

A tangent vector to loop space LM at a point (i.e. a loop in M) is a vector
field along x.

Explicitly, we can write as
∀ξ ∈ TxLM ⇒ ξ : R → TM satisfies ξ(t) ∈ Tx(t)M and ξ(t + 1) = ξ(t)

∀t ∈ R
Thus we have TxLM = C∞(R/Z, x∗TM), where x∗TM is the pullback

bundle on R/Z.
For every 1-periodic Hamiltonian, there is a natural 1-form ΨH on the loop

space LM , defined as
ΨH : TLM → R, ΨH(x; ξ) =

∫ 1

0
ω(ẋ(t)−XHt(x(t)), ξ(t))dt ∀ξ ∈ TxLM

Remark: This 1-form is actually a closed form.

1-form ΨH can be expressed as the differential of a functional αH : LM →
R/Z defined as

αH(x, u) = −
∫

B
u∗ω −

∫ 1

0
Ht(x(t))dt ∀x ∈ LM

where u : B = {z ∈ C||z| ≤ 1} → M is a smooth map such that u(e2πit) =
x(t) ∀t ∈ R.

Remark:
1) Generally speaking, ΨH is not an exact form. Because such map u exist

only when x is a contractible loop.

2)The former assumption
∫

S2
υ∗ω ∈ Z ∀ smooth map υ : S2 → M assures

the image of αH is well-defined in R/Z.

Floer’s idea is to use this functional αH taking over the role of the Morse
function in Morse homology.

Thus we need to make another assumption that the 1-periodic solutions
x : R/Z → M must be non-degenerate as the analogy in the Morse function.
So now our task is to understand the gradient flow lines of this functional αH :
LM → R/Z.

First step is to define a metric on the loop space as follows
< ξ, η >=

∫ 1

0
< ξ(t), η(t) >t dt, where < ξ(t), η(t) >t= ω(ξ(t), Jtη(t))

Remark: 1) Here is the canonical way to define the Riemannian metric from
symplectic form ω and compatible almost complex structure Jt.
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2) Here we use a 1-periodic family of almost complex structures Jt = Jt+1 ∈
J (M,ω).

Then the gradient of this functional with respect to this metric can be com-
puted explicitly as

gradαH(x)(t) = Jt(x(t))ẋ(t)−∇Ht(x(t))
Remark: gradαH(x) ∈ TxLM and gradαH is a vector field on LM .

Just as in Morse homology, we need to introduce the gradient flow line of
αH located in LM not in M !

So we need another variable other than time t, then the equation of gradient
flow line can be written as

∂u(s, ·)
∂s

+ gradαH(u(s, ·)) = 0, where u : R → LM i.e. u : R × R/Z → M

and u(s, t+ 1) = u(s)
Combined with the expression of gradαH , we get the following equation for

flow u

(7)
∂u(s, t)
∂s

+ Jt(u(s, t))
∂u(s, t)
∂t

−∇Ht(u(s, t)) = 0
Remark:
1) If J, H and u are independent of t, this is the upward gradient flow of

H = Ht.
2) If u(s, t) ≡ x(t), (7) reduce to the Hamiltonian equation (1).

3) If Ht ≡ 0 and Jt ≡ J , then (7) become
∂u(s, t)
∂s

+ J(u(s, t))
∂u(s, t)
∂t

= 0,
which is actually the equation for J−holomorphic curves.

Now we introduce the energy of a solution of (7) in the following way.

E(u) =
1
2

∫ 1

0

∫ ∞

−∞

(∣∣∣∣∂u(s, t)∂s

∣∣∣∣2 +
∣∣∣∣∂u(s, t)∂t

−XHt(u(s, t))
∣∣∣∣2
)
dsdt

There are some important result for solutions of (7).
Proposition 1.10 Let u : R × R/Z → M be a solution of (7). Then the

following are equivalent.
a) E(u) <∞
b) There exist x± ∈ P(H) s.t.
(8) lim

s→±∞
u(s, t) = x±(t)

c) There exist constants δ > 0 and c > 0 s.t. |∂su(s, t)| ≤ ce−δ|s| ∀s, t ∈ R

Denote the space of all solutions of (7) and (8) byM(x−, x+) = M(x−, x+;H,J).
Theorem 1.11 [S] There exist a subset Hreg = Hreg(J) ⊂ C∞(M×R/Z) of

the second categorie in the sense of Baire s.t. the 1-periodic solutions of (1) are
all non-degenerate, and the moduli spaceM(x−, x+;H,J) is a finite dimensional
smooth manifold for all x± ∈ P(H) and all H ∈ Hreg. Furthermore, if (4) holds
then there is a function ηH : P(H) → R s.t. for ∀u ∈ M(x−, x+;H,J) the
dimension of the moduli space is given by

(10) dimuM(x−, x+;H,J) = ηH(x−)− ηH(x+) + 2τE(u) locally near u.
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To prove b) implying c) in Proposition 1.10 and Theorem 1.11 involves a lot
of analysis. We will introduce it in the next section.

§2 Fredholm Theory, Conley-Zehnder index and spectral flow
We first give the outline of Fredholm theory and see how it works for our

problem.
Definition 2.1 Let X and Y be two Banach spaces. A bounded linear

operator D : X → Y is called a Fredholm operator if it has a closed range
and the kernel and cokernel of D are both finite dimensional. The index of a
Fredholm operator is defined as the difference of the dimensions of kernel and
cokernel:

indexD = dim kerD − dim co kerD.
Remark: The Fredholm property and the index are are stable under pertur-

bations. If there is another compact linear operator K : X → Y , then D+K is
again a Fredholm operator and it has the same index as D.

Definition 2.2 A smooth map f : X → Y between Banach spaces is called
a Fredholm map if its differential df(x) : X → Y is a linear Fredholm operator
for every x ∈ X. In this case it follows from the stability of the Fredholm
index that the index of df(x) is independent of the choice of x and we identify
index(f) with index(df(x)). A vector y ∈ Y is called a regular value of f
if df(x) : X → Y is onto for every x ∈ f−1(y). If y is a regular value, then
M = f−1(y) is a smooth finite dimensional manifold.

We must express such kind of moduli spaces M(x−, x+;H,J) as zero sets of
functions between suitable Banach spaces in order to prove these moduli spaces
are smooth finite dimensional manifolds.

Denote
∂u

∂s
+ Jt(u)

∂u

∂t
− ∇Ht(u) by ∂H,J(u), which is a vector field along

u, then we fix an element u ∈ M(x−, x+)and consider a vector space Xu ⊂
C∞(R × R/Z, u∗TM) of all vector fields ξ along u which satisfy a suitable
exponential decay condition as s→ ±∞.

A function near u which also satisfy the limit condition (8) can be expressed
as u′ = expu(ξ) for some ξ ∈ Xu. Then the set of solutions of (7) and (8)
can be expressed as the zero set of a function Fu : Xu → Xu, defined by
Fu(ξ) = Φu(ξ)−1∂H,J(expu(ξ)) ∀ξ ∈ Xu and Φu(ξ) : TuM → Texpu(ξ)M denotes
the parallel transport along the geodesic τ → expu(τξ).

Remark: Here expu(ξ) means the exponential map, explicitly it can be writ-
ten as u′(s, t) = expu(s,t)(ξ(s, t)) ∈M in the common sense.

One can compute the following identity by using the relation between the
parallel tranport and connection

(11) Duξ , dFu(0)ξ = ∇sξ + J(u)∇tξ +∇ξJ(u)∂tu−∇ξ∇Ht(u)
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Then Du is a Fredholm operator between Lp and W 1,p, which are Sobolev
completions of Xu. We pick a unitary trivialization Φ(s, t) : R2n → Tu(s,t)M
which identifies the standard ω0 and J0 on R2n with the corresponding ω and
J on TM . Thus Du has the form

(12) Dξ = ∂sξ + J0∂tξ + Sξ ∀ξ : R× S1 → R2n

where the matrices S(s, t) ∈ R2n×2n are defined by S = Φ−1DuΦ.
Associated to this symmetric matrix valued function is a symplectic matrix

valued function Ψ : R×R→ Sp(2n) given by
(13) J0∂tΨ + SΨ = 0, Ψ(s, 0) = 1

Now we have the following theorem.
Theorem 2.3 [S] Suppose that det(1−Ψ±(1)) 6= 0. Then the operator
D : W 1,p(R × S1;R2n) → Lp(R × S1;R2n) given by (12) is Fredholm for

1 < p <∞. Its Fredholm index is given by the difference of the Conley-Zehnder
indices:

(14) indexD = µCZ(Ψ+)− µCZ(Ψ−)

Of course, we need to define the Conley-Sehnder index to make sense of
Theorem 2.3.

Denote by Sp∗(2n) the open and dense set of all symplectic matrices, which
do not have 1 as an eigenvalue.

Denote by SP (n) the space of paths Ψ : [0, 1] → Sp(2n) with Ψ(0) = 1
and Ψ(1) = Sp∗(2n). Any such path admits an extension Ψ : [0, 2] → Sp(2n),
s.t. Ψ(s) ∈ Sp∗(2n) for s ≥ 1 and Ψ(2) is one of the matrices W+ = −1 and
W− = diag(2,−1, ...,−1, 1/2,−1, ...,−1).

Then ρ2◦Ψ : [0, 2] → S1 is a loop (ρ(W± = ±1)), where ρ : Sp(2n) → S1 is a
continuous extension of the determinant map det : U(n) = Sp(2n)∩O(2n) → S1.

Definition 2.4 The Conley − Zehnder index of Ψ is defined as µCZ(Ψ) =
deg(ρ2 ◦Ψ).

We don’t want to prove the theorem here, just provide the background knowl-
edge, because these are the important ideas to understand the Floer homology.
Next task is to discuss the spectral flow.

We rewrite the operator D = ∂s + J0∂t + S as D = ∂s +A(s)
where A(s) : W 1,2(S1;R2n) → L2(S1;R2n), A(s) = J0∂t + S(s, ·).
This a smooth family of unbounded self-adjoint operators on the Hilbert

space H = L2(S1;R2n), which implies the limit operators A± = lim
s→±∞

A(s) are

both invertible. In this case the Fredholm index of D is given by the spectral
flow of A [APS], which we now define as follows.

Definition 2.5 A number s ∈ R is called a crossing if kerA(s) 6= {0}.

Definition 2.6 If s is a crossing then the crossing form is the quadratic
form Γ(A, s) : kerA(s) → R defined as

7



Γ(A, s)ξ =
〈
ξ, Ȧ(s)ξ

〉
H
∀ξ ∈ kerA(s).

Definition 2.7 A crossing s is called regular if the crossing form is non-
degenerate.

Definition 2.8 [RS] Consider a smooth family A(s) with only regular cross-
ings the spectral flow is defined by

µspec(A) =
∑

s is a crossing

signΓ(A, s)

Remark: Roughly speaking, the spectral flow is the number of eigenvalues
of A(s) crossing zero from negative to positive as s moves from −∞ to +∞.

§3 Floer Homology
In this part, we will define the Floer homology group for monotone case.

Consider the following chain complex
CFk(H) =

⊕
x∈P(H)

µCZ(x;H)=k(mod 2N)

F 〈x〉

where F is a PID (Principal ideal domain)
Remark: We have a formula for the Conley-Zehnder index,
µCZ(x,A]u) = µCZ(x, u)− 2c1(A), A ∈ π2(M).
Without specifying the map u : B → M , the Conley-Zehnder index of a

periodic solution x ∈ P(H) is only well-defined modulo 2N .
In order to define the boundary operator on this chain complex, we need to

first do some research on the orientation just like the situation in Morse theory.
But now the situation is more complicated. Roughly speaking, we need to
prove the moduli spaces M(x−, x+) are all orientable, and then to choose a
system of so called ”coherent orientations” under which Floer gluing maps are
orientation preserving[FH]. Actually these orientation are not unique. We can
define a number ε(u) ∈ {1,−1} for each u ∈ M1(x−, x+;H,J) by comparing
this coherent orientation of M1 with the flow orientation.

Now the Floer boundary operator is defined by
∂F 〈y〉 =

∑
x∈P(H)

µCZ(x;H)=k−1(mod 2N)

∑
[u]∈M̂1(x−,x+;H,J)

ε(u) 〈x〉

where y is a periodic orbit y ∈ P(H) with µCZ(y;H) = k(mod 2N).
Remark:
1) There are a lot of technical details here. It is impossible to discuss all

the stuff in this paper, so we only present the most fundamental idea and its
relation with Morse homology.

2) The Conley-zehnder index µCZ(y;H) takes over the role of the Morse
index in the Morse theory.

3) The quotient space M̂1(x−, x+;H,J) = M1(x−, x+;H,J)/R is a finite
set for every pair x± ∈ P(H).

The proof of this statement involves a bubbling technique, which also appears
in Morse theory and some analysis of the energy of a solution.
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Theorem 3.1(Floer) If (M,ω) is monotone andH ∈ Hreg then ∂F ◦∂F = 0.
Remark: We need to use Floer’s gluing theorem to prove this theorem.

Now we can define the Floer homology groups of a a pair (H,J) as the
homology of the chain complex (CF∗(H), ∂F ) in the following way

HF∗(M,ω,H, J ;F ) =
ker ∂F

Im ∂F

Remark:
1) (Floer) Actually,these groups are invariant of almost complex structure

and the Hamiltonian.
2) (Floer) These group are naturally isomorphic to the ordinary homology

groups of M in the following sense
HFk(M,ω,H, J ;F ) '→

⊕
j=k(mod 2N)

Hj(M ;F )

Now the Arnold conjecture for monotone symplectic manifolds follows di-
rectly from here.

§4 Relation with TQFT
The Floer’s idea fitted in quite well with the ”instanton invariants” of 4-

dimensional manifolds. Roughly speaking, Floer homology is the data required
to extend this theory from closed 4-manifolds to manifolds with boundary, which
indicate that something relate to Quantum Field Theory. Anyway, one of the
Floer’s starting points can be traced back to the paper of Witten [W], which
provides a link between Quantum Mechanics and Morse theory. The former
properties of the Floer groups as well as their relation with the invariants of
4-manifolds are parts of TQFT (Topological Quantum Field Theories), which
was developed by Segal, Atiyah, Witten and others. Then one may ask what a
topological field theory is. Now we give the definition of it.

Definition 4.1 A topological field theory of d + 1 dimensions consists of
two functors on manifolds. The first assigns to each closed, oriented, d-manifold
Y a vector space H(Y ) (over complex numbers). The second assigns to each
compact, oriented (d + 1)-dimensional manifold X with boundary Y a vector
Z(X) ∈ H(Y ) and satisfy the following three axioms:

1) The vector space assigns to a disjoint union Y1 ∪ Y2 is the tnsor product
H(Y1 ∪ Y2) = H(Y1)

⊗
H(Y2).

2) H(Y ) = H(Y )∗, where Y is Y with the reverse orientation.
3) Suppose X is a (d + 1)-manifold with boundary, and that X contains Y

and Y as two of its boundary components. Let X# be the oriented manifold
obtained from X by identifying these two boundary components. Then we
require that Z(X#) = c(Z(X)), where the contraction c : H(∂X) → H(∂X#)
is induced from the dual pairing H(Y )

⊗
H(Y ) → C and the decomposition

H(∂X ) = H(Y )
⊗
H(Y )

⊗
H(∂X#).

Remark:
1) H(∅) ' C (canonically)
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2) Suppose that a (d + 1)-manifold U is cobordism from Y1 to Y2, so the
oriented boundary of U is a disjoint union Y1 ∪ Y2. Then, by Axiom 1 and 2,
Z(U) is an element of H(Y1)∗

⊗
H(Y2) and hence gives a linear map

ζU : H(Y1) → H(Y2).
If V is a cobordism from Y2 to Y3 then Axiom 3 states that ζV ◦U = ζV ◦ ζU :

H(Y1) → H(Y3). Thus we get a functor from category of d-manifolds, with
morphisms defined by cobordisms, to the category of vector spaces and linear
maps.

3) In a typical physical set-up the correspondent space H(Y ) would be an
infinite-dimensional Hilbert space defined by associating to Y a space of ”fields”
C(Y ),and then letting H(Y ) be a space of L2 functions on C(Y ).

The Yang-Mills invariants, and Floer groups, fit into this general scheme,
with d = 3. For a 3-manifold, we can take Floer groups as

H(Y ) = HF∗(Y ). For a closed 4-manifold X the Yang-Mills instantons
define a numerical invariant Z(X), and for a 4-manifold with boundary we
obtain invariants with values in the Floer homology of the boundary. (refer to
[D])

In recent years, Khovanov and Seidel [KS] built a nice relation in quiver,
Floer cohomology and braid group.

They consider the derived categories of modules over certain family Am

of graded rings and the Floer cohomology of Lagrangian intersections in the
symplectic manifolds(Milnor fibres of simple singularities of type Am). These
two very different objects actually encode the topology of curves on a (m +
1)−punctured disc. They also proved that the braid group Bm+1 acts faithfully
on the derived category of Am−modules, and it injects into the symplectic
mapping class group of the Milnor fibers.

Now we need to explain what the Milnor fibre is.
Let f(z0, ..., zn) be a non-constant polynomial function of n + 1 complex

variables z0, ..., zn such that f(0, ..., 0) = 0, so that the set Vf of all complex
(n + 1)−vectors (z0, ..., zn) with f(0, ..., 0) = 0 is a complex hypersurface of
complex dimension n containing the origin of complex (n + 1)−space. (For
instance, if n = 1 then Vf is a complex plane curve containing (0, 0).) The
argument of f is the function f

|f | mapping the complement of Vf in complex
(n+1)−space to the unit circle S1 in C. For any real radius r > 0, the restriction
of the argument of f to the complement of Vf in the real (2n+ 1)−sphere with
center at the origin and radius r is the Milnor map of f at radius r.

Theorem 4.2 Milnor’s Fibration Theorem states that, for every f such
that the origin is an isolated singular point of the hypersurface Vf , the Milnor
map of f at any sufficiently small radius is a fibration over S1. Each fiber is
a non-compact differentiable manifold of real dimension 2n, and the closure of
each fiber is a compact manifold with boundary bounded by the intersection Kf

of Kf with the (2n + 1)−sphere of sufficiently small radius. Furthermore, this
compact manifold with boundary, which is known as the Milnor fiber (of the
isolated singular point of Vf at the origin), is diffeomorphic to the intersection
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of the (2n + 2)−ball with the hypersurface Vg (non-singular) where g = f − e
and e is any sufficiently small non-zero complex number. This small piece of
hypersurface is also called a Milnor fiber.

Milnor maps are named in honor of John Milnor, who introduced them to
topology and algebraic geometry in his book [M] and earlier lectures.

Milnor maps at other radii are not always fibrations, but they still have many
interesting properties. For most (but not all) polynomials, the Milnor map at
infinity (that is, at any sufficiently large radius) is again a fibration.

Example 4.3 The Milnor map of f(z, w) = z2 + w3 at any radius is a
fibration; this construction gives the trefoil knot its structure as a fibered knot.

Khovanov and Seidel [KS] mainly discuss on the connection between sym-
plectic geometry and those parts of representation theory.

The connection with symplectic geometry is based on an idea of Donaldson.
He associate to a compact symplectic manifold (M2n, ω) a category Lag(M,ω)
whose objects are Lagrangian submanifolds L ⊂ M , and whose morphisms
are the Floer cohomology groups HF (L0, L1). The composition of morphisms
would be given by products HF (L1, L2)×HF (L0, L1) → HF (L0, L2).

The remaining stuff refers to [KS].
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