
1. (20 points) Find the value of the integral:∫ e

1

(lnx)2dx

Solution:

We use integration by parts:

u = (lnx)2, du = 2 ln x · 1

x
dx

v = x, dv = dx

∫ e

1

(lnx)2dx = x(lnx)2 |e1 −
∫ e

1

2 lnxdx

= e− 2

∫ e

1

lnxdx

We now have the simpler integral
∫ e
1

lnxdx, which we can do with another application
of integration by parts:

u = lnx, du =
1

x
dx

v = x, dv = dx

∫ e

1

lnxdx = x lnx |e1 −
∫ e

1

dx

= e− (e− 1) = 1

Finally, we can calculate the original integral:∫ e

1

(lnx)2dx = e− 2

∫ e

1

lnxdx = e− 2
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2. (20 points) Using the fact that d
dx

sinx = cos x and d
dx

cosx = − sinx, derive the stan-
dard formula for:

d

dx
cotx

Solution:

We have cotx = cosx
sinx

. We make use of the quotient rule:

d

dx

cosx

sinx
=

sinx d
dx

cosx− cosx d
dx

sinx

sin2 x

=
− sin2 x− cos2 x

sin2 x

Using the identity cos2 x+ sin2 x = 1, this gives us:

= − 1

sin2 x
= − csc2 x
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3. (20 points) Suppose that three positive numbers sum to 12. What is the smallest pos-
sible value of the sum of their cubes? (The original question mistakenly asked for the
largest possible value, which is actually 03 + 03 + 123 = 1728. This did not affect the
grading, since all students did the intended thing anyway, but it’s important to note the
difference! )

Solution:

Let the three positive numbers be x, y, z. We wish to minimize the function:

f(x, y, z) = x3 + y3 + z3

subject to the constraint:

g(x, y, z) = x+ y + z − 12

We use the method of Lagrange multipliers. Define a new function:

F (x, y, z, λ) = x3 + y3 + z3 + λ(x+ y + z − 12)

Next, we compute its partial derivatives with respect to x, y, z:

∂F

∂x
= 3x2 + λ

∂F

∂y
= 3y2 + λ

∂F

∂z
= 3z2 + λ

If (a, b, c) is a critical point of F , then 3a2 + λ = 3b2 + λ = 3c2 + λ = 0, so a2 = b2 =
c2 = −1

3
λ. Since we are only interested in positive numbers, this means that a = b = c.

Plugging into the constraint:

g(a, b, c) = g(a, a, a) = 3a− 12 = 0

This gives a = b = c = 4, so the minimum value we seek is f(4, 4, 4) = 192.
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4. (20 points) Find the volume of the solid bounded above by the function f(x, y) = yex
2

and lying over the region R given by 0 ≤ x ≤ 2 and 0 ≤ y ≤
√
x.

Solution:

We can express this volume as an iterated integral:

∫ 2

0

(∫ √x
0

yex
2

dy

)
dx

First, the inner integral:

∫ √x
0

yex
2

dy =
1

2
y2ex

2 |
√
x

0 =
1

2
(
√
x)2ex

2

=
1

2
xex

2

Now, the outer integral:

∫ 2

0

1

2
xex

2

dx

We can compute this by making the substitution u = x2, du = 2xdx:

∫ 2

0

1

2
xex

2

dx =
1

4

∫ 2

0

ex
2

(2xdx) =
1

4

∫ 4

0

eudu

=
1

4
eu |40=

1

4
(e4 − 1)
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5. (20 points)

(a) (2 points) There are four different ways to take the second derivative of f(x, y),
but these usually yield only three distinct values.

True. The four second partials are ∂2f
∂x2

, ∂2f
∂y2

, ∂2f
∂x∂y

, and ∂2f
∂y∂x

, though we have
∂2f
∂x∂y

= ∂2f
∂y∂x

when f is a reasonably nice function.

(b) (2 points) When performing the second derivative test on a function f(x, y), if
D(x, y) < 0 at a critical point then f may have either a local maximum or local
minimum there.

False. If D(x, y) < 0 at a critical point, then f has a saddle point there, which
cannot be a local extrumum.

(c) (2 points) When integrating over a rectangle, it does not matter whether we first
integrate with respect to x, or first integrate with respect to y.

True. This is sometimes called Fubini’s theorem, and it is a consequence of a
theorem on page 384 of our book. (It has also been discussed in a little more detail
in lecture.)

(d) (2 points) For all t, sin t = ±
√

1− cos2 t.

True. This follows from the standard identity cos2 t+ sin2 t = 1.

(e) (2 points) For all t, sin(t+ π) = sin t.

False. In fact, sin(t+ π) = − sin t. For example, sin π/2 = 1 while sin 3π/2 = −1.

(f) (2 points) limt→0
cos t−1

t
= 1.

False. The correct value of this limit is limt→0
cos t−1

t
= 0, which appears on page

405. There is a similar limit that equals 1, namely limt→0
sin t
t

= 1.

(g) (2 points) When using the formula d
dx

sinx = cosx, it does not matter if x is in
degrees or radians.

False. It matters quite a bit. If x is given in degrees, we have the much more
awkward formula d

dx
sinx = π

180
cosx.

(h) (2 points) It is possible to find the antiderivative of
√

1− x2 using only integration
by parts.

False. There is a reason that the book gives us the value
∫ 1

−1

√
1− x2 = π

2
without

using antiderivatives. The antiderivative involves inverse trigonometric functions,
which are beyond the scope of this course:

∫ √
1− x2 = 1

2

√
1− x2 + 1

2
arcsinx+C.
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(i) (2 points) Integration by parts is nothing more than a restatement of the product
rule for derivatives.

True. One quick way to see this is to write d(uv) = udv + vdu, then rearrange to
udv = uv − vdu and integrate.

(j) (2 points) The quantity
∫∞
−∞ f(x)dx is defined to be a limit of integrals.

False. On page 449, the book defines
∫∞
−∞ f(x)dx to be the sum of

∫ 0

−∞ f(x)dx and∫∞
0
f(x)dx, each of which is a limit of integrals.

∫∞
−∞ f(x)dx itself is a sum of two

limits, but not a limit itself.


