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We continue our foray into the world of Steenrod squares and related notions. This lecture covers a number of topics which

are of independent interest but will be necessary for computing homotopy groups of spheres.

The Bockstein homomorphisms

Given any sexseq of coefficients, we get a lexseq in cohomology. For example, 0 → Z → Z → Z2 → 0 gives rise to

. . . → Hn(X; Z) → Hn(X; Z) → Hn(X; Z2) → Hn+1(X; Z) → . . . .

The connecting map for this lexseq is called the Bockstein homomorphism, which we denote β : Hn(X; Z2) →
Hn+1(X; Z).

On cochains, this can be realized as follows. Any Z2-cohomology class x ∈ Hn(X; Z2) is a represented by an
integral n-cochain x with the property that δx ≡ 0 (mod 2), i.e. for any (n+1)-chain c, δx(c) = x(∂c) ≡ 0 (mod 2).
(This is what it means for x to be a cocycle mod 2.) So it must be that δx = 2y for some (integral) (n + 1)-cochain
y. Then β(x) = y.

The reduced Bockstein homomorphism d1 : Hn(X; Z2) → Hn+1(X; Z2) (which we will henceforth simply refer
to as the Bockstein homomorphism) is obtained by following β by reduction mod 2. (For experts: observe that, as
usual, we are just skipping the internal map in the Bockstein exact couple.) Of course, using the same notation as
before, d1(x) = y.

Note that ker(d1) consists of exactly those Z2-cohomology classes x such that δx/2 still evaluates to 0 mod 2
on all boundaries. Thus we may write δx = 4y′, and we define the second Bockstein homomorphism by d2(x) = y′.
More generally, we define the rth Bockstein homomorphism dr on ker(dr−1) by

dr(x) =
(

δx

2r

)
.

From these, we can obtain information about Z-cohomology from Z2-cohomology. If x generates a copy of Z in
Hn(X; Z), then di(x) = 0 for all i. If on the other hand x generates a copy of Z2r in Hn+1(X; Z), then x gives
rise to χ ∈ Hn(X; Z2) and x ∈ Hn+1(X; Z) (via the universal coefficient theorem) such that di(χ) = 0 for i < r,
di(x) = 0 for i < r, and dr(χ) = x.

Fibrations

A fibration (which for us will always be “in the sense of Serre”, for those who care) is a map p : E → B such that,
for any finite complex K, we have the covering homotopy property :

K - E

K × I

i0

?
-

-

B.

p

?

Assuming B is connected, every fiber p−1(b) ⊆ E is homotopy equivalent. We denote by F the fiber over the
basepoint, and we write the fibration as F ↪→ E � B.

A fibration gives rise to a lexseq in homotopy

. . . → πn(F ) → πn(E) → πn(B) → πn−1(F ) → . . . .
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Example. A covering space is a fibration with a discrete fiber. In the case of Z ↪→ R � S1, since R is contractible
the lexseq gives us that π1(S1) = Z and πi(S1) = 0 for i > 1. Thus S1 = K(Z, 1).

Example. The Hopf map η : S3 → S2 is a fibration with fiber S1. So the homotopy lexseq is

. . . → 0 → πn(S3) → πn(S2) → 0 → . . . → π3(S3) → π3(S2) → 0 → π2(S3) → π2(S2) → Z → 0 → . . . .

Since πi(Si) = Z for any i, this tells us that π2(S3) = 0 (which we already knew by cellular approximation), that
π3(S2) = Z and this is generated by η, and more generally that πn(S3) = πn(S2) for n ≥ 3.

Example. Let E be the space of based paths γ : I → (B, b0), and let p(γ) = γ(1). Clearly E is contractible, so
applying the homotopy lexseq to the fibration ΩB ↪→ E � B gives that πn(ΩB) = πn+1(B) for all n.

Example. Considering S2n−1 ⊆ Cn, we have (for n > 1) the fibration S1 ↪→ S2n−1 � CPn−1. So π2(CPn−1) =
π1(S1) = Z. Furthermore, πi(CPn−1) = πi(S2n−1) for i > 2, and this is 0 up until 2n− 1. Taking the (co)limit as
n →∞, we get that CP∞ = K(Z, 2).

The Serre spectral sequence

For a fibration F ↪→ E � B, we have Serre’s spectral sequence in cohomology

Ep,q
2 = Hp(B;Hq(F ;R)) ⇒ H∗(E;R),

where R is any (commutative) ring and the coefficients may be twisted by π1(B). This has the following properties:

• Er is a bigraded ring for all r;

• dr is an antiderivation, i.e. dr(a · b) = dr(a) · b + (−1)|a|a · dr(b);

• the product in Er+1 is induced by the product in Er;

• if R is a field, then E2 = H∗(B;R)⊗H∗(F ;R) by the Künneth theorem.

(It will always be easy to distinguish these differentials from the Bockstein homomorphisms from the context.)

If B and F are (p−1)- and (q−1)-connected, resp., then the spectral sequence degenerates to Serre’s lexseq in cohomology :

. . . - Hp+q−2(F )
τ- Hp+q−1(B)

p∗- Hp+q−1(E)
j∗- Hp+q−1(F ),

where p : E � B and j : F ↪→ E.
More generally, we call any element x ∈ Hn−1(F ) transgressive if in Serre’s spectral sequence di(x) = 0 for all

i < n. Then we have dn(x) ∈ En,0
n , which is a subquotient of Hn(B). In this case, we write τ(x) = dn(x).

Proposition. If x is transgressive, then so is Sqix for all i, and τ(Sqix) = Sqi(τ(x)).

Cohomology of Eilenberg-Maclane spaces

In this section, all cohomology will have Z2 coefficients. To ease notation, we write H∗(π, n) for H∗(K(π, n)). Recall
that we have the fundamental class ιn ∈ Hn(π, n;π). Using the above proposition and Serre’s spectral sequence,
one can calculate:

• H∗(Z, 2) is the Z2-polynomial ring generated by ι2 ∈ H2(Z, 2) (where ι2 is really the reduction mod 2 of the
original fundamental class);

• for q > 2, H∗(Z, q) is the Z2-polynomial ring generated by {SqI(ιq) : I admissible, e(I) < q, ir 6= 1}.

• H∗(Z2, q) is the Z2-polynomial ring generated by {SqI(ιq) : I admissible, e(I) < q};

• for q > 2, H∗(Z2m , q) is the Z2-polynomial ring generated by {SqIm(ιq) : I admissible, e(I) < q}, where
SqIm = SqI if ir > 1, while if ir = 1 then we replace Sq1 with the Bockstein homomorphism dm;

Note that the first calculation is actually a special case of the second, and the third is actually a special case of the
fourth. (Recall that d1 = Sq1.)
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Classes of abelian groups

A class of abelian groups C is a collection of abelian groups which is closed under taking subgroups, quotients, and
group extensions. A group homomorphism is a C-monomorphism if its kernel is contained in C, a C-epimorphism if
its cokernel is contained in C, and a C-isomorphism if it is both a C-monomorphism and a C-epimorphism.

We will be interested in C2, the class of abelian torsion groups of finite exponent such that the order of every
element is prime to 2 (i.e., odd). In other words, we will be interested in “ignoring odd torsion”. This class is
contagious under tensor product (i.e., if A ∈ C2 then A ⊗ B ∈ C2 for any abelian group B), and if A ∈ C2, then
Hn(A, 1; Z) ∈ C2 for every n > 0.

In general, we have the Hurewicz theorem mod C, the relative Hurewicz theorem mod C, and Whitehead’s theorem
mod C. However, what will be most important for us is

Theorem (C2-approximation). Suppose f : A → X, π1(A) = π1(X) = 0, in each degree the homology of A and X
is finitely generated, and f# : π2(A) → π2(X) is epimorphic. Then any one of the equivalent conditions

1. f∗ : Hi(X; Z2) → Hi(A; Z2) is isomorphic for i < n and monomorphic for i = n;

2. f∗ : Hi(A; Z2) → Hi(X; Z2) is isomorphic for i < n and epimorphic for i = n;

3. Hi(X, A; Z2) = 0 for i ≤ n;

4. Hi(X, A; Z) ≡ 0 (mod C2) for i ≤ n;

5. πi(X, A) ≡ 0 (mod C2) for i ≤ n;

6. f# : πi(A) → πi(X) is C2-isomorphic for i < n and C2-epimorphic for i = n

implies that πi(A) ≡ πi(X) (mod C2) for i < n.

Now we can broadly state our method for computing the homotopy groups of Sn. We begin with K(Z, n),
which has the same cohomology as Sn up through dimension n. Then, we successively kill its higher Z2-cohomology
groups, so that the homotopy groups of the resulting space will agree (mod C2) with those of Sn. However, to do
this we will need to know a bit more about fibrations.

More on fibrations

Given a fibration p : E → B and a map f : X → B, we have the induced fiber space f∗(E) = {(x, e) : f(x) = p(e)},
topologized as a subspace of X × E. The first projection p1 : f∗(E) → X is a fibration with the same fiber as
p : E → B, and we also have the second projection p2 : f∗(E) → E. We can summarize the situation in the
following diagram:

F - f∗(E)
p2 - E � F

X

p1

?

f
- B.

p

?

Proposition. Suppose that in addition, Y is a finite complex and we have a map g : Y → X. Then if fg : Y → B
is nullhomotopic, then there is a lifting h : Y → f∗(E). If E is contractible, then the converse holds: i.e., if there
is a lifting h : Y → f∗(E) making the diagram commute, then fg : Y → B is nullhomotopic.

f∗(E)
p2 - E

Y
g

-

h

-

X

p1

?

f
- B.

p

?
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Proposition. Suppose that F is (n−1)-connected. Then the fundamental class ιF ∈ Hn(F ;πn(F )) is transgressive.
In particular, for the path fibration K(π, n) ↪→ ∗ � K(π, n + 1) we have an isomorphism τ : Hn(π, n;π) →
Hn+1(π, n + 1;π), and τ(ιn) = ιn+1.

Theorem. Suppose we represent a cohomology class x ∈ Hn+1(X;π) by a map f : X → K(π, n + 1). Then for the
induced fibration K(π, n) ↪→ X1 � X, τ(ιn) = f∗(ιn+1) = x.

The big picture

We can now state more precisely our plan of attack. (All our cohomology with be with Z2 coefficients from now on.)
In order to calculate the homotopy groups of Sn (aside from odd torsion), we will begin with K(Z, n) and work our
way up killing cohomology so that the cohomology of the resulting space agrees more and more with that of Sn.
Then by the mod C2-approximation theorem, the resulting space will have homotopy groups which are isomorphic
mod C2 to those of Sn in (approximately) those same dimensions.

Now from this last theorem, we see roughly how to do this. If we don’t like the cohomology class x ∈ Hn+1(X),
we’d like to represent it by a map f : X → K(Z2, n + 1). Then (assuming n ≥ 2) we will have for the induced
fibration K(π, n) ↪→ X1 � X that

Hn(Z2, n)
τ- Hn+1(X)

p∗- Hn+1(X1)
j∗- Hn+1(Z2, n)

τ- Hn+1(X)

by Serre’s lexseq. Hence τ : Hn(Z2, n) → Hn+1(X) is epimorphic. However, we need τ : Hn+1(Z2, n) → Hn+2(X)
to be monomorphic in order to conclude that Hn+1(X1) = 0. This will not be true in general. It all depends on
what’s going on in integral cohomology. To fix this, we may need to replace Z2 with Z2m or even Z, according to
the following crucial

Lemma (Bockstein). Let F ↪→ E � B be a fibration. Write j : F → E for the inclusion and p : E → B for
the projection. Suppose u ∈ Hn(F ) is transgressive, and suppose that there is some class v ∈ Hn(B) such that
div = τ(u) (for some i ≥ 1). Then di+1p

∗v is defined, and j∗di+1p
∗v = diu.

Recall that after the fundamental class ιn ∈ Hn(Z/2, n), the next cohomology class of H∗(Z/2, n) is Sq1ιn =
d1ιn ∈ Hn+1(Z2, n). So if τ(d1ιn) = 0, we can’t use this fibration to kill Hn+1(X1). In this case we make a new
fibration with fiber K(Z4, n), whose next cohomology class after ιn ∈ Hn(Z4, n) is d2ιn ∈ Hn+1(Z4, n). If for this
fibration τ(d2ιn) = 0 then this doesn’t work either, so we try K(Z8, n), and on up as far as we need to go. And if
τ(dmιn) for all m, then we use K(Z, n), which has Hn+1(Z, n) = 0.

And now, we’re ready to compute homotopy groups of spheres!
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