The Steenrod algebra and its applications – talk 2

Aaron Mazel-Gee

Tuesday Oct. 5, 2010

We continue our foray into the world of Steenrod squares and related notions. This lecture covers a number of topics which are of independent interest but will be necessary for computing homotopy groups of spheres.

The Bockstein homomorphisms

Given any sexseq of coefficients, we get a lexseq in cohomology. For example, $0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to 0$ gives rise to

$$\dots \to H^n(X;\mathbb{Z}) \to H^n(X;\mathbb{Z}) \to H^n(X;\mathbb{Z}_2) \to H^{n+1}(X;\mathbb{Z}) \to \dots$$

The connecting map for this lexseq is called the <u>Bockstein homomorphism</u>, which we denote $\beta : H^n(X; \mathbb{Z}_2) \to H^{n+1}(X; \mathbb{Z}).$

On cochains, this can be realized as follows. Any \mathbb{Z}_2 -cohomology class $\overline{x} \in H^n(X; \mathbb{Z}_2)$ is a represented by an integral *n*-cochain *x* with the property that $\delta x \equiv 0 \pmod{2}$, i.e. for any (n+1)-chain *c*, $\delta x(c) = x(\partial c) \equiv 0 \pmod{2}$. (This is what it means for *x* to be a *cocycle mod 2*.) So it must be that $\delta x = 2y$ for some (integral) (n+1)-cochain *y*. Then $\beta(\overline{x}) = y$.

The <u>reduced Bockstein homomorphism</u> $d_1 : H^n(X; \mathbb{Z}_2) \to H^{n+1}(X; \mathbb{Z}_2)$ (which we will henceforth simply refer to as the Bockstein homomorphism) is obtained by following β by reduction mod 2. (For experts: observe that, as usual, we are just skipping the internal map in the Bockstein exact couple.) Of course, using the same notation as before, $d_1(\overline{x}) = \overline{y}$.

Note that ker (d_1) consists of exactly those \mathbb{Z}_2 -cohomology classes \overline{x} such that $\delta x/2$ still evaluates to 0 mod 2 on all boundaries. Thus we may write $\delta x = 4y'$, and we define the second Bockstein homomorphism by $d_2(\overline{x}) = \overline{y'}$. More generally, we define the r^{th} Bockstein homomorphism d_r on ker (d_{r-1}) by

$$d_r(\overline{x}) = \left(\frac{\delta x}{2^r}\right).$$

From these, we can obtain information about \mathbb{Z} -cohomology from \mathbb{Z}_2 -cohomology. If x generates a copy of \mathbb{Z} in $H^n(X;\mathbb{Z})$, then $d_i(\overline{x}) = 0$ for all i. If on the other hand x generates a copy of \mathbb{Z}_{2^r} in $H^{n+1}(X;\mathbb{Z})$, then x gives rise to $\chi \in H^n(X;\mathbb{Z}_2)$ and $\overline{x} \in H^{n+1}(X;\mathbb{Z})$ (via the universal coefficient theorem) such that $d_i(\chi) = 0$ for i < r, $d_i(\overline{x}) = 0$ for i < r, and $d_r(\chi) = \overline{x}$.

Fibrations

A <u>fibration</u> (which for us will always be "in the sense of Serre", for those who care) is a map $p: E \to B$ such that, for any finite complex K, we have the covering homotopy property:

Assuming B is connected, every fiber $p^{-1}(b) \subseteq E$ is homotopy equivalent. We denote by F the fiber over the basepoint, and we write the fibration as $F \hookrightarrow E \twoheadrightarrow B$.

A fibration gives rise to a *lexseq in homotopy*

$$\dots \to \pi_n(F) \to \pi_n(E) \to \pi_n(B) \to \pi_{n-1}(F) \to \dots$$

Example. A covering space is a fibration with a discrete fiber. In the case of $\mathbb{Z} \hookrightarrow \mathbb{R} \twoheadrightarrow S^1$, since \mathbb{R} is contractible the lexseq gives us that $\pi_1(S^1) = \mathbb{Z}$ and $\pi_i(S^1) = 0$ for i > 1. Thus $S^1 = K(\mathbb{Z}, 1)$.

Example. The Hopf map $\eta: S^3 \to S^2$ is a fibration with fiber S^1 . So the homotopy lexseq is

 $\dots \to 0 \to \pi_n(S^3) \to \pi_n(S^2) \to 0 \to \dots \to \pi_3(S^3) \to \pi_3(S^2) \to 0 \to \pi_2(S^3) \to \pi_2(S^2) \to \mathbb{Z} \to 0 \to \dots$

Since $\pi_i(S^i) = \mathbb{Z}$ for any *i*, this tells us that $\pi_2(S^3) = 0$ (which we already knew by cellular approximation), that $\pi_3(S^2) = \mathbb{Z}$ and this is generated by η , and more generally that $\pi_n(S^3) = \pi_n(S^2)$ for $n \ge 3$.

Example. Let *E* be the space of based paths $\gamma : I \to (B, b_0)$, and let $p(\gamma) = \gamma(1)$. Clearly *E* is contractible, so applying the homotopy lexseq to the fibration $\Omega B \hookrightarrow E \twoheadrightarrow B$ gives that $\pi_n(\Omega B) = \pi_{n+1}(B)$ for all *n*.

Example. Considering $S^{2n-1} \subseteq \mathbb{C}^n$, we have (for n > 1) the fibration $S^1 \hookrightarrow S^{2n-1} \twoheadrightarrow \mathbb{CP}^{n-1}$. So $\pi_2(\mathbb{CP}^{n-1}) = \pi_1(S^1) = \mathbb{Z}$. Furthermore, $\pi_i(\mathbb{CP}^{n-1}) = \pi_i(S^{2n-1})$ for i > 2, and this is 0 up until 2n - 1. Taking the (co)limit as $n \to \infty$, we get that $\mathbb{CP}^{\infty} = K(\mathbb{Z}, 2)$.

The Serre spectral sequence

For a fibration $F \hookrightarrow E \twoheadrightarrow B$, we have Serre's spectral sequence in cohomology

$$E_2^{p,q} = H^p(B; \mathcal{H}^q(F; R)) \Rightarrow H^*(E; R),$$

where R is any (commutative) ring and the coefficients may be twisted by $\pi_1(B)$. This has the following properties:

- E_r is a bigraded ring for all r;
- d_r is an antiderivation, i.e. $d_r(a \cdot b) = d_r(a) \cdot b + (-1)^{|a|} a \cdot d_r(b);$
- the product in E_{r+1} is induced by the product in E_r ;
- if R is a field, then $E_2 = H^*(B; R) \otimes H^*(F; R)$ by the Künneth theorem.

(It will always be easy to distinguish these differentials from the Bockstein homomorphisms from the context.)

If B and F are (p-1)- and (q-1)-connected, resp., then the spectral sequence degenerates to Serre's lesseq in cohomology:

$$. \longrightarrow H^{p+q-2}(F) \xrightarrow{\tau} H^{p+q-1}(B) \xrightarrow{p^*} H^{p+q-1}(E) \xrightarrow{j^*} H^{p+q-1}(F),$$

where $p: E \twoheadrightarrow B$ and $j: F \hookrightarrow E$.

More generally, we call any element $x \in H^{n-1}(F)$ transgressive if in Serre's spectral sequence $d_i(x) = 0$ for all i < n. Then we have $d_n(x) \in E_n^{n,0}$, which is a subquotient of $H^n(B)$. In this case, we write $\tau(x) = d_n(x)$.

Proposition. If x is transgressive, then so is Sq^ix for all i, and $\tau(Sq^ix) = Sq^i(\tau(x))$.

Cohomology of Eilenberg-Maclane spaces

In this section, all cohomology will have \mathbb{Z}_2 coefficients. To ease notation, we write $H^*(\pi, n)$ for $H^*(K(\pi, n))$. Recall that we have the fundamental class $\iota_n \in H^n(\pi, n; \pi)$. Using the above proposition and Serre's spectral sequence, one can calculate:

- $H^*(\mathbb{Z}, 2)$ is the \mathbb{Z}_2 -polynomial ring generated by $\iota_2 \in H^2(\mathbb{Z}, 2)$ (where ι_2 is really the reduction mod 2 of the original fundamental class);
- for q > 2, $H^*(\mathbb{Z}, q)$ is the \mathbb{Z}_2 -polynomial ring generated by $\{Sq^I(\iota_q) : I \text{ admissible}, e(I) < q, i_r \neq 1\}$.
- $H^*(\mathbb{Z}_2, q)$ is the \mathbb{Z}_2 -polynomial ring generated by $\{Sq^I(\iota_q) : I \text{ admissible}, e(I) < q\};$
- for q > 2, $H^*(\mathbb{Z}_{2^m}, q)$ is the \mathbb{Z}_2 -polynomial ring generated by $\{Sq^{I_m}(\iota_q) : I \text{ admissible}, e(I) < q\}$, where $Sq^{I_m} = Sq^I$ if $i_r > 1$, while if $i_r = 1$ then we replace Sq^1 with the Bockstein homomorphism d_m ;

Note that the first calculation is actually a special case of the second, and the third is actually a special case of the fourth. (Recall that $d_1 = Sq^1$.)

Classes of abelian groups

A <u>class of abelian groups</u> C is a collection of abelian groups which is closed under taking subgroups, quotients, and group extensions. A group homomorphism is a <u>C-monomorphism</u> if its kernel is contained in C, a <u>C-epimorphism</u> if its cokernel is contained in C, and a <u>C-isomorphism</u> if it is both a C-monomorphism and a C-epimorphism.

We will be interested in C_2 , the class of abelian torsion groups of finite exponent such that the order of every element is prime to 2 (i.e., odd). In other words, we will be interested in "ignoring odd torsion". This class is contagious under tensor product (i.e., if $A \in C_2$ then $A \otimes B \in C_2$ for any abelian group B), and if $A \in C_2$, then $H_n(A, 1; \mathbb{Z}) \in C_2$ for every n > 0.

In general, we have the Hurewicz theorem mod C, the relative Hurewicz theorem mod C, and Whitehead's theorem mod C. However, what will be most important for us is

Theorem (C_2 -approximation). Suppose $f : A \to X$, $\pi_1(A) = \pi_1(X) = 0$, in each degree the homology of A and X is finitely generated, and $f_{\#} : \pi_2(A) \to \pi_2(X)$ is epimorphic. Then any one of the equivalent conditions

- 1. $f^*: H^i(X; \mathbb{Z}_2) \to H^i(A; \mathbb{Z}_2)$ is isomorphic for i < n and monomorphic for i = n;
- 2. $f_*: H_i(A; \mathbb{Z}_2) \to H_i(X; \mathbb{Z}_2)$ is isomorphic for i < n and epimorphic for i = n;
- 3. $H_i(X, A; \mathbb{Z}_2) = 0$ for $i \le n$;
- 4. $H_i(X, A; \mathbb{Z}) \equiv 0 \pmod{\mathcal{C}_2}$ for $i \leq n$;
- 5. $\pi_i(X, A) \equiv 0 \pmod{\mathcal{C}_2}$ for $i \leq n$;
- 6. $f_{\#}: \pi_i(A) \to \pi_i(X)$ is \mathcal{C}_2 -isomorphic for i < n and \mathcal{C}_2 -epimorphic for i = n

implies that $\pi_i(A) \equiv \pi_i(X) \pmod{\mathcal{C}_2}$ for i < n.

Now we can broadly state our method for computing the homotopy groups of S^n . We begin with $K(\mathbb{Z}, n)$, which has the same cohomology as S^n up through dimension n. Then, we successively kill its higher \mathbb{Z}_2 -cohomology groups, so that the homotopy groups of the resulting space will agree (mod \mathcal{C}_2) with those of S^n . However, to do this we will need to know a bit more about fibrations.

More on fibrations

Given a fibration $p: E \to B$ and a map $f: X \to B$, we have the *induced fiber space* $f^*(E) = \{(x, e) : f(x) = p(e)\}$, topologized as a subspace of $X \times E$. The first projection $p_1: \overline{f^*(E)} \to X$ is a fibration with the same fiber as $p: E \to B$, and we also have the second projection $p_2: f^*(E) \to E$. We can summarize the situation in the following diagram:

Proposition. Suppose that in addition, Y is a finite complex and we have a map $g: Y \to X$. Then if $fg: Y \to B$ is nullhomotopic, then there is a lifting $h: Y \to f^*(E)$. If E is contractible, then the converse holds: i.e., if there is a lifting $h: Y \to f^*(E)$ making the diagram commute, then $fg: Y \to B$ is nullhomotopic.

Proposition. Suppose that F is (n-1)-connected. Then the fundamental class $\iota_F \in H^n(F; \pi_n(F))$ is transgressive. In particular, for the path fibration $K(\pi, n) \hookrightarrow * \twoheadrightarrow K(\pi, n+1)$ we have an isomorphism $\tau : H^n(\pi, n; \pi) \to H^{n+1}(\pi, n+1; \pi)$, and $\tau(\iota_n) = \iota_{n+1}$.

Theorem. Suppose we represent a cohomology class $x \in H^{n+1}(X; \pi)$ by a map $f: X \to K(\pi, n+1)$. Then for the induced fibration $K(\pi, n) \hookrightarrow X_1 \twoheadrightarrow X$, $\tau(\iota_n) = f^*(\iota_{n+1}) = x$.

The big picture

We can now state more precisely our plan of attack. (All our cohomology with be with \mathbb{Z}_2 coefficients from now on.) In order to calculate the homotopy groups of S^n (aside from odd torsion), we will begin with $K(\mathbb{Z}, n)$ and work our way up killing cohomology so that the cohomology of the resulting space agrees more and more with that of S^n . Then by the mod \mathcal{C}_2 -approximation theorem, the resulting space will have homotopy groups which are isomorphic mod \mathcal{C}_2 to those of S^n in (approximately) those same dimensions.

Now from this last theorem, we see roughly how to do this. If we don't like the cohomology class $x \in H^{n+1}(X)$, we'd like to represent it by a map $f : X \to K(\mathbb{Z}_2, n+1)$. Then (assuming $n \ge 2$) we will have for the induced fibration $K(\pi, n) \hookrightarrow X_1 \to X$ that

$$H^{n}(\mathbb{Z}_{2}, n) \xrightarrow{\tau} H^{n+1}(X) \xrightarrow{p^{*}} H^{n+1}(X_{1}) \xrightarrow{j^{*}} H^{n+1}(\mathbb{Z}_{2}, n) \xrightarrow{\tau} H^{n+1}(X)$$

by Serre's lexseq. Hence $\tau : H^n(\mathbb{Z}_2, n) \to H^{n+1}(X)$ is epimorphic. However, we need $\tau : H^{n+1}(\mathbb{Z}_2, n) \to H^{n+2}(X)$ to be monomorphic in order to conclude that $H^{n+1}(X_1) = 0$. This will not be true in general. It all depends on what's going on in integral cohomology. To fix this, we may need to replace \mathbb{Z}_2 with \mathbb{Z}_{2^m} or even \mathbb{Z} , according to the following crucial

Lemma (Bockstein). Let $F \hookrightarrow E \twoheadrightarrow B$ be a fibration. Write $j : F \to E$ for the inclusion and $p : E \to B$ for the projection. Suppose $u \in H^n(F)$ is transgressive, and suppose that there is some class $v \in H^n(B)$ such that $d_iv = \tau(u)$ (for some $i \ge 1$). Then $d_{i+1}p^*v$ is defined, and $j^*d_{i+1}p^*v = d_iu$.

Recall that after the fundamental class $\iota_n \in H^n(\mathbb{Z}/2, n)$, the next cohomology class of $H^*(\mathbb{Z}/2, n)$ is $Sq^1\iota_n = d_1\iota_n \in H^{n+1}(\mathbb{Z}_2, n)$. So if $\tau(d_1\iota_n) = 0$, we can't use this fibration to kill $H^{n+1}(X_1)$. In this case we make a new fibration with fibr $K(\mathbb{Z}_4, n)$, whose next cohomology class after $\iota_n \in H^n(\mathbb{Z}_4, n)$ is $d_2\iota_n \in H^{n+1}(\mathbb{Z}_4, n)$. If for this fibration $\tau(d_2\iota_n) = 0$ then this doesn't work either, so we try $K(\mathbb{Z}_8, n)$, and on up as far as we need to go. And if $\tau(d_m\iota_n)$ for all m, then we use $K(\mathbb{Z}, n)$, which has $H^{n+1}(\mathbb{Z}, n) = 0$.

And now, we're ready to compute homotopy groups of spheres!