The Steenrod algebra and its applications - talk 2

Aaron Mazel-Gee

Tuesday Oct. 5, 2010

We continue our foray into the world of Steenrod squares and related notions. This lecture covers a number of topics which are of independent interest but will be necessary for computing homotopy groups of spheres.

The Bockstein homomorphisms

Given any sexseq of coefficients, we get a lexseq in cohomology. For example, $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}_{2} \rightarrow 0$ gives rise to

$$
\ldots \rightarrow H^{n}(X ; \mathbb{Z}) \rightarrow H^{n}(X ; \mathbb{Z}) \rightarrow H^{n}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H^{n+1}(X ; \mathbb{Z}) \rightarrow \ldots
$$

The connecting map for this lexseq is called the Bockstein homomorphism, which we denote $\beta: H^{n}\left(X ; \mathbb{Z}_{2}\right) \rightarrow$ $H^{n+1}(X ; \mathbb{Z})$.

On cochains, this can be realized as follows. Any \mathbb{Z}_{2}-cohomology class $\bar{x} \in H^{n}\left(X ; \mathbb{Z}_{2}\right)$ is a represented by an integral n-cochain x with the property that $\delta x \equiv 0(\bmod 2)$, i.e. for any $(n+1)$-chain $c, \delta x(c)=x(\partial c) \equiv 0(\bmod 2)$. (This is what it means for x to be a cocycle mod 2.) So it must be that $\delta x=2 y$ for some (integral) ($n+1$)-cochain y. Then $\beta(\bar{x})=y$.

The reduced Bockstein homomorphism $d_{1}: H^{n}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H^{n+1}\left(X ; \mathbb{Z}_{2}\right)$ (which we will henceforth simply refer to as the Bockstein homomorphism) is obtained by following β by reduction mod 2. (For experts: observe that, as usual, we are just skipping the internal map in the Bockstein exact couple.) Of course, using the same notation as before, $d_{1}(\bar{x})=\bar{y}$.

Note that $\operatorname{ker}\left(d_{1}\right)$ consists of exactly those \mathbb{Z}_{2}-cohomology classes \bar{x} such that $\delta x / 2$ still evaluates to $0 \bmod 2$ on all boundaries. Thus we may write $\delta x=4 y^{\prime}$, and we define the second Bockstein homomorphism by $d_{2}(\bar{x})=\overline{y^{\prime}}$. More generally, we define the $r^{t h}$ Bockstein homomorphism d_{r} on $\operatorname{ker}\left(d_{r-1}\right)$ by

$$
d_{r}(\bar{x})=\overline{\left(\frac{\delta x}{2^{r}}\right)}
$$

From these, we can obtain information about \mathbb{Z}-cohomology from \mathbb{Z}_{2}-cohomology. If x generates a copy of \mathbb{Z} in $H^{n}(X ; \mathbb{Z})$, then $d_{i}(\bar{x})=0$ for all i. If on the other hand x generates a copy of $\mathbb{Z}_{2^{r}}$ in $H^{n+1}(X ; \mathbb{Z})$, then x gives rise to $\chi \in H^{n}\left(X ; \mathbb{Z}_{2}\right)$ and $\bar{x} \in H^{n+1}(X ; \mathbb{Z})$ (via the universal coefficient theorem) such that $d_{i}(\chi)=0$ for $i<r$, $d_{i}(\bar{x})=0$ for $i<r$, and $d_{r}(\chi)=\bar{x}$.

Fibrations

A fibration (which for us will always be "in the sense of Serre", for those who care) is a map $p: E \rightarrow B$ such that, for any finite complex K, we have the covering homotopy property:

Assuming B is connected, every fiber $p^{-1}(b) \subseteq E$ is homotopy equivalent. We denote by F the fiber over the basepoint, and we write the fibration as $F \hookrightarrow E \rightarrow B$.

A fibration gives rise to a lexseq in homotopy

$$
\ldots \rightarrow \pi_{n}(F) \rightarrow \pi_{n}(E) \rightarrow \pi_{n}(B) \rightarrow \pi_{n-1}(F) \rightarrow \ldots
$$

Example. A covering space is a fibration with a discrete fiber. In the case of $\mathbb{Z} \hookrightarrow \mathbb{R} \rightarrow S^{1}$, since \mathbb{R} is contractible the lexseq gives us that $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$ and $\pi_{i}\left(S^{1}\right)=0$ for $i>1$. Thus $S^{1}=K(\mathbb{Z}, 1)$.

Example. The Hopf map $\eta: S^{3} \rightarrow S^{2}$ is a fibration with fiber S^{1}. So the homotopy lexseq is

$$
\ldots \rightarrow 0 \rightarrow \pi_{n}\left(S^{3}\right) \rightarrow \pi_{n}\left(S^{2}\right) \rightarrow 0 \rightarrow \ldots \rightarrow \pi_{3}\left(S^{3}\right) \rightarrow \pi_{3}\left(S^{2}\right) \rightarrow 0 \rightarrow \pi_{2}\left(S^{3}\right) \rightarrow \pi_{2}\left(S^{2}\right) \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow \ldots
$$

Since $\pi_{i}\left(S^{i}\right)=\mathbb{Z}$ for any i, this tells us that $\pi_{2}\left(S^{3}\right)=0$ (which we already knew by cellular approximation), that $\pi_{3}\left(S^{2}\right)=\mathbb{Z}$ and this is generated by η, and more generally that $\pi_{n}\left(S^{3}\right)=\pi_{n}\left(S^{2}\right)$ for $n \geq 3$.

Example. Let E be the space of based paths $\gamma: I \rightarrow\left(B, b_{0}\right)$, and let $p(\gamma)=\gamma(1)$. Clearly E is contractible, so applying the homotopy lexseq to the fibration $\Omega B \hookrightarrow E \rightarrow B$ gives that $\pi_{n}(\Omega B)=\pi_{n+1}(B)$ for all n.
Example. Considering $S^{2 n-1} \subseteq \mathbb{C}^{n}$, we have (for $n>1$) the fibration $S^{1} \hookrightarrow S^{2 n-1} \rightarrow \mathbb{C P}^{n-1}$. So $\pi_{2}\left(\mathbb{C P}^{n-1}\right)=$ $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$. Furthermore, $\pi_{i}\left(\mathbb{C P}^{n-1}\right)=\pi_{i}\left(S^{2 n-1}\right)$ for $i>2$, and this is 0 up until $2 n-1$. Taking the (co)limit as $n \rightarrow \infty$, we get that $\mathbb{C P}^{\infty}=K(\mathbb{Z}, 2)$.

The Serre spectral sequence

For a fibration $F \hookrightarrow E \rightarrow B$, we have Serre's spectral sequence in cohomology

$$
E_{2}^{p, q}=H^{p}\left(B ; \mathcal{H}^{q}(F ; R)\right) \Rightarrow H^{*}(E ; R)
$$

where R is any (commutative) ring and the coefficients may be twisted by $\pi_{1}(B)$. This has the following properties:

- E_{r} is a bigraded ring for all r;
- d_{r} is an antiderivation, i.e. $d_{r}(a \cdot b)=d_{r}(a) \cdot b+(-1)^{|a|} a \cdot d_{r}(b)$;
- the product in E_{r+1} is induced by the product in E_{r};
- if R is a field, then $E_{2}=H^{*}(B ; R) \otimes H^{*}(F ; R)$ by the Künneth theorem.
(It will always be easy to distinguish these differentials from the Bockstein homomorphisms from the context.)
If B and F are $(p-1)$ - and ($q-1)$-connected, resp., then the spectral sequence degenerates to Serre's lexseq in cohomology:

$$
\ldots \longrightarrow H^{p+q-2}(F) \xrightarrow{\tau} H^{p+q-1}(B) \xrightarrow{p^{*}} H^{p+q-1}(E) \xrightarrow{j^{*}} H^{p+q-1}(F),
$$

where $p: E \rightarrow B$ and $j: F \hookrightarrow E$.
More generally, we call any element $x \in H^{n-1}(F)$ transgressive if in Serre's spectral sequence $d_{i}(x)=0$ for all $i<n$. Then we have $d_{n}(x) \in E_{n}^{n, 0}$, which is a subquotient of $H^{n}(B)$. In this case, we write $\tau(x)=d_{n}(x)$.

Proposition. If x is transgressive, then so is $S q^{i} x$ for all i, and $\tau\left(S q^{i} x\right)=S q^{i}(\tau(x))$.

Cohomology of Eilenberg-Maclane spaces

In this section, all cohomology will have \mathbb{Z}_{2} coefficients. To ease notation, we write $H^{*}(\pi, n)$ for $H^{*}(K(\pi, n))$. Recall that we have the fundamental class $\iota_{n} \in H^{n}(\pi, n ; \pi)$. Using the above proposition and Serre's spectral sequence, one can calculate:

- $H^{*}(\mathbb{Z}, 2)$ is the \mathbb{Z}_{2}-polynomial ring generated by $\iota_{2} \in H^{2}(\mathbb{Z}, 2)$ (where ι_{2} is really the reduction mod 2 of the original fundamental class);
- for $q>2, H^{*}(\mathbb{Z}, q)$ is the \mathbb{Z}_{2}-polynomial ring generated by $\left\{S q^{I}\left(\iota_{q}\right): I\right.$ admissible, $\left.e(I)<q, i_{r} \neq 1\right\}$.
- $H^{*}\left(\mathbb{Z}_{2}, q\right)$ is the \mathbb{Z}_{2}-polynomial ring generated by $\left\{S q^{I}\left(\iota_{q}\right): I\right.$ admissible, $\left.e(I)<q\right\}$;
- for $q>2, H^{*}\left(\mathbb{Z}_{2^{m}}, q\right)$ is the \mathbb{Z}_{2}-polynomial ring generated by $\left\{S q^{I_{m}}\left(\iota_{q}\right)\right.$: I admissible, $\left.e(I)<q\right\}$, where $S q^{I_{m}}=S q^{I}$ if $i_{r}>1$, while if $i_{r}=1$ then we replace $S q^{1}$ with the Bockstein homomorphism d_{m};
Note that the first calculation is actually a special case of the second, and the third is actually a special case of the fourth. (Recall that $d_{1}=S q^{1}$.)

Classes of abelian groups

A class of abelian groups \mathcal{C} is a collection of abelian groups which is closed under taking subgroups, quotients, and group extensions. A group homomorphism is a \mathcal{C}-monomorphism if its kernel is contained in \mathcal{C}, a \mathcal{C}-epimorphism if its cokernel is contained in \mathcal{C}, and a \mathcal{C}-isomorphism if it is both a \mathcal{C}-monomorphism and a \mathcal{C}-epimorphism.

We will be interested in \mathcal{C}_{2}, the class of abelian torsion groups of finite exponent such that the order of every element is prime to 2 (i.e., odd). In other words, we will be interested in "ignoring odd torsion". This class is contagious under tensor product (i.e., if $A \in \mathcal{C}_{2}$ then $A \otimes B \in \mathcal{C}_{2}$ for any abelian group B), and if $A \in \mathcal{C}_{2}$, then $H_{n}(A, 1 ; \mathbb{Z}) \in \mathcal{C}_{2}$ for every $n>0$.

In general, we have the Hurewicz theorem $\bmod \mathcal{C}$, the relative Hurewicz theorem $\bmod \mathcal{C}$, and Whitehead's theorem $\bmod \mathcal{C}$. However, what will be most important for us is

Theorem (\mathcal{C}_{2}-approximation). Suppose $f: A \rightarrow X, \pi_{1}(A)=\pi_{1}(X)=0$, in each degree the homology of A and X is finitely generated, and $f_{\#}: \pi_{2}(A) \rightarrow \pi_{2}(X)$ is epimorphic. Then any one of the equivalent conditions

1. $f^{*}: H^{i}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H^{i}\left(A ; \mathbb{Z}_{2}\right)$ is isomorphic for $i<n$ and monomorphic for $i=n$;
2. $f_{*}: H_{i}\left(A ; \mathbb{Z}_{2}\right) \rightarrow H_{i}\left(X ; \mathbb{Z}_{2}\right)$ is isomorphic for $i<n$ and epimorphic for $i=n$;
3. $H_{i}\left(X, A ; \mathbb{Z}_{2}\right)=0$ for $i \leq n$;
4. $H_{i}(X, A ; \mathbb{Z}) \equiv 0\left(\bmod \mathcal{C}_{2}\right)$ for $i \leq n$;
5. $\pi_{i}(X, A) \equiv 0\left(\bmod \mathcal{C}_{2}\right)$ for $i \leq n$;
6. $f_{\#}: \pi_{i}(A) \rightarrow \pi_{i}(X)$ is \mathcal{C}_{2}-isomorphic for $i<n$ and \mathcal{C}_{2}-epimorphic for $i=n$
implies that $\pi_{i}(A) \equiv \pi_{i}(X)\left(\bmod \mathcal{C}_{2}\right)$ for $i<n$.
Now we can broadly state our method for computing the homotopy groups of S^{n}. We begin with $K(\mathbb{Z}, n)$, which has the same cohomology as S^{n} up through dimension n. Then, we successively kill its higher \mathbb{Z}_{2}-cohomology groups, so that the homotopy groups of the resulting space will agree $\left(\bmod \mathcal{C}_{2}\right)$ with those of S^{n}. However, to do this we will need to know a bit more about fibrations.

More on fibrations

Given a fibration $p: E \rightarrow B$ and a map $f: X \rightarrow B$, we have the induced fiber space $f^{*}(E)=\{(x, e): f(x)=p(e)\}$, topologized as a subspace of $X \times E$. The first projection $p_{1}: \overline{f^{*}(E) \rightarrow X}$ is a fibration with the same fiber as $p: E \rightarrow B$, and we also have the second projection $p_{2}: f^{*}(E) \rightarrow E$. We can summarize the situation in the following diagram:

Proposition. Suppose that in addition, Y is a finite complex and we have a map $g: Y \rightarrow X$. Then if $f g: Y \rightarrow B$ is nullhomotopic, then there is a lifting $h: Y \rightarrow f^{*}(E)$. If E is contractible, then the converse holds: i.e., if there is a lifting $h: Y \rightarrow f^{*}(E)$ making the diagram commute, then $f g: Y \rightarrow B$ is nullhomotopic.

Proposition. Suppose that F is $(n-1)$-connected. Then the fundamental class $\iota_{F} \in H^{n}\left(F ; \pi_{n}(F)\right)$ is transgressive. In particular, for the path fibration $K(\pi, n) \hookrightarrow * \rightarrow K(\pi, n+1)$ we have an isomorphism $\tau: H^{n}(\pi, n ; \pi) \rightarrow$ $H^{n+1}(\pi, n+1 ; \pi)$, and $\tau\left(\iota_{n}\right)=\iota_{n+1}$.

Theorem. Suppose we represent a cohomology class $x \in H^{n+1}(X ; \pi)$ by a map $f: X \rightarrow K(\pi, n+1)$. Then for the induced fibration $K(\pi, n) \hookrightarrow X_{1} \rightarrow X, \tau\left(\iota_{n}\right)=f^{*}\left(\iota_{n+1}\right)=x$.

The big picture

We can now state more precisely our plan of attack. (All our cohomology with be with \mathbb{Z}_{2} coefficients from now on.) In order to calculate the homotopy groups of S^{n} (aside from odd torsion), we will begin with $K(\mathbb{Z}, n)$ and work our way up killing cohomology so that the cohomology of the resulting space agrees more and more with that of S^{n}. Then by the $\bmod \mathcal{C}_{2}$-approximation theorem, the resulting space will have homotopy groups which are isomorphic $\bmod \mathcal{C}_{2}$ to those of S^{n} in (approximately) those same dimensions.

Now from this last theorem, we see roughly how to do this. If we don't like the cohomology class $x \in H^{n+1}(X)$, we'd like to represent it by a map $f: X \rightarrow K\left(\mathbb{Z}_{2}, n+1\right)$. Then (assuming $n \geq 2$) we will have for the induced fibration $K(\pi, n) \hookrightarrow X_{1} \rightarrow X$ that

$$
H^{n}\left(\mathbb{Z}_{2}, n\right) \xrightarrow{\tau} H^{n+1}(X) \xrightarrow{p^{*}} H^{n+1}\left(X_{1}\right) \xrightarrow{j^{*}} H^{n+1}\left(\mathbb{Z}_{2}, n\right) \xrightarrow{\tau} H^{n+1}(X)
$$

by Serre's lexseq. Hence $\tau: H^{n}\left(\mathbb{Z}_{2}, n\right) \rightarrow H^{n+1}(X)$ is epimorphic. However, we need $\tau: H^{n+1}\left(\mathbb{Z}_{2}, n\right) \rightarrow H^{n+2}(X)$ to be monomorphic in order to conclude that $H^{n+1}\left(X_{1}\right)=0$. This will not be true in general. It all depends on what's going on in integral cohomology. To fix this, we may need to replace \mathbb{Z}_{2} with $\mathbb{Z}_{2^{m}}$ or even \mathbb{Z}, according to the following crucial

Lemma (Bockstein). Let $F \hookrightarrow E \rightarrow B$ be a fibration. Write $j: F \rightarrow E$ for the inclusion and $p: E \rightarrow B$ for the projection. Suppose $u \in H^{n}(F)$ is transgressive, and suppose that there is some class $v \in H^{n}(B)$ such that $d_{i} v=\tau(u)$ (for some $i \geq 1$). Then $d_{i+1} p^{*} v$ is defined, and $j^{*} d_{i+1} p^{*} v=d_{i} u$.

Recall that after the fundamental class $\iota_{n} \in H^{n}(\mathbb{Z} / 2, n)$, the next cohomology class of $H^{*}(\mathbb{Z} / 2, n)$ is $S q^{1} \iota_{n}=$ $d_{1} \iota_{n} \in H^{n+1}\left(\mathbb{Z}_{2}, n\right)$. So if $\tau\left(d_{1} \iota_{n}\right)=0$, we can't use this fibration to kill $H^{n+1}\left(X_{1}\right)$. In this case we make a new fibration with fiber $K\left(\mathbb{Z}_{4}, n\right)$, whose next cohomology class after $\iota_{n} \in H^{n}\left(\mathbb{Z}_{4}, n\right)$ is $d_{2} \iota_{n} \in H^{n+1}\left(\mathbb{Z}_{4}, n\right)$. If for this fibration $\tau\left(d_{2} \iota_{n}\right)=0$ then this doesn't work either, so we try $K\left(\mathbb{Z}_{8}, n\right)$, and on up as far as we need to go. And if $\tau\left(d_{m} \iota_{n}\right)$ for all m, then we use $K(\mathbb{Z}, n)$, which has $H^{n+1}(\mathbb{Z}, n)=0$.

And now, we're ready to compute homotopy groups of spheres!

